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Two equivalent approaches to Fermi Liquid theory

A. Rikhter
(Dated: 4 December 2019)

A degenerate, interacting Fermi gas is presented in Landau’s quasiparticle picture. The simplest case of Férmi
liquid theory for Helium-3 is reviewed. Next, the more general problem is treated by the Green’s function
formalism. The connection between the two presentations of the theory is identified. .

Introduction.—The understanding of transport in metals
began with a seminal work by Drude!, who developed a
bare-bones model to obtain an estimate for the conduc-
tivity. Only a few years later, crucial advances were made
in the new quantum theory, which allowed Sommerfeld?
to improve the model. In essence, he modeled the elec-
trons in a metal as a non-interacting Fermi gas. However,
physical quantities derived from this model were remark-
ably consistent with experimental observation. In a real
metal, the Coulomb interactions in a degenerate electron
gas are by no means weak when compared to the kinetic
energies. Understandably, the accuracy of Sommerfeld’s
model puzzled theorists for decades.

The crucial insight that led to the resolution of this
conundrum came from the study of superfluid helium.
In 1956, Landau® proposed that the main effect of the
interactions in a degenerate Fermi gas can be understood
by treating the system of strongly interacting electrons
as a system of noninteracting “quasiparticles”, resulting
in what is now called Fermi liquid theory (FLT). In the
following decade, the methods of field theory were used
to justify Landau’s proposition. Today, FLT is known as
a widely successful model used to model the properties
of a broad range of fermionic systems.

Preliminaries—The purpose of this section will be to
introduce the quantities of interest in FLT and to provide
the simplest examples of its application. The material in
this section was drawn from the original papers®*, several
well-known textbooks on the subject®®, as well as Prof.
Congjun Wu’s excellent notes®.

The assumption of there being a one-to-one correspon-
dence between the electron and the quasiparticle is very
powerful, and allows one to retain the concept of the
Fermi sphere. This assumption is only valid if there are
no“phase transitions” or instabilities as the interaction
strength of the electron system is increased. The first
consequence and most obvious consequence of this map-
ping is that the number of particles remains the same.
The total spin and the momentum carried by the system
also remains unchanged'®. To derive several simple rela-
tions, consider the response of the system to a fluctua-
tion. The change in energy can be written as a functional
of the quasiparticle density n and its energy e(p):

0E = /s(p)5n d3p (1)

In writing the energy as a function of momentum only,
it has been assumed that there is no external magnetic

field or spin-orbit coupling effects. The correction to the
energy is given by

00) =  [fow @B N@) . (2)

Here, 0,0’ label the spins. Throughout this discussion,
spin will be suppressed for the sake of brevity. The func-
tion foo (P, P’) contains all of the interactions and plays
a central role in the theory. It is dependent on the mo-
menta of the interacting particles and their spins. In a
system invariant under independent spin and spatial ro-
tations, the interaction function f can be written as a
sum of a symmetic and antisymmetric part:

foor(P,P') = f*(p,P) + o0’ f*(D, D). 3)

These are the only combinations allowed without an ex-
ternal field or spin orbit coupling, and can be seen as
the sum of a direct (Hartree) and an exchange (Fock)
term. The latter term contains a contraction of the fa-
miliar Pauli matrices, labeled by o, ¢’. The more general
case can also be considered; generalizations to a include
a magnetic field or spin-orbit interactions can be found
in the literature!!'2. ‘
The existence of a Fermi sphere for quasiparticles al-
lows for a further simplification. Since the only relevant
interactions will be taking place on the Fermi surface,
one can neglect any collisions involving significant mo-
mentum transfer, so the only relevant quantity will b;e
the angle between collisions. This allows one to expand
the two contributions to the interaction function in terms
of Legendre polynomials: ‘

|
FP=N0)f7 (43)

1
Ff =N(0)ff (4b)

£®-p)=) ffRM P)
=0

@)= fBd-p)
=0

The value N(0) is the density of quasiparticle states a%t
the Fermi surface, and the coefficients of the expansion
F* are related to the response of the system to variou‘s
external perturbations. For instance, the F§ coefficient
modifies the spin susceptibility of the quasiparticles, ana

F§ renormalizes the compressibility: |

___N(O)xo |
XZNO) + xoFg (5‘1)
1 N(0 ‘
F=21 +(F)§ (Sb?



the expectation value of any single-particle operator f:

F() = [ ¥ @0via) ér (1)
By using Eqn. (10), it can be seen that

F(t) = —i / F(@)C(z,z) &r, (12a)

G(z,z) = lim lim G(z —z'). (12b)

r'—rt'—t+0

This form is reminiscent of the classical correlation func-
tion, and indeed, the formalism is nearly the same. For-
mally, the Green’s function is the operator that inverts
the Hamiltonian. For a free system in the grand canoni-
cal ensemble with chemical potential y, it is given by

1
w — (e(p) — p) +1in sign(|p| - pr)

GO (p,w) = (13)
The 7 is an infinitesimal that specifies the proper manner
in which to avoid the poles in the complex plane, and pr
is the radius of the Fermi sphere. Two closely related
quantities, G, G4 fix the sign of n to +1, respectively.
Of special interest is G®, which is the function that cor-
responds to the physical observables. In this form, the
poles of GO are the energy states of the free Fermi gas;
since they are real, the states have an infinite lifetime.
It will also be useful to notice that the poles have unit
residue.

Naturally, an interacting system must have a more
complicated expression for its Green’s function. How-
ever, the real part and imaginary part of the poles still
represent the eigenmodes and their attenuation, respec-
tively. The residue at those poles, denoted Z, is com-
monly referred to as the renormalization factor, and it
can be shown to be a real value between 0 and 15.

As with any perturbation theory, the higher order
terms in the theory can be obtained in terms of the quan-
tities obtained from the perturbed state. In this context,
the higher order Green’s functions are composed of cer-
tain combinations of the bare quantity in Eq. (13). How-
ever, the algebraic expressions for the higher order terms
quickly become unwieldy. The technique of Feynman di-
agrams allows one to compactly represent these quanti-
ties. The solid lines represent the bare Green’s functions,
and the dashed lines signify the (two-body) interaction.
The corrections to the two-body Green’s function arising
from the Hartree-Fock approximation are shown in Fig 1.
The relevant algebraic expressions for these corrections
pictured in Fig. 1 (a), (b) are presented below, in that
order.

; d4 ’
V() == (6"(p.w)" [ VOGRS,
(14a)
2 d4
69(p.) = (@°(p,)" [ V@ (P~ a1
(14b)

{
—

p p p p—q p

FIG. 1. Examples of Feynman diagrams. (a) The correction
to the two-particle Green’s function from the direct interac-
tion. The corresponding expression is given by Eqn. (14a).
(b) The correction to the two-particle Green’s function from

the exchange interaction. The corresponding expression is
given by Eqn. (14b).

The rules for a general diagram can be found in any
good textbook on quantum field theory, such as the refer—l
ences mentioned in the beginning of this section. Finally
Eqns.(14a) and (14b) can be rewritten in the more sug

gestive form,

G(p,w) = G°(p,w) + G°(p,w)%(p,w)G(p,w). (15)
|
The quantity X(p, w) is defined as the self-energy. Phys-

ically, it is the energy due to the inter-particle interac-

tions. This term also appears if we rewrite Eqn.(13) f01‘r
the full Green’s function:

|
1 |
EPES CmEIEr R

G(p,w)

This self-energy can be extracted experimentally, and so}
the Green’s function for a system can be found, allowing
one to obtain the observables. \

So far, all averages were taken to be over the ground
state of the given system, which is only correct at zero
temperature. At finite temperatures, the excited states
can no longer be neglected. The generalization of the the-
ory to finite temperatures is not obvious. The technique,
pioneered by T. Matsubara, begins by transforming to
an imaginary time ¢ — —i7. The imaginary time is con-
strained to an interval —1/T < 7 < 1/T. A few lines of
algebra shows that this procedure yields Eqn. (10) with
the difference t — —ir, and the average (...) becomes a
thermal trace over all eigenstates. The (anti)symmetry
properties of bosons (fermions) under exchange con—i
strains the Green’s function to be (anti)periodic under
the shift 7 — 7+ 1/T. The finite-temperature version of

Eqn. (13) is given by
1

|
|
o el =) EOED) wp, =nnT. (17)‘

gO (p, Wn) =

n is an even(odd) integer in the case of bosons(fermions)T
The diagrams and the expressions for the corrections res
main largely the same. The major difference is any inte-
grals over frequency, such as in Eqn. (14a), are replaced

by a sum over all Matsubara frequencies.



it is not presented here. In the end, both methods fail
to agree with experiment, in that the factor preceding
T? departs significantly from 472 for a significant class
of materials. The authors propose that the discrepancy
arises due to electron-phonon interactions and support
their claims with a phenomenological model. In the end,
the equivalency of the two approaches to the problem is
manifest, albeit with one being more general than the
other.

Limitations and conclusion.—It was assumed that turn-
ing on the interactions would allow us to define quasipar-
ticles and retain the concept of the Fermi-sphere. This
assumption that the interaction do not change the prob-
lem qualitatively is not true in general. A well-known ex-
ample where the FLT cannot be applied is in situations
with attractive potential between the constituents. For
instance, such a situation can take place due to electron-
phonon interaction. As a result, the Fermi surface is
destroyed due to Cooper pair formation, and the gradual
increase of the interaction strength is no longer reason-
able. In any case, a crucial assumption made in FLT is
that the potential be repulsive.

Another failure of FLT was illustrated in a well-known
model due to Luttinger?2. The Luttinger liquid, which is
a one-dimensional (1D) system of interacting fermions is
also a system that cannot be obtained from the FLT. In
fact, the system is exactly solvable, and it possesses no
sharp particle-like excitations in its spectrum.

Both cases can be tracked down to the definition of a
quasiparticle. A quasiparticle is a long-lived excitation,
with an attenuation coefficient small compared to its life-
time. Mathematically, this information is contained in
the renormalization factor Z introduced in a previous
section. The case Z = 0 corresponds to a situation where
the ground state cannot be obtained by the perturbation
theory, and the notion of a fermionic quasi-particle is
no longer appropriate to describe the physics of the real
system.

In the recent years, a new research direction addresses
the physics of so-called non-Fermi liquid (NFLs). The
1D model introduced above is a toy model for a NFL.
It is difficult to put all of these different NFLs under

| 5

one umbrella, but one characteristic of this behavior is
their resistivity, which is typically linear in temperature
T'. In contrast, FLT predicts a resistivity proportional to
the scattering time, which is proportional to T2. A rela-
tively recent review summarizes the recent experimental
and theoretical efforts to understand these materials?3,
but a satisfactory understanding of the physics in these
materials has not yet been achieved. A similar enigﬁla
has presented itself in the study of superconductivity,
which has also proved to be a notoriously difficult prob-
lem to solve. It will be exciting to see what progress will
be made on both of these topics in the nearest future.
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