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0.1 Preface

These lecture notes are based on material presented in both graduate and undergraduate mechanics
classes which I have taught on several occasions during the past 30 years at UCSD (Physics 110A-B and
Physics 200A-B).

The level of these notes is appropriate for an advanced undergraduate or a first year graduate course
in classical mechanics. In some instances, I've tried to collect the discussion of more advanced material
into separate sections, but in many cases this proves inconvenient, and so the level of the presentation
fluctuates.

My presentation and choice of topics has been influenced by many books as well as by my own profes-
sors. I've reiterated extended some discussions from other texts, such as Barger and Olsson’s treatment
of the gravitational swing-by effect, and their discussion of rolling and skidding tops. The figures were,
with very few exceptions, painstakingly made using Keynote and/or SM.

My only request, to those who would use these notes: please contact me if you find errors or typos, or if
you have suggestions for additional material. My email address is darovas@ucsd. edu. I plan to update
and extend these notes as my time and inclination permit.
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Chapter 1

Introduction to Dynamics

1.1 What is Dynamics?

Loosely speaking, dynamics is the study of mathematical models of “what happens next,” which is to
say how systems evolve in time. There are four main elements to dynamics:

(i) The initial conditions, or “"how things are now.”

(ii) The equations of motion, which encode how a given system evolves. There are two broad classes
to speak of: difference equations which describe evolution in discrete time steps, and differential
equations which describe continuous time evolution.

(iii) There may be a random component to the evolution, in which case the equations of motion are said
to be stochastic.

(iv) The solution of the equations of motion, given the initial conditions, tells us the motion of the
system, i.e. "how things will be in the future.” For stochastic systems, we cannot compute the
motion itself, but rather only statistical properties thereof, such as the average position(s) at some
future time.

Our main concern will be in applying these mathematical models to physical mechanical systems: balls
and springs, celestial bodies, spinning tops, etc., which are the purview of classical mechanics. In classical
mechanics, the equations of motion describe continuous time dynamics of each system’s various degrees
of freedom in the form of coupled second order ordinary differential equations', which are nothing more
than Newton’s second law F' = ma. In one space dimension, for example, we have m d?z/dt* = F(z).
Such systems are special, and constitute a restricted class of the general family of continuous time dy-
namical systems. For example, if the forces are derivable from a potential energy function, then there is

'The degrees of freedom are the positional coordinates for point particles and the orientational coordinates for rigid bodies.
In the case of nonrigid continuous systems, like strings, membranes, and elastic media, the equations of motion are partial
differential equations involving both space and time. Continuum mechanics is discussed below in chapter 10.
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a conserved quantity, which is the total energy”. We will derive the equations of motion, i.e. Newton’s
laws, using a powerful variational principle known as the principle of extremal action, which lies at the
foundation of Lagrange’s approach to mechanics. A related and even more powerful approach, due to
Hamilton, is the subject of graduate level mechanics courses.

Lets start by considering some examples.

1.1.1 Simple difference equation
Consider the difference equation

Tpy1 = Tn ta (11)

where z,, € R is the position of a point object at discrete time step n, and o € R is a real number. The
initial conditions are specified by x,, which is the position at discrete time step n = 0.

Clearly the position advances by o with each step, and thus the motion of the system is given by

T, =Ty +na . (1.2)

1.1.2 Another difference equation: Fibonacci numbers

Next, consider the difference equation
LTyl = Ty + Tp-1 - (13)

The initial conditions are now specified by two values, x, and z;. Given these, we can compute z, =
xy + xg, T3 = 9 + 2 = 227 + (), etc. Can we obtain a general expression for x,? Yes we can! Let’s try
a solution of the form z,, = AX" where A and )\ are as yet undetermined. We stick this into eqn. 1.3 and
obtain the relation

N-X-1=0 , (1.4)

which has two solutions,

Ar=3(1£VE) ={1+0, -9} , (1.5)
where ¢ = $(v/5 — 1) = 0.618034.. . is the golden mean. Thus we write
x,=A N} AN . (1.6)

Imposing the initial conditions by setting n = 0 and n = 1 then yields the relations

1 1 A x

(o) @)= () a
A 1 1\ /2 1 T —A_X
G- ) ()= () as)

?More precisely, the conserved quantity is the Hamiltonian H, which may differ from the total energy E, as we shall discuss in
§4.13.2 below.

and thus
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The full motion of the system is then given by

1
T 190

{0+ 0)" [dw0 + 2] + (—0)"[(1+ $)wg + 1] } (1.9)

For the initial conditions x; = 0 and x; = 1, we obtain

1
T T 20

{a+0) (o)} =F, . (110)

i.e. the n' Fibonacci number: F, = {1,1,2,3,5,8,13,...} starting from n = 1. Did you know that such a
closed form expression for all the Fibonacci numbers can be derived?

1.1.3 Stochastic difference equation: diffusion

Now consider the stochastic difference equation
Ty =T, +0, (1.11)

where the {0, } are independent, identically distributed ('IID’ in statistics parlance) random numbers
whose distribution is given by

p ife=+1

o e 1 (1.12)

PrOb[Un = 5] = p5€,+1 + (]557_1 = {

with p € [0,1]. Since there are only two possibilities for each o,,, the sum of their probabilities must be
unity, i.e. p+ ¢ = 1, which fixes ¢ = 1 — p. This system corresponds to a one-dimensional random walk,
where the probability of a step to the right, i.e. z,,,; = z,, + 1, is p, and the probability of a step to the
left, i.e. x, | = x,, — 1, is q. The initial conditions are given by the value of . Clearly we have

n
xn:x0+01+02++0n:w0+2(3’] . (1.13)
j=1
We can now compute averages with respect to the random distribution:
n
() = 29+ Z<0j>
j=1

(x3) = af + 2z, Z(Uj> + ZZ(%’%>
j=1

j=1k=1

(1.14)

We will need

(0j) = Z e Prob[o; = €]
e (1.15)

=p—q=2p—-1
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and
B if j =k
(oj00) = {(Qp IR (1.16)

because 0]2- =1= (03—) = land (0;0,) = (0;)(0}) = (2p — 1)2 for j # k (IID). Thus,

(x,) =29+ (2p—1)n
(2,)? = 22 + 22,(2p — D)n + (2p — 1)%n? (1.17)
(7)) = xg + 200(2p — Vn + (2p — 1)*n(n — 1) +n

and

(Az,)?) = [z, — (@,)]7)
= (22) — (x,)* = 4p(1 — p)n

When p # ¢ the random walk is biased, and there is an unequal probability of stepping to the right and
to the left. Thus (z,,) = ¥, + (2p — 1)n on average changes by (0;) = p—¢ = 2p— 1 during each time step.
If we start at =, and then execute our random walk, after n time steps we know that we will end up at
some point z,, between z, — n (all steps to the left) and x, + n (all steps to the right). Where we end up
will likely change each time we rerun the experiment, but if we average over a great many experiments,
we will obtain (z,,) = 25 + (2p — 1)n . But while the average of the difference Az, between z,, and
its mean (z,,) vanishes, the average of its square ((Az,,)?) grows linearly with n. The root mean square
variation then grows as n'/2

(1.18)

, viz.

AfMS =\ J((Az,)2) = 2/pqn . (1.19)

This is an example of diffusion.

1.1.4 Nonlinear discrete dynamics: the logistic map

Consider the simple case of a general one-dimensional map,

Tpt1 = g(‘rn) ) (120)

where g(z) : R — Ris areal function of a real number. A fixed point of this map satisfies g(z) = z. Some
maps have no fixed points, such as g(z) = = + 1. For g(x) = z, every point is a fixed point. This last
example is highly nongeneric; generically the set of fixed points - if there are any fixed points at all - is
discrete.

Let’s focus in on what happens when z is close to some fixed point z* and write z,, = z* + u,, with
lu,| < 1. Then
Up41 :g(‘r* +un) — " :g/(x*)un + %g//(x*)ui—i_ s (1.21)

Here we have used Taylor’s theorem to expand g(z* +u,,) in powers of the small quantity w,,. If we drop
all the terms in the Taylor series which are beyond linear in u,,, we obtain the equation u,, | = ku,,,
where x = ¢'(z*). The solution is u,, = k"u, and we conclude
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Figure 1.1: Cobweb diagram showing iterations of the logistic map g(z) = rz(1 — x) for r = 2.8 (upper
left), » = 3.4 (upper right), » = 3.5 (lower left), and » = 3.8 (lower right). Note the single stable fixed
point for r = 2.8, the stable two-cycle for » = 3.4, the stable four-cycle for » = 3.5, and the chaotic
behavior for r = 3.8.

o If |¢(2*)| < 1then |u, | < |u,| and the magnitude of u,, decreases exponentially with n:
u, = (£1)"e” " uy (1.22)

where o = —log |g(z*)| > 0 and we take the + sign if g(z*) > 0 and the — sign if g(z*) < 0. The
approximation to neglect higher order terms in the Taylor series expansion of g(z* +u,,) gets better
and better as n increases. A fixed point z* with |¢/(z*)| < 1 is called a stable fixed point (SFP).

o If [g(z*)] > 1, then |u, | > |u,| and the magnitude of u,, increases exponentially with n. Suc-
cessive iterations of the map move us further and further away from z*. However, at some point
the higher order terms which we’ve neglected in the Taylor expansion of g(z* + u,,) become non-
negligible, and the behavior is no longer exponential. A fixed point z* for which |g(z*)| > 1 is
called an unstable fixed point (UFP).

Perhaps the most important and most studied of the one-dimensional maps is the logistic map, where
g(z) = raz(1 — x), defined on the interval = € [0, 1], with r € [0,4]. There is a fixed point at z = 0 which
is stable for r < 1 and unstable for 7 > 1. When r > 1, a new fixed point is present, at z* = 1 — r~1 if
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Figure 1.2: Iterates of the logistic map g(z) = rz(1 — z).

r > 1. We then have ¢'(z*) = 2 — r, so the fixed point is stable if » € (1,3). What happens for r > 3? We
can explore the behavior of the iterated map by drawing a cobweb diagram, shown in fig. 17.9. We sketch,
on the same graph, the curves y = z (in blue) and y = g(z) (in black). Starting with a point z on the line
y = x, we move vertically until we reach the curve y = g(z). To iterate, we then move horizontally to
the line y = x and repeat the process. We see that for r = 3.4 the fixed point z* is unstable, but there is a
stable two-cycle, defined by the equations

Ty =r12(l —27)

xy =rxe(l —xy) . 1.23)

The second iterate of g(x) is then
g () = 9(9(x)) = r2z(l — z)(1—rz+ ’r’:L‘2) . (1.24)

Setting « = g(?)(2), we obtain a cubic equation. Since z — z* must be a factor, we can divide out by this
monomial and obtain a quadratic equation for z; and x,. We find

1+r+£/(r+1)(r—3) (125)
2r ' '

T12 =
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How stable is this 2-cycle? We find

d

ng(x) =21 —22))(1 — 209) = =12 + 2r + 4. (1.26)

Z1,2
The condition that the 2-cycle be stable is then
—l<r?-2r—4<1 = 7r€[3,1+V6]. (1.27)

Atr =1+ /6 = 3.4494897 . .. there is a bifurcation to a 4-cycle, as can be seen in fig. 17.10.

In the 1970s, Mitchell Feigenbaum described how this system exhibits an increasingly dense cascade
of period doubling transitions in which a 2"-cycle becomes unstable and is replaced by a 2" !-cycle at
r = r,. The value n = oo is reached for a finite value r,, = 3.5699456. ... We will study this system in
more detail in chapter 17.

1.1.5 Dynamical systems

A dynamical system in n variables is a set of n coupled ordinary differential equations. It’s general form
can be written as

d
L=V (1.28)
where?®
©1 Viler,---sen)
(102 ‘/2(9017"'790n)
o= . V(e = : (1.29)
Pn Vn(@l?"w(pn)

In general ¢ € M lives on a manifold M, which is an n-dimensional topological space which is locally
diffeomorphic to R". But for our purposes we can ignore all the fancy math vernacular and just consider
¢ € R" is some n-tuple of real numbers*. The vector V(i) is called the velocity vector at the point ¢. As
V () specifies a vector at each point ¢ € M, we call V' a vector field. The solution ¢(t) to these coupled
ODEs, subject to some set of initial conditions ¢(0), is what we mean by the motion of the system, also
called an integral curve. Thus, an integral curve is a set of points {¢,(t)} € R x M. The collection of
points {¢(t) |t € R} is a curve in M itself, known as a phase curve. The difference is that a phase curve
does not include the time coordinate. (See fig. 1.3.)

There’s a helpful theorem which says that if V() is a smooth vector field over some open set D C M,
then for any ¢(0) € D the initial value problem (i.e. the dynamical system plus its initial conditions) has
a solution on some finite time interval ¢t € [—7, +7], and furthermore that solution is unique. Moreover,
this solution may be extended forward and backward in time either indefinitely or until ¢(t) reaches the
boundary of D. A corollary of this theorem guarantees that different trajectories never intersect. Some

%1t is important that the dynamical system as defined here is autonomous, i.e. V () is a function only of the coordinates
{¢1,..., .} and not on ¢ itself - at least not explicitly.

*The mathy language just means that we could consider ¢ to live on a torus, or on the surface of a sphere, or on some
complicated twisty higher dimensional space with lots of holes and handles.
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integral curve

phase curve =

1
Figure 1.3: Integral curve vs. phase curve.

aspects of dynamical systems in low dimensions (i.e. » = 1 and n = 2) are discussed in chs. 11 through
13 of these lecture notes.

Note that any n** order ODE, of the general form

d"x dx d" 1z
W F< dt PECICIEIY W) 3 (1.30)
may be represented by the first order system ¢ = V(¢). To see this, define ¢, = d*~'z/dt"~1, with
k=1,...,n. Thus, for j < n we have cpj = Pjt1s with ¢, = F. In other words,
@ Vie)
Y1 2
d : :
pn = : . (1.31)
Pn—1 $n
“n F (9017 ,@n)
Fixed points

A fixed point of a dynamical system is a point ¢* such that V' (¢*) = 0. Thus, if we start at time zero with
p(0) = ¢*, the system will remain at that point in phase space. But suppose we deviate just a teensy bit
from the fixed point. We write (t) = ¢* + €(t). Since

Vi(p*+e) = Za ek—i—O O (1.32)
we have to lowest order in € the system
oV,
Z e+ OE€) ., My = o (1.33)
P |
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The matrix M is real but not necessarily symmetric, so its eigenvalues can either be pure real or occur in
complex conjugate pairs. The fixed point ¢* is then stable if all the eigenvalues of M have negative real
parts. In this case, the vector €(t) collapses to zero exponentially at late times. Formally, the solution of
the linearized dynamics is given by

€(t) = exp(Mt) €(0) . (1.34)

In general, the right eigenvectors of M will not be the same as the left eigenvectors of M. Indeed it may
be that M has fewer than n linearly independent eigenvectors — such is the case when M has nontrivial
Jordan blocks, which is a nongeneric state of affairs. Assuming that M does have n linearly independent
right eigenvectors R and n linearly independent left eigenvectors L{', where R is the 7" component
of the o'! right eigenvector. Thus,

n

S LfMy =2 LY, > MyRP=\,R} (1.35)
j=1 k=1

as well as the orthonormality and completeness relations
n n
SLYR! =6 N RYLE =94y . (1.36)
j=1 a=1

Furthermore, we may decompose M into its eigenvectors as follows:

My, => A RILY . (1.37)

a=1

Thus, if we write €(t) in terms of the right eigenvectors of M, i.e.

;(t)=> C,t) R} (1.38)
a=1
then
C,(t) =C,(0) exp(A t) - (1.39)

Thus, for Re (\,) > 0, C,(t) grows with increasing time, indicating that the fixed point is unstable. A
stable fixed point therefore requires Re (\,) < 0 forall @ € {1,...,n}.

Attractors, strange attractors, and dynamical chaos

An attractor of a dynamical system ¢ = V() is the set of ¢ values that the system evolves to after a
sufficiently long time. For n = 1 the only possible attractors are stable fixed points. For n = 2, we have,
generically, two different classes of stable fixed points, called stable nodes and stable spirals. But there
are also stable limit cycles, which are one-dimensional curves along which the motion is trapped. For
n > 2 the situation is qualitatively different, and a fundamentally new type of set, the strange attractor,
emerges.

A strange attractor is basically a bounded set on which nearby orbits diverge exponentially (i.e. there
exists at least one positive Lyapunov exponent). To envision such a set, consider a flat rectangle, like
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a piece of chewing gum. Now fold the rectangle over, stretch it, and squash it so that it maintains its
original volume. Keep doing this. Two points which started out nearby to each other will eventually,
after a sufficiently large number of folds and stretches, grow far apart. Formally, a strange attractor
is a fractal, and may have noninteger Hausdorff dimension. (We won't discuss fractals and Hausdorff
dimension here.)

The Lorenz Model

The canonical example of a strange attractor is found in the Lorenz model. E. N. Lorenz, in a seminal
paper from the early 1960’s, reduced the essential physics of the coupled partial differential equations
describing Rayleigh-Benard convection (a fluid slab of finite thickness, heated from below —in Lorenz’s
case a model of the atmosphere warmed by the ocean) to a set of twelve coupled nonlinear ordinary
differential equations. Lorenz’s intuition was that his weather model should exhibit recognizable pat-
terns over time. What he found instead was that in some cases, changing his initial conditions by a part
in a thousand rapidly led to totally different behavior. This sensitive dependence on initial conditions is a
hallmark of chaotic systems.

The essential physics/mathematics of Lorenz’s n = 12 system is elicited by the reduced n = 3 system,

X=-0X+0oY

Y=rX-Y-XZ (1.40)
Z=XY -bZ,
where o, r, and b are all real and positive. Here ¢ is the familiar time variable (appropriately scaled), and
(X,Y, Z) represent linear combinations of physical fields, such as global wind current and poleward

temperature gradient. These equations possess a symmetry under (X,Y, Z) — (—X, —Y, Z), but what
is most important is the presence of nonlinearities in the second and third equations.

Typically the system is studied for fixed o and b as a function of the single control parameter r. Clearly
(X,Y,Z) = (0,0,0) is a fixed point for all {o, b, r}. It is quite easy to show that this fixed point is stable
provided 0 < r < 1. For r > 1, a new pair of solutions emerges, with

X*=Y*=+b(r—1) , Z'=r—1 . (1.41)

One can then show that these fixed points are stable for r € [1, .|, where

o(c+b+3)
=——F". 1.42
Te =" 31 (1.42)
These fixed points correspond to steady convection in the fluid model.
The Lorenz system has commonly been studied with ¢ = 10 and b = §. For these parameters, one
has r. = 42 ~ 24.74. In addition to the new pair of fixed points, a strange attractor appears for r >

rs o~ 24.06. The capture by the strange attractor is shown in Fig. 17.15. In the narrow interval r €
[24.06,24.74] there are then three stable attractors, two of which correspond to steady convection and
the third to chaos. Over this interval, there is also hysteresis. Le. starting with a convective state for
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Figure 1.4: Left: Evolution of the Lorenz equations for o = 10, b = %, and r = 28, with initial conditions
(X0, Y0, Zy) = (0,1,0), showing the ‘strange attractor’. Right: The Lorenz attractor, projected onto the
(X, Z) plane. (Source: Wikipedia)

Lorenz solution for x Lorenz solution for x

1=27. 2fQ)e{-2 7,-0.815.8) r27. w0)=f-2.700, -8 8,168
20 20

\MM M V/ .

a8 |- - - 90— — - — e -— = — e =
]

—— k= ko=
o o
r——

-
e —
—
—
——— -
=
——
i
—=1

o
=
—_—
=
——
———
——
———
e —}

Figure 1.5: X (t) for the Lorenz equations with ¢ = 10, b = §, r = 28, and initial conditions (Xo, Yo, Zo) =
(—2.7,-3.9,15.8), and initial conditions (X, Yy, Zy) = (—2.7001, —3.9,15.8).

r < 24.06, the system remains in the convective state until » = 24.74, when the convective fixed point
becomes unstable. The system is then driven to the strange attractor, corresponding to chaotic dynamics.
Reversing the direction of r, the system remains chaotic until » = 24.06, when the strange attractor loses
its own stability. Fig. 17.16 shows the chaotic evolution of the coordinate X (¢) for the case where r = 28.
Note how, for the chosen parameters, X (t) spends time oscillating about X ~ —8 and X ~ +8, but
jumps randomly between these two regions, sometimes executing a single excursional spike into the
opposite region.
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Dynamical systems with n = 1

The simplest class of dynamical systems are those for which phase space is one-dimensional, i.e. n = 1.

We then have
du
primRAONE (1.43)

where there is a single coordinate u and the velocity function is f(u). The dynamics are exceedingly
simple to describe graphically. Simply sketch the function f(u) versus u. In regions where f(u) > 0,
% > 0 and u moves to the right, i.e. to greater values. In regions where f(u) < 0, & < 0 and u moves to
the left. At any point f(u) = 0, the motion stops and @ = 0. Such a point is called a fixed point of the
dynamics. Suppose f(u*) = 0 and we write u = u* + € with |¢| < 1. Then

% = fu* +¢e) = f(u")e+ 3 f"(u*)e® + O(®) . (1.44)
Working to lowest nontrivial order, we see that if f'(u*) < 0 then ¢(t) will collapse to zero exponentially
(stable fixed point), but if f/(u*) > 0 then e(¢) will grow (unstable fixed point) until eventually we are

no longer justifies in dropping higher order terms in the Taylor expansion. The fate of u(¢) is thus to be
attracted to the first stable fixed point encountered, or to flow off to infinity.

A particularly simple example is the logistic equation,

. N
N = rN(l - E) , (1.45)

with » > 0, which has the solution
N () K Ny (1.46)

- Ny + (K — Ny) exp(—rt)

where the initial conditions are given by N(0) = N,. Note that N = 0 is an unstable fixed point and
N = K is a stable fixed point. Regardless of the initial value, as ¢ — oo, N(t) approaches the SFP,
N(+o0) = K. Conversely, if we run time backwards we approach the UFP, N(—o0) = 0.

Note that in our discussion of the one-dimensional map z,,; = g(z,) in §12.3, whether or not a fixed
point 2* was stable or unstable depended on whether |¢'(z*)| was greater or less than 1. Do you under-
stand the difference between the two?

1.1.6 One-dimensional mechanics : simple examples
Ballistic motion

We now consider the second order ordinary differential equation

d2z

W = CLO s (1 47)
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which describes a particle undergoing constant acceleration a,. Some notation:

dx . d%x L dx

[ = — = — = — tc. 1.4
=w 0 TaE o tTam oo % (148)
Defining v = &, we then have v = g, which we can integrate to obtain v(¢) = v(0) + ayt. We now have
. dx
&= = v(0) + agt (1.49)
which we integrate to obtain the motion of the system,
z(t) = z(0) + v(0) t + Lagt? . (1.50)
Simple harmonic motion
Consider next the second order ODE )
d°x 9
ie. i = —w?z. With v = & we may write this as two coupled first order ODEs, viz.
@ M @
~ = e e A~ N
d (x v 0 1\ [=x
i (o) = () = (e ) ) a2
i.e. ¢ = M. This is a linear set of coupled first order ODEs in the components of the vector ¢. In terms
of the components, ¢ = v and 0 = —w?z. Provided the matrix M is time-independentS, we can solve
¢ = M as if ¢ were a simple scalar:
(1) = exp(M1t) (0) . (1.53)

But what do we mean by the exponential of the matrix Mt? We give meaning to the expression exp(Mt)
through its Taylor expansion:

exp(Mt) =1+ Mt + $M*#* + LM°t* + ... . (1.54)

s (0 1 0 1\ _ (= 0\ _
(0 (% = () e 155)

Thus, M? = (—w?)* 1 and M?*+1 = (—w?)¥ M, which entails

0 M2kt2k 0 M2k+1t2k+1

Notice that

exp(Mt) = kZ:O (2k)! — (2k +1)!
B 0o (_1)k (wt)% 1 (_1)k (wt)%"‘l
_kzﬂwl*;gwM (1.56)

= cos(wt) 1 +w ™ sin(wt) M = < cos(wt) uJ‘lsirl(wf))

—wsin(wt)  cos(wt)

More precisely, provided that M (t) commutes with M (¢') for all ¢ and ¢'.
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Thus, the motion is 1
~(z(t)\ [ cos(wt) wlsin(wt)) (=
Pp(t) = (v(t)> B <—w sin(wt)  cos(wt) ) (U;)) ; (1.57)
which is to say

z(t) = cos(wt) 2y + w™ ' sin(wt) v, 58
v(t) = —wsin(wt) x, + cos(wt) v, (1.58)

One can now check explicitly that i(¢) = v(t) and ©(t) = —w?z(t).

Uniform force with linear frictional damping

We consider motion in the 2 direction in the presence of a uniform gravitational field and frictional
damping. The equation of motion is

d?z dz
2t g —~2 1.59
m-— mg =y (1.59)
which may be rewritten as a first order equation for v = 2, viz.
B C I
v+ mg/y m (1.60)

dlog(v +mg/vy) = —(y/m)dt

Integrating then gives

t
log <7“((0>) L ) — ot/
v m
9 (1.61)
o(t) = -9 4 (v(O) + @> e t/m
v v
Note that the solution to the first order ODE mo = —mg — v entails one constant of integration, v(0).
One can further integrate to obtain the motion
() = 2(0) + 2 (v(O) + @> 1—et/my 94 (1.62)
Y Y Y
The solution to the second order ODE mZ = —mg — 2 thus entails fwo constants of integration: v(0) and
2(0). Notice that as ¢ goes to infinity the velocity tends towards the asymptotic value v = —v,, where
Voo = mg/~. This is known as the terminal velocity. Indeed, solving the equation v = 0 gives v = —vuo.

The initial velocity is effectively “forgotten” on a time scale 7 = m/~.

Electrons moving in solids under the influence of an electric field also achieve a terminal velocity. In this
case the force is not F' = —mg but rather F' = —eE, where —e is the electron charge (e > 0) and FE is the
electric field. The terminal velocity is then obtained from

Voo = €E/y=ertE/m . (1.63)
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The current density is a product:
current density = (number density) x (charge) x (velocity) ,

thus

E . (1.64)

The ratio j/E is called the conductivity of the metal, 0. According to our theory, o = ne?r /m. This is one
of the most famous equations of solid state physics! The dissipation is caused by electrons scattering off
impurities and lattice vibrations (“phonons”). In high purity copper at low temperatures (1" < 4K), the
scattering time T is about a nanosecond (7 ~ 10795s).

Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the velocity. The frictional
force is then F; = —cv?sgn (v), where sgn (v) is the sign of v: sgn (v) = +1if v > 0 and sgn (v) = —1
if v < 0. (Note one can also write sgn (v) = v/|v| where |v| is the absolute value.) Why all this trouble
with sgn (v)? Because it is important that the frictional force dissipate energy, and therefore that F; be
oppositely directed with respect to the velocity v. We will assume that v < 0 always, hence F; = +cv?.

Notice that there is a terminal velocity, since setting v = —g + (¢/m)v? = 0 gives v = Fvs, where
Uso = \/mg/c. One can write the equation of motion as

dv g , 9 2
and using
1 1 1 1
= - 1.66
v2 — v 21)00{1)—2)00 ’U—H}OO} (1.66)
we obtain
dv 1 dv 1 dv

V2 =02 2000V — Voo 2V U+ Uso

(1.67)
1 Voo — VU g
2050 °8 <voo+v> vZ,
Assuming v(0) = 0, we integrate to obtain
o — V(T 2gt
log (L= v()) _ 29t (1.68)
Voo + ¥(1) Voo

which may be massaged to give the final result

v(t) = —veo tanh(gt /vso) - (1.69)
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Recall that the hyperbolic tangent function tanh(z) is given by

sinh(z) e*—e™®
tanh(z) = = . 1.70
anh(z) cosh(z) e*+4e® (1.70)

Thus, as in the previous example, as ¢ — oo one has v(t) = —vs, L.6. V(00) = =V

Digression: To gain an understanding of the constant ¢, consider a flat surface of area S moving through
a fluid at velocity v (v > 0). During a time At, all the fluid molecules inside the volume AV = S - v At
will have executed an elastic collision with the moving surface. Since the surface is assumed to be much
more massive than each fluid molecule, the center of mass frame for the surface-molecule collision is
essentially the frame of the surface itself. If a molecule moves with velocity u is the laboratory frame, it
moves with velocity u — v in the center of mass (CM) frame, and since the collision is elastic, its final CM
frame velocity is reversed, to v — u. Thus, in the laboratory frame the molecule’s velocity has become
2v —wu and it has suffered a change in velocity of Au = 2(v —u). The total momentum change is obtained
by multiplying Au by the total mass M = o AV, where p is the mass density of the fluid. But then the
total momentum imparted to the fluid is

AP =2(v—u)-pSvAt (1.71)

and the force on the fluid is AP
F = AL =2Sov(v—u) . (1.72)

Now it is appropriate to average this expression over the microscopic distribution of molecular velocities
u, and since on average (u) = 0, we obtain the result (F) = 250v?, where (- --) denotes a microscopic
average over the molecular velocities in the fluid. (There is a subtlety here concerning the effect of
fluid molecules striking the surface from either side — you should satisfy yourself that this derivation is
sensible!) Newton’s Third Law then states that the frictional force imparted to the moving surface by
the fluid is F; = —(F) = —cv?, where ¢ = 2Sp. In fact, our derivation is too crude to properly obtain
the numerical prefactors, and it is better to write ¢ = ppS, where 1 is a dimensionless constant which
depends on the shape of the moving object.

1.1.7 Stochastic differential equation: Langevin’s equation

Consider a particle of mass m subjected to both dissipation as well as external forcing with both a
constant and a random fluctuating component. We’ll examine this system in one dimension to gain an
understanding of the essential physics. We write

vty =g+t . (1.73)

Here, v is the particle’s velocity, ~y is the damping rate due to friction, g = F'/m is the acceleration due to
the constant external force, and ((t) is a stochastic random force (per unit mass). This equation, known as
the Langevin equation, describes a ballistic particle in a uniform force field being buffeted by random forc-
ing events. The Langevin equation is an example of a stochastic differential equation (i.e. a stochastic dynam-
ical system), i.e. a differential equation where the evolution depends on one or more random functions.
Stochastic differential equations are found in many areas of statistical physics and in the mathematical
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theory of finance as well, where they describe the time evolution of financial instruments. In the current
context, think of a particle of dust as it moves in the atmosphere, in which case |g| would then represent
the acceleration due to gravity and ((¢) the random acceleration due to collisions with the air molecules.
For a sphere of radius @« moving in a fluid of dynamical viscosity 7, hydrodynamics gives v = 6mna/m.
It is illustrative to compute v in some setting. Consider a micron sized droplet (a = 10~% cm) of some
liquid of density p ~ 1.0 g/cm?3 moving in air at 7' = 20° C. The viscosity of airis 7 = 1.8 x 10~%g/cm - s
at this temperature®. If the droplet density is constant, then v = 97/2pa? = 8.1 x 10571, hence the time
scale for viscous relaxation of the particle is 7 = y~! = 12 us. We should stress that the viscous damping
on the particle is of course also due to the fluid (e.g., air) molecules, in some average ‘coarse-grained’
sense. The random component ((¢) thus represents the fluctuations with respect to this average.

We can easily integrate this equation:

¢
% (ve) =get+¢t) e = w(t)=v0)e " +47lg (1—e) + /ds C(s)ersd (1.74)
0

Note that the solution v(¢) depends on the random function ¢(¢)”. We can therefore only compute aver-
ages in order to characterize the motion of the system. One important feature of the above solution is

that we see the system “loses memory” of its initial condition «(0) on a time scale 7.

The first average we will compute is that of u itself. In so doing, we assume that ((¢) has zero mean:
(¢(t)) = 0. Then
(v(t)) = v(0)e " + v lg (1—e) . (1.75)

On the time scale v}, the initial conditions v(0) are effectively forgotten, and asymptotically for ¢ > y~*

we have (v(t)) — 7~ 'g, which is the terminal velocity.

Next, consider
t t
(2(8)) = (o()} + / ds, / dsy 170 527D (¢(5,) C(s9)) . (1.76)
0 0

We now need to know the autocorrelator ({(s;) ((s,)) of the random function ((s). We assume that this
is a function only of the time difference As = s; — s,, viz.

(C(s1)C(s9)) = (51— 59) - (1.77)

The function ¢(s) is the autocorrelation function of the random force. A macroscopic object moving in
a fluid is constantly buffeted by fluid particles over its entire perimeter. These different fluid particles
are almost completely uncorrelated, hence ¢(s) is basically nonzero except on a very small time scale
74, which is the time a single fluid particle spends interacting with the object. We can take 7, — 0 and
approximate ¢(s) ~ I'0(s). As we shall now see, we can determine the value of the constant I" from
equilibrium thermodynamic considerations.

®The cgs unit of viscosity is the Poise (P). 1P = 1g/cm-s.
"Mathematically, we say that v(t) is a functional of ((s).
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With this form for ¢(s), we can easily calculate the equal time velocity autocorrelation:

<v2(t)> = <v(t)>2 + F/ds 2=t = <v(t)>2 + % (1- 6_2“) . (1.78)
0

Consider the case where I’ = 0. We demand that the object thermalize at fluid temperature 7" at late
times ¢ > 7~!, when (v(t)) — 0 and the particle has effectively forgotten all about its initial conditions.
Thus, we impose the equipartition condition

(sMVP(t)) =3k, T = I'= MTBT (1.79)
This fixes the value of I". We can now compute the general momentum autocorrelator:
t
(v@)v(t")) = (v){v()) = /ds /ds' (5=t (' =t) (C(s)¢(s)) = % e M= (1.80)
0 0

which is valid for |t — ¢| finite, and in the limit where ¢ and ¢’ each tend to infinity.
Since we have in eqn. 1.74 the full solution for the velocity u(t), we can use it to compute the position

t
z(t) = z(0) + [ ds v(s) and its statistical properties. Let’s compute the position z(t). We find
0

z(t) = (z(t)) + /ds/dsl C(sy) 7178 (1.81)
0 0
where
(z(t)) = z(0) + 7_1(21(0) - 7_19) (1—e)+ v lgt . (1.82)

Note that for vt < 1 we have (z(t)) = z(0) + v(0)¢t + 1gt* + O(t?), as is appropriate for ballistic
particles moving under the influence of a constant force. This long time limit of course agrees with
our earlier evaluation for the terminal velocity, (v(c0)) = vy, = 7~ 'g. We next compute the position
autocorrelation:

<:L'(t) :L'(t/)> — <:L'(t)><l’(t/)> = /ds /ds/ 6_7(S+S,)/dsl /ds'l eV(51F52) <§(81) C(82)>
0 0 0 0
I

= — min(t,t') + O(1)

2
~
In particular, at late times the equal time autocorrelator is
It
<:L'2(t)> - <:L'(t)>2 = — =2Dt (1.83)
Y

up to terms of order unity. Here, D = I'/2+? = k,T/ym is the diffusion constant. For a liquid droplet of
radius a = 1 ym moving in air at 7' = 293 K, for which n = 1.8 x 10~* P, we have
kT (138 x 107 P erg/K) (293K)
~ 6mna 67 (1.8 x 1074 P) (10~4 cm)

=119x10""ecm?/s . (1.84)



1.1. WHAT IS DYNAMICS? 21

This result presumes that the droplet is large enough compared to the intermolecular distance in the
fluid that one can adopt a continuum approach and use the Navier-Stokes equations, and then assuming
a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. The diffusion constant is then
D = (%/27, where / is the mean free path and T is the collision time. Elementary kinetic theory gives
that the mean free path /, collision time 7, number density n, and total scattering cross section o are
related by® ¢ = v7 = 1/v/2no, where © = /8k,T/mm is the average particle speed. Approximating
the particles as hard spheres, we have 0 = 47a?, where a is the hard sphere radius. At T = 293K,
and p = latm, we have n = p/k,T = 2.51 x 1012 cm™3. Since air is predominantly composed of N,
molecules, we take a = 1.90 x 108 cm and m = 28.0amu = 4.65 x 10-2* g, which are appropriate
for N,. We find an average speed of ¥ = 471 m/s and a mean free path of £ = 6.21 x 107%cm. Thus,
D = (v = 0.146 cm?/s. Though much larger than the diffusion constant for large droplets, this is still
too small to explain certain common experiences. Suppose we set the characteristic distance scale at
d = 10cm and we ask how much time a point source would take to diffuse out to this radius. The
answer is At = d?/2D = 343s, which is between five and six minutes. Yet if someone in the next seat
emits a foul odor, you detect the offending emission in on the order of a second. What this tells us is
that diffusion isn’t the only transport process involved in these and like phenomena. More important
are convection currents which distribute the scent much more rapidly.

1.1.8 Newton’s laws of motion

Aristotle held that objects move because they are somehow impelled to seek out their natural state.
Thus, a rock falls because rocks belong on the earth, and flames rise because fire belongs in the heavens.
To paraphrase Wolfgang Pauli, such notions are so vague as to be “not even wrong.” It was only with the
publication of Newton’s Principia in 1687 that a theory of motion which had detailed predictive power
was developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.
II. Force equals rate of change of momentum: F' = dp/dt.

II. Any two bodies exert equal and opposite forces on each other.
Newton’s First Law states that a particle will move in a straight line at constant (possibly zero) velocity
if it is subjected to no forces. Now this cannot be true in general, for suppose we encounter such a “free”
particle and that indeed it is in uniform motion, so that r(t) = r(0) + v(0)t. Now r(¢) is measured
in some coordinate system, and if instead we choose to measure r(¢) in a different coordinate system
whose origin R moves according to the function R(t), then in this new “frame of reference” the position

of our particle will be
r'(t) =r(t) - R(t)

=7r(0)+v(0)t - R(t) . (1.85)

8The scattering time 7 is related to the particle density n, total scattering cross section o, and mean speed @ through the relation
not,qT = 1, which says that on average one scattering event occurs in a cylinder of cross section o and length v, 7. Here
Uyel = /0 is the mean relative speed of a pair of particles.
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If the acceleration d?R/dt? is nonzero, then merely by shifting our frame of reference we have apparently
falsified Newton'’s First Law — a free particle does not move in uniform rectilinear motion when viewed
from an accelerating frame of reference. Thus, together with Newton’s Laws comes an assumption
about the existence of frames of reference — called inertial frames — in which Newton’s Laws hold. A
transformation from one frame K to another frame K’ which moves at constant velocity V relative to K
is called a Galilean transformation. The equations of motion of classical mechanics are invariant (do not
change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than grapple with this, we will
try to build some intuition by solving mechanics problems assuming we are in an inertial frame. The
earth’s surface, where most physics experiments are done, is not an inertial frame, due to the centripetal
accelerations associated with the earth’s rotation about its own axis and its orbit around the sun. In this
case, not only is our coordinate system’s origin — somewhere in a laboratory on the surface of the earth
— accelerating, but the coordinate axes themselves are rotating with respect to an inertial frame. The
rotation of the earth leads to fictitious “forces” such as the Coriolis force, which have large-scale con-
sequences. For example, hurricanes, when viewed from above, rotate counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Later on in the course we will devote ourselves
to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mwv of a particle’s mass
m (how much stuff there is) and its velocity (how fast it is moving). In order to convert the Second Law
into a meaningful equation, we must know how the force F' depends on the coordinates (or possibly
velocities) themselves. This is known as a force law. Examples of force laws include:

Constant force : F=—-mg
Hooke’s Law : F=—kx
Gravitation : F = —-GMm#/r?

Lorentz force : F=qFE+q Y«B
c

Fluid friction (v small) : F=—-bv

Note that for an object whose mass does not change we can write the Second Law in the familiar form
F = ma, where a = dv/dt = d*/dt? is the acceleration. Most of our initial efforts will lie in using
Newton’s Second Law to solve for the motion of a variety of systems.

The Third Law is valid for the extremely important case of central forces which we will discuss in great
detail later on. Newtonian gravity — the force which makes the planets orbit the sun —is a central force.
One consequence of the Third Law is that in free space two isolated particles will accelerate in such a

way that F; = —F, and hence the accelerations are parallel to each other, with
o mz (1.86)
as mq

where the minus sign is used here to emphasize that the accelerations are in opposite directions. We can
also conclude that the total momentum P = p; + ps is a constant, a result known as the conservation of
momentum.
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Aside : inertial vs. gravitational mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational force law, which
says that the force F}; exerted by a particle i by another particle j is

_ Ti T
Fij = —Gmimj s — 7']"3 , (1.87)
where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes the value
G = (6.6726 + 0.0008) x 107N - m?/kg? . (1.88)

Notice Newton’s Third Law in action: F}; + F;; = 0. Now a very important and special feature of this
“inverse square law” force is that a spherically symmetric mass distribution has the same force on an
external body as it would if all its mass were concentrated at its center. Thus, for a particle of mass m
near the surface of the earth, we can take m, = m and m ;= M., withr, — 7 ;2 R.7 and obtain

F = —mgr = —mg (1.89)

where 7 is a radial unit vector pointing from the earth’s center and g = GM./R? ~ 9.8m/s? is the
acceleration due to gravity at the earth’s surface. Newton’s Second Law now says that a = —g, i.e.
objects accelerate as they fall to earth. However, it is not a priori clear why the inertial mass which enters
into the definition of momentum should be the same as the gravitational mass which enters into the force
law. Suppose, for instance, that the gravitational mass took a different value, m’. In this case, Newton's

Second Law would predict

m/

a=———g (1.90)
m
and unless the ratio m’/m were the same number for all objects, then bodies would fall with different
accelerations. The experimental fact that bodies in a vacuum fall to earth at the same rate demonstrates
the equivalence of inertial and gravitational mass, i.e. m' = m.

1.1.9 Crossed electric and magnetic fields

Consider now a three-dimensional example of a particle of charge ¢ moving in mutually perpendicular
FE and B fields. We’ll throw in gravity for good measure. We take E = Ex, B = Bz, and g = —gZ. The
equation of motion is Newton’s 2nd Law again:

mi=mg+qE+LrxB . (1.91)
(&

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity plus the Lorentz
force of a moving particle in an electromagnetic field. In component notation, we have

B
m:'L‘:qE+qu)

. 4B (192)
myj=—-—%

mz = —mg
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The equations for coordinates x and y are coupled, while that for z is independent and may be immedi-
ately solved to yield
2(t) = 2(0) + 2(0) t — 2gt* . (1.93)

The remaining equations may be written in terms of the velocities v, = & and v, = :

.x: c =+
Uy = we(vy + up) (1.94)

Uy = —W Uy

where w. = ¢B/mc is the cyclotron frequency and up, = cE/ B is the drift speed for the particle. As we shall
see, these are the equations for a harmonic oscillator. The solution is

0, (t) = v,(0) cos(wct) + (v,(0) + up) sin(w,t)

(1.95)
v, (t) = —up + (v, (0) + up ) cos(w,t) — v,(0) sin(w,t)
Integrating again, the full motion is given by:
z(t) =x(0) + Asind + A sin(w.t — d
(t) = =(0) ( ) (1.96)
y(r) =y(0) —upt — Acosd + A cos(w,t —0)
where
I . 1 (9(0)+u
A= o #2(0) + (9(0) + up)® , &= tan 1(%) : (1.97)
Thus, in the full solution of the motion there are six constants of integration:
z(0) , w(O) , =20) , A, 5, 20) . (1.98)

Of course instead of A and ¢ one may choose as constants of integration #(0) and y(0).

Pause for reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a corresponding second
order ODE. The full solution of the motion of the system entails two constants of integration for each
degree of freedom.

1.2 Motion in One Space Dimension

1.2.1 Equations of motion for potential systems

For one-dimensional mechanical systems, Newton’s second law reads

mi = F(z) . (1.99)



1.2. MOTION IN ONE SPACE DIMENSION 25

A system is conservative if the force is derivable from a potential: F' = —dU/dz. The total energy,
E=T+U=4imi*+U(z) , (1.100)

is then conserved. This may be verified explicitly:

aE i[;
dt — dt L2

mi? + U(:c)] - [maj + U’(:c)] i=0 . (1.101)

Conservation of energy allows us to reduce the equation of motion from second order to first order:

dzx 2
== iJ = (E — U(x)) . (1.102)

Note that the constant F is a constant of integration. The + sign above depends on the direction of
motion. Points x(E) which satisfy

E=U(x) = «(BE)=UYE) , (1.103)

where U~! is the inverse function, are called turning points. When the total energy is E, the motion of
the system is bounded by the turning points, and confined to the region(s) U(x) < E. We can integrate
eqn. 1.102 to obtain

t(x)—t(xo):j:\/g / \/Ed_ixiw . (1.104)

This is to be inverted to obtain the function z(¢). Note that there are now two constants of integration, F
and z,. Since
E=Ey=imvi +U(z,y) (1.105)

we could also consider z, and v, as our constants of integration, writing F in terms of z, and v,. Thus,
there are two independent constants of integration.

For motion confined between two turning points = (E), the period of the motion is given by

vy (E)
dx’
T(E) = Vom | ————— (1.106)
x(/E)\/E —U(a")

1.2.2 The simple harmonic oscillator

In the case of the harmonic oscillator, we have U(z) = %sz, hence

dt [ m
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The turning points are =, (E) = ++/2E/k, for E > 0. To solve for the motion, let us substitute

x =/ % sinf . (1.108)
dt = ,/% a9 (1.109)

0(t) = 0y +wt (1.110)

We then find

with solution

where w = \/k/m is the harmonic oscillator frequency. Thus, the motion of the system is given by

x(t) = \/% sin(wt + 6,)) , v(t) = \/% cos(wt +6,) . (1.111)

Note the two constants of integration, E and 6, .

1.2.3 One-dimensional mechanics as a dynamical system

Rather than writing the equation of motion as a single second order ODE, we can instead write it as two
coupled first order ODEs, viz.

dr

E =0

@ _ lF(x) (1.112)
dt m

This may be written in matrix-vector form, as

% (i) B <% Fv(x)> ' (1.113)

This is an example of a dynamical system, described by the general form

de

- =V 1.114

i (v) (1.114)
where ¢ = (¢;,...,¢n) is an n-dimensional vector in phase space. For the model of eqn. 1.113, we

evidently have n = 2. The object V' (¢) is called a vector field. It is itself a vector, existing at every point
in phase space, R". Each of the components of V' (¢) is, in general, a function of all n components of ¢:

Solutions to the equation ¢ = V' (¢) are called integral curves. Each such integral curve ¢(t) is uniquely
determined by n constants of integration, which may be taken to be the initial value ¢(0). The collection
of all integral curves is known as the phase portrait of the dynamical system.
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In plotting the phase portrait of a dynamical system, we need to first solve for its motion, starting from
arbitrary initial conditions. In general this is a difficult problem, which can only be treated numeri-
cally. But for conservative mechanical systems in d = 1, it is a trivial matter! The reason is that energy
conservation completely determines the phase portraits. The velocity becomes a unique double-valued

function of position, v(z) = &4/ 2 (E — U(z)). The phase curves are thus curves of constant energy.

1.2.4 Sketching phase curves

To plot the phase curves,

(i) Sketch the potential U(x).
(ii) Below this plot, sketch v(z; E) = £4/ 2 (E — U(2)).
(iii) When FE lies at a local extremum of U(z), the system is at a fixed point.

(a) For E slightly above E,,;,, the phase curves are ellipses.
(b) For E slightly below E.,..., the phase curves are (locally) hyperbolae.

(c) For E = E,,., the phase curve is called a sepamtrixg.
(iv) When E > U() or E > U(—0o0), the motion is unbounded.

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T'(F) has a simple geometric interpretation. The area A in phase space enclosed
by a bounded phase curve is

z1(E)
A(E) = y{dwv = \/g/daz/ VE-U() . (1.116)
E z_(E)

Thus, the period is proportional to the rate of change of A(E) with E:

0A

T=m 9B (1.117)

"We might as well define separatrices to be phase curves for energies corresponding to both local minima as well as local
maxima. For E = FE..., there is a phase curve corresponding to the point (z*,0), where z* is the location of the local
minimum in U(z). For E just below FE..,, there is no phase curve in the vicinity of z*, while for E just above Ein, the
phase curves in the vicinity of z* are ellipses. When U(2") = Ewax is a local maximum, the phase curves in the vicinity of
x* are hyperbolae. Precisely at z = z*, the phase curves cross in a diabolical point resembling the letter X. Thus, in both
cases corresponding to E = Fi.i, and E = E...x, the separatrix phase curves are not (one-dimensional) manifolds. At E = E..;,, the
phase curve corresponds to a point, which is zero-dimensional, while at £ = F...., the phase curve contains a diabolical point,
at which the curve is also no longer locally homeomorphic to R'. For all other energies, the phase-curves are 1-manifolds,
corresponding to the image of the map ¢ — ¢ (¢) from the time manifold R to the n-dimensional phase space manifold M"

(typically R™).
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Figure 1.6: A potential U(z) and the corresponding phase portraits (with separatrices in red).

1.2.5 Linearized dynamics in the vicinity of a fixed point

A fixed point (z*,v*) of the dynamics satisfies U'(z*) = 0 and v* = 0. Taylor’s theorem then allows us
to expand U(z) in the vicinity of z*:

Uz) =U(z*) + U'(z*) (x — 2*) + 3U"(2%) (x — z*)? + %UW(ZE*) (z—z*)P+... . (1.118)

Since U’(z*) = 0 the linear term in dz = x — z* vanishes. If dz is sufficiently small, we can ignore the
cubic, quartic, and higher order terms, leaving us with

U(dz) = Uy + 5k (02)* (1.119)

where U, = U(z*) and k = U”(2*). The solutions to the motion in this potential are:
U"(z*) >0 : dx(t) = 6z, cos(wt) + 9ty sin(wt)
' 0 w (1.120)
dv(t) = —w oz sin(wt) + oy, cos(wt)

and

o
1"/ o% . t) = h(~t ~0 sinh(~t
U'(z*) <0 : 0z(t) = dx cosh(vt) + ~ sinh(y?) (1.121)

dv(t) = vz, sinh(yt) + dvy cosh(yt)
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where w = \/k/m for k > 0 and v = \/—k/m for k < 0. The energy is

E=Uy+ sm (0vy)* + 5k (024)* . (1.122)

For a separatrix, we have E = U, and U”(z*) < 0. From the equation for the energy, we obtain dv, =
+vdx,. Let’s take v, = —7 0z, so that the initial velocity is directed toward the unstable fixed point
(UFP). Le. the initial velocity is negative if we are to the right of the UFP (6z, > 0) and positive if we are
to the left of the UFP (6z, < 0). The motion of the system is then

dx(t) = dxy exp(—t) . (1.123)

The particle gets closer and closer to the unstable fixed point at 6z = 0, but it takes an infinite amount of
time to actually get there. Put another way, the time it takes to get from dz, to a closer point 6z < 0z, is

t=~"1log (%) . (1.124)

This diverges logarithmically as = — 0. Generically, then, the period of motion along a separatrix is infinite.

Linearization for general dynamical systems

Linearizing in the vicinity of such a fixed point, we wrote 0z = x — 2* and dv = v — v*, obtaining

55 (ot D)

This is a linear equation, which we can solve completely. The result for a general n-component dynamical
system ¢ = V() is given in eqn. 1.33. The linearized dynamics in the vicinity of a fixed point ¢*,
where V (¢*) = 0, is given by ¢ = M, where the components of the n x n matrix M are given by

My, = (8‘/]'/89%)‘4/,*-

Consider now the general linear equation ¢ = M, where M is a fixed real matrix, i.e. one which is
independent of time ¢. Formally, the solutionis ¢(t) = exp(Mt) ¢(0). Now whenever we have a problem
involving matrices, we should instantly start thinking about eigenvalues and eigenvectors. Invariably,
the eigenvalues and eigenvectors will prove to be useful, if not essential, in solving the problem. The
eigenvalue equation is

M, =M, . (1.126)

Here 1), is the a'* right eigenvector'’ of M. The eigenvalues are roots of the characteristic equation, i.e.
solutions to the equation P(\) = 0, where P(\) = det(\ -1 — M). Let’s expand ¢(¢) in terms of the right
eigenvectors of M:

P(t) = Colt)thy - (1.127)

OTf M is symmetric, the right and left eigenvectors are the same. If M is not symmetric, the right and left eigenvectors differ,
although the set of corresponding eigenvalues is the same. We assume that the matrix M has no nontrivial Jordan blocks.
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Figure 1.7: Phase curves in the vicinity of centers and saddles.

Assuming, for the purposes of this discussion, that M is nondegenerate, i.e. its eigenvectors span R",
the dynamical system can be written as a set of decoupled first order ODEs for the coefficients C,, (t):

c,=X0C, , (1.128)
with solutions
C,(t) = C,(0) exp(A\,t) . (1.129)

If Re (A\a) > 0, C(t) flows off to infinity, while if Re (A\) < 0, Cy(t) flows to zero. If |\o| = 1, then C,(t)
oscillates with frequency Im(\,).

For a two-dimensional matrix, it is easy to show — an exercise for the reader — that
PA) =X —-TXx+D |, (1.130)

where T' = Tr(M) and D = det(M). The eigenvalues are then

Ay =iT+1/T2-4D . (1.131)

We'll defer study of the general case. For now, we focus on our conservative mechanical system of eqn.
1.125. The trace and determinant of the above matrix are ' = 0 and D = m~! U”(z*). Thus, there are
only two (generic) possibilities: centers, when U” (z*) > 0, and saddles, when U” (z*) < 0. Examples of
each are shown in fig. 1.6.
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Figure 1.8: Phase curves for the harmonic oscillator.
1.3 Examples of Conservative One-Dimensional Systems

1.3.1 Harmonic oscillator

The potential energy of the harmonic oscillator in d = 1 dimension is U(z) = %kx? The equation of

motion is

d’x dU

where m is the mass and & the force constant (of a spring). With v = &, this may be written as the V = 2

system,
£ D0 -(5)

where w = y/k/m has the dimensions of frequency (inverse time). The solution is well known:

z(t) = x, cos(wt) + % sin(wt) (1.134)

v(t) = v, cos(wt) — wx, sin(wt)

The phase curves are ellipses:
wo 2 (t) + wy v (t) = C (1.135)

where C'is a constant, independent of time. A sketch of the phase curves and of the phase flow is shown
in fig. 14.1. Note that the x and v axes have different dimensions.

Energy is conserved:
E = imv® + Lka® . (1.136)

Therefore we may find the length of the semimajor and semiminor axes by setting v = 0 or « = 0, which

gives
[2FE [2F
l’max = . Y Umax = — ° (1137)
k m
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The area of the elliptical phase curves is thus

AE) =rz, v = 2ZE (1.138)

max ~ max

The period of motion is therefore

vmk
0A m
T(B)=m oz =2m /= . (1.139)

which is independent of E.

1.3.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of
length ¢. The potential is U(§) = —mgl cos §, hence

mi?0 = —— = —mglsinf . (1.140)

d (0 w
dt <w> N <—w3 sin9> ’ (1.141)

where w = § is the angular velocity, and where w, = /g /¢ is the natural frequency of small oscillations.

This is equivalent to

The conserved energy is '
E=im0*+U() . (1.142)

Assuming the pendulum is released from rest at § = 6,

2F

eyl 6% — 203 cosf = —2wi cos 0, - (1.143)

The period for motion of amplitude 6, is then

4 K(sin?16,) (1.144)

0
T(@)_@/o do _
0w Veosh —cosly  wo
0

where K(z) is the complete elliptic integral of the first kind. Expanding K(z), we have

T(6,) = ii {1 + 1 sin® (36) + & sin (36) + - .- } : (1.145)
0
For 6, — 0, the period approaches the usual result 27 /w,, valid for the linearized equation § = —w3 6.

As f, — 3, the period diverges logarithmically.

The phase curves for the pendulum are shown in fig. 14.2. The small oscillations of the pendulum are
essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation,
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Figure 1.9: Phase curves for the simple pendulum. The separatrix divides phase space into regions of
rotation and libration.

sin ~ 6, and the pendulum equations of motion are exactly those of the harmonic oscillator. These
oscillations are called librations. They involve a back-and-forth motion in real space, and the phase
space motion is contractable to a point, in the topological sense. However, if the initial angular velocity
is large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In
this case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see in a later
lecture, the total energy is sufficiently large. The phase curve which separates these two topologically
distinct motions is called a separatrix.

1.3.3 Other potentials

Using a phase plotter'! it is possible to explore the phase curves for a wide variety of potentials. Three
examples are shown in the following pages. The first is the effective potential for the Kepler problem,
k 2
=24 - 1.14
Ucff(r) r + 2#712 ) ( 6)
about which we shall have much more to say when we study central forces. Here r is the separation
between two gravitating bodies of masses m, and m, , pt = mymy/(m, + m,) is the ‘reduced mass’, ¢ is
the angular momentum perpendicular to the fixed plane of the motion, and k = Gm,m, where G is the

""'The phase plotter used here was written by Benjamin Schmidel.
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Cavendish constant. We can then write

212

Use(r) = U, {—%+ ! } , (1.147)

where = = r/a is the radial coordinate measured in units of a = ¢?/uk (which has dimensions of length),
and where U, = k/a = puk?*/¢?. Thus, if distances are measured in units of a and the potential in units of
Uy, the dimensionless potential may be written in dimensionless form as U(z) = —1 + 51;.

The second is the hyperbolic secant potential,

U(z) = —U,sech?(z/a) (1.148)
which, in dimensionless form, is U/ (x) = —sech?(x), after measuring distances in units of a and potential
in units of U,.

The final example is
x x
= = — 5 . 1.149
U(x) =U, {cos(a) +2a} ( )

Again measuring  in units of a and U in units of U, we arrive at U (z) = cos(z) + 3.
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Figure 1.10: Phase curves for the Kepler effective potential U(z) = —z~! + 1272
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Figure 1.11: Phase curves for the potential U(z) = —sech?(z).
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Chapter 2

Linear Oscillations

2.1 Harmonic Motion

Harmonic motion is ubiquitous in physics. The reason is that any potential energy function, when
expanded in a Taylor series in the vicinity of a local minimum, is a harmonic function:

VU(q*)=0
N 7 )

Ula )+ Z c?q] (qj Z c?q] 8q

where ¢ = {q;,...,qy} are the generalized coordimztes of a system of point particles — more on this when
we discuss Lagrangians. In one dimension, we have one coordinate, which we shall call z, and we
expand the potential U(z) about an extremum using Taylor’s theorem, viz.

Uz) =U(*) + s U"(a*) (x —2*)> +... . (2.2)

Provided the deviation » = x — z* is small enough in magnitude, the remaining terms in the Taylor
expansion may be ignored. Newton’s Second Law then gives

mij==U"(x")n+O0(n*) . (2.3)

This, to lowest order, is the equation of motion for a harmonic oscillator. If U”(z*) > 0, the equilibrium
point z = z* is stable, since for small deviations from equilibrium the restoring force pushes the system
back toward the equilibrium point. When U”(z*) < 0, the equilibrium is unstable, and the forces push
one further away from equilibrium.

(qj —G) (g —a)+--. (21
q=q*

2.2 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by F' = —yv. We begin
with the homogeneous equation for a damped harmonic oscillator,

d*c

pre) +2ﬁ —i—wox—O ) (2.4)

39
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where v = 28m. To solve, write z(t) = >, Cne *“n!. This renders the differential equation 2.4 an
algebraic equation for the two eigenfrequencies w;, each of which must satisfy

w? 4 2ifw —wi =0 , (2.5)
hence
wy = —if + (wh— B . (2.6)
The most general solution to eqn. 2.4 is then
z(t) = C e ™+t 4 C_e ™1 (2.7)
where (', are arbitrary constants. Notice that the eigenfrequencies are in general complex, with a neg-

ative imaginary part (so long as the damping coefficient 3 is positive). Thus e *“+* decays to zero as
t — oc.

2.2.1 Classes of damped harmonic motion

We identify three classes of motion:

Underdamped motion (w? > ?)

The solution for underdamped motion is

z(t) = Acos(vt) e P! + Bsin(vt) e Pt

(2.8)
i(t) = (—BA+vB) cos(vt) e Pt — (VA + BB) sin(vt) e Pt |
where v = 4/ w% — (2, and where A and B are constants determined by initial conditions,
= A , ty=—PBA+vB
Simultaneously solving these two equations in the two unknowns yields
p 1.
A= B=- — . 2.9
Ty - Lo~ T (2.9)
Overdamped motion (w? < 5?)
The solution in the case of overdamped motion is
z(t) = C cosh(\t) e Pt + Dsinh(\t) e P!
® () () 210

i(t) = (=BC + AD) cosh(\t) e Pt + (A\C — D) sinh(\t) e Pt |
where A = /32 — w3 and where C and D are constants determined by the initial conditions

Solving for the two unknowns, we have

1
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Figure 2.1: Three classifications of damped harmonic motion. The initial conditions are x(0) = 1,

i(0) = 0.

Critically damped motion (w3 = 5?)

The solution in the case of critically damped motion is

z(t)=Ee P+ Fte P!

2.13
i(t) = (~BE + F)e Pt — pF P 2.13)
Thus, 2y = Eand ¢, = —fE + F, and

The screen door analogy

The three types of behavior are depicted in fig. 2.1. To concretize these cases in one’s mind, it is helpful
to think of the case of a screen door or a shock absorber. If the hinges on the door are underdamped,
the door will swing back and forth (assuming it doesn’t have a rim which smacks into the door frame)
several times before coming to a stop. If the hinges are overdamped, the door may take a very long time
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to close. To see this, note that for 8 > w, we have

2\1/2 2 4
/52—w8:ﬁ<1—%> :5_"2"_;_;"7%+... , (2.15)

which leads to
2 4
iwy, = — 52—w3:ﬂ+w—%+...
2680 (2.16)
. w
zw_:5+\/52—w8:25—ﬁ—+...
Thus, we can write
z(t)=Ce /T4 DM (2.17)
with
1 283 1 1 218)
= — , Ty = ———  — .
L S R T Bt VB - 2B

Thus z(t) is a sum of exponentials, with decay times 7, ,. For 8 > w,, we have that 7, is much larger

than 7, — the ratio is 7, /7, ~ 48?/w3 > 1. Thus, on time scales on the order of 7, the second term
has completely damped away. The decay time 7, though, is very long, since /3 is so large. So a highly
overdamped oscillator will take a very long time to come to equilbrium.

2.2.2 Remarks on the case of critical damping

Define the first Order differential Operator
t dt ’ '

The solution to D, 2(t) = 0 is #(t) = Ae~ P!, where A is a constant. Note that the commutator of D, and t
is unity:

D, t] =1, (2.20)
where [A, B] = AB — BA. The simplest way to verify eqn. 2.20 is to compute its action upon an arbitrary
function f(t):

P50 = (& +8) 50—t (5 +5) 0

) ] (2.21)
= S 50) ~t 5 F1) = ()
We know that z(t) = Z(t) = Ae P satisfies D, x(t) = 0. Therefore
0=D, [D,,t] Z(t)
0 (2.22)

= D? (tfc(t)) —D,t D, i(t)= D} (t gz(t))
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Figure 2.2: Phase curves for the damped harmonic oscillator. Left panel: underdamped motion. Right
panel: overdamped motion. Note the nullclines along v = 0 and v = —(w?/23)z, which are shown as
dashed lines.

We already know that D? % (t) = D, D, #(t) = 0. The above equation establishes that the second inde-
pendent solution to the second order ODE D? z(t) = 0 is x(t) = t Z(t). Indeed, we can keep going, and
show that

Dp (t"—l j(t)) 0 . (2.23)
Thus, the n independent solutions to the n** order ODE
d n
— = 2.24
(4 +5) ato =0 229
are
a (t)=Athe™? | k=0,1,....n—1 . (2.25)

2.2.3 Phase portraits for the damped harmonic oscillator

Expressed as a dynamical system, the equation of motion i + 234 + wiz = 0 is written as two coupled
first order ODEs, viz.
b= (2.26)
b= —wiz —20v '
In the theory of dynamical systems, a nullcline is a curve along which one component of the phase
space velocity ¢ vanishes. In our case, there are two nullclines: # = 0 and © = 0. The equation of the
tirst nullcline, # = 0, is simply v = 0, i.e. the first nullcline is the z-axis. The equation of the second
nullcline, ¥ = 0, is v = —(w3/2B)z. This is a line which runs through the origin and has negative
slope. Everywhere along the first nullcline £ = 0, we have that ¢ lies parallel to the v-axis. Similarly,
everywhere along the second nullcline © = 0, we have that ¢ lies parallel to the z-axis. The situation is
depicted in fig. 2.2.
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2.3 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

dx dx
2+ wix=f(t) , (2.27)

where f(t) = F(t)/m. Since this equation is linear in z(¢), we can, without loss of generality, restrict out
attention to harmonic forcing terms of the form

F(t) = focos(02t+ @y) = Re | fye "0 e (2.28)
where Re stands for “real part”. Here, (2 is the forcing frequency.

Consider first the complex equation

d? d 4 .
d_tj + 25 d—j +wiz= foe o e (2.29)

We try a solution z(t) = z, e~***. Plugging in, we obtain the algebraic equation

—ip . ,
Joe ™% _ p(@) @ femie (2.30)

0T 2 2ip0 -2

The amplitude A(2) and phase shift 6({2) are given by the equation

; 1
A(2) e = 2.31
(2)e W2 — 2302 — (22 (231)
A basic fact of complex numbers:
: itan—1(b/a)
1 _atd e , (2.32)
a—1ib a?+b? Va2 £ b2
Thus,
—1/2 _ 2502
AR) = <(w(2] — 2% 4 45292) . 0(2) =tan? <m> (2.33)
0

Now since the coefficients 3 and w3 are real, we can take the complex conjugate of eqn. 2.29, and write

P28+ wiz = fye o e i

o (2.34)
5 4 252* + wg oF = fO eti%o e-HQt ,

where 2* is the complex conjugate of z. We now add these two equations and divide by two to arrive at

i4280 +wiz = f, cos(2t+ ) . (2.35)



2.3. DAMPED HARMONIC OSCILLATOR WITH FORCING 45

S T T T T T 1
4 —] — — 0.8
3 — - = 0.6
. B T - = =
= - . i | =
= - 8 =,
B | = 4 >
2 - — - —{ 0.4
1 | [ — 0.2
ol vt T il IR NN BRI P
o 0.5 1 1.5 2 o 0.5 1 1.5 2
Q/ e, Q/ e,

Figure 2.3: Amplitude and phase shift versus oscillator frequency (units of wy) for 3/wy values of 0.1
(red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

Therefore, the real, physical solution we seek is

Bun(t) = Re [A(@) ) . £, %0 =10
= A(R2) f, cos (Qt + g — 5(9))

(2.36)

The quantity A(f2) is the amplitude of the response (in units of f)), while §(£2) is the (dimensionless)
phase lag (typically expressed in radians).

The maximum of the amplitude A(f2) occurs when A’'({2) = 0. From

dA 20

a2 )’

(22 —wi+28%) (2.37)

we conclude that A’(£2) = 0 for 2 = 0 and for 2 = (2, where

Qn = Jwd — 282 . (2.38)

The solution at {2 = (2 pertains only if w% > 2f32, of course, in which case 2 = 0 is a local minimum
and £2 = (2 a local maximum. If w? < 2/3? there is only a local maximum, at {2 = 0. See fig. 2.3.

Since equation 2.27 is linear, we can add a solution to the homogeneous equation to z,,, (t) and we will
still have a solution. Thus, the most general solution to eqn. 2.27 is Therefore, the real, physical solution
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we seek is
2(t) = Ty (t) + Zuom (t)
= Re {A(Q) e . f e 0 e—iﬂt] 4O, el 4 0 et
Thom (1) (2.39)

C e Pt cos(vt) + D e Pt sin(vt)
C e Pt cosh(At) + D e Pt sinh(\t)

i, (1)

=A(2) focos (2t + oy — 0(12)) + {

When w? > 32, we choose the top expression for ;. (t), with v = \/w? — 32 . When w? < 2, we
choose the bottom expression for z; _(¢), with A = /32 — w3 .

The quantity , (¢) in eqn. 2.39 is the solution to the homogeneous equation, i.e. with f(¢) = 0. This
involves two constants of integration, C' and D, which are then determined by imposing initial con-
ditions on z(0) and #(0) — two constants of integration always arise in the solution of a second order
ODE, whether or not it is homogeneous. That is, C' and D are adjusted so as to satisfy z(0) = z, and
i, = v,. However, due to their e~#! prefactor, these terms decay to zero once ¢ reaches a relatively low
multiple of 37!. They are called transients, and may be set to zero if we are only interested in the long
time behavior of the system. This means, incidentally, that the initial conditions are effectively forgotten
over a time scale on the order of 5.

For 2; > 0, one defines the quality factor, Q, of the oscillator by ) = (2;/25. @ is a rough measure
of how many periods the unforced oscillator executes before its initial amplitude is damped down to a
small value. For a forced oscillator driven near resonance, and for weak damping, @ is also related to
the ratio of average energy in the oscillator to the energy lost per cycle by the external source. To see
this, let us compute the energy lost per cycle,

2w /2

AE =m [dta f(t)
/

2m/02 (2.40)
=—-m /dt QA fE sin(2t + @, — 0) cos(2t + @)

=7A fim sind =2r3m N A%(0) f2
since sin 6(£2) = 2312 A(£2). The oscillator energy, averaged over the cycle, is
2w/ 2
)
(E) = %/dt tm (i 4+ wg 2%) = Im (22 +wy) A*(2) 5 (2.41)

Thus, we have
2m(E) 22 + W
AE 480
Thus, for 2 ~ 2; and 32 < w(z], we have

(2.42)

~ 20 (2.43)
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2.3.1 Resonant forcing

When the damping § vanishes, the response diverges at resonance. The solution to the resonantly forced
oscillator

Ptwie= focos(wyt + ¢p) (2.44)
is given by

Z‘hom(t)

x(t) = 2f—0 t sin(wyt + @)+ A cos(wyt) + B sin(wyt) . (2.45)

wo
The amplitude of this solution grows linearly due to the energy pumped into the oscillator by the res-
onant external forcing. In the real world, nonlinearities can mitigate this unphysical, unbounded re-

sponse.

2.3.2 R-L-C circuits

Consider the R-L-C circuit of fig. 2.4. When the switch is to the left, the capacitor is charged, eventually
to a steady state value QQ = C'V. Att = 0 the switch is thrown to the right, completing the R-L-C circuit.
Recall that the sum of the voltage drops across the three elements must be zero:

dI 0
LY v IR+ 2 =0 | 2.46
TR+ 5 =0 (2.46)

We also have Q = 1, hence

2Q RdQ 1
T t1aQ=0 (2.47)

which is the equation for a damped harmonic oscillator, with w, = (LC)~'/? and 8 = R/2L.

The boundary conditions at t = 0 are Q(0) = C'V and Q(0) = 0. Under these conditions, the full solution
at all times is

OV Pt by
Q) =CVe (cos vt + > smut)

2 (2.48)

I(t)y=-CV Y0 =Bt ginpt ,
v

again with v = /w3 — 32.

If we put a time-dependent voltage source in series with the resistor, capacitor, and inductor, we would

have

I Q
Lo +IR+ 5=V(1) (2.49)

which is the equation of a forced damped harmonic oscillator.
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Figure 2.4: An R-L-C circuit which behaves as a damped harmonic oscillator.

2.3.3 Examples
Third order linear ODE with forcing

The problem is to solve the equation

Lix=F+ (a+b+c)@+ (ab+ ac+ be) & + abcx = fcos(£2t) . (2.50)

The key to solving this is to note that the differential operator £, factorizes:

3 2

d d d
Et:ﬁ+(a+b+c)ﬁ+(ab+ac+bc)a+abc

d d d
=(@ o) G (Gre)
which says that the third order differential operator appearing in the ODE is in fact a product of first
order differential operators. Since

(2.51)

Z—f + ar = 0 e [L'(t) = Ae—afﬂ 5 (2.52)

we see that the homogeneous solution takes the form
z,(t) =Ae”™ + Be™" + Ce™ | (2.53)

where A, B, and C are constants.
To find the inhomogeneous solution, we solve L,z = f, e~ and take the real part. As before, we
assume the inhomogeneous solution z(t) oscillates with the driving frequency (2, and we write z(t) =
z, e~ %, which entails
Loxge ™ = (a—iQ) (b—i02)(c— i) xye (2.54)
and thus ,
fO e—z()t

(a—i2)(b—1i02)(c—1if2)

A(Q) 62'5(9) fO 6—i(2t 7

woz
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where
—1/2
A(2) = |(@® + 22) (07 + 2%) (¢ + 27|
(2.55)
5(2) = tan™? (—) + tan~! <—) + tan~! (—)
Thus, the most general solution to L; x(t) = f,, cos({2t) is
2(t) = A(R2) fo cos (2t —5(2)) + Ae " + Be P+ Ce " . (2.56)

Note that the phase shift increases monotonically from 6(0) = 0 to §(cc) = 3.

Mechanical analog of RLC circuit

Consider the electrical circuit in fig. 2.5. Our task is to construct its mechanical analog. To do so, we
invoke Kirchoft’s laws around the left and right loops:

o
Lih+2E R (I - I) =0
th+ g+ Rl I) (2.57)

Loly+ RoIy+ Ry (I, — I) = V(t)

Let Q1 (t) be the charge on the left plate of capacitor C, and define

t
Qo(t) = / dt' I(t') . (2.58)
0
Then Kirchoff’s laws may be written

. R . 1
Q1+L—1(Q1—Q2)+mQ1:O

(2.59)
V(t)

R Ry . R - )
Q2+L—§Q2+L—;(Q2—Q1)=L—2

Now consider the mechanical system in fig. 2.6. The blocks have masses M; and M. The friction
coefficient between blocks 1 and 2 is b1, and the friction coefficient between block 2 and the floor is
by. Here we assume a velocity-dependent frictional force F; = —bd, rather than the more conventional
constant F; = —u W, where W is the weight of an object. Velocity-dependent friction is applicable when
the relative velocity of an object and a surface is sufficiently large. There is a spring of spring constant
k1 which connects block 1 to the wall. Finally, block 2 is driven by a periodic acceleration f, cos(wt). We
now identify

R Ry 1

XIHQl ) X2<_>Q2 s b1<—>L—1 s b2<—>—2 , ]{71<—>L101 ,

(2.60)
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Figure 2.5: A driven L-C-R circuit, with V() = V} cos(wt).
by M, i
S2ERRR
w |
&
—X X1 E {I]

Xs

Figure 2.6: The equivalent mechanical circuit for fig. 2.5.

aswell as f(t) <> V(t)/La.

The solution again proceeds by Fourier transform. We write

V(t) = 7‘21—: V(w) et (2.61)
and . )
{%ﬁ}iig{%gqu 262

The frequency space version of Kirchoff’s laws for this problem is

G(w)

<w2 —w Rl/Ll + 1/L1 & Rl/Ll ) (Ql(w)) ( 0 )
= (2.63)
W Rl/LQ —iw + (Rl + RQ)/LQ fQ(w) V(W)/LQ
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The homogeneous equation has eigenfrequencies given by the solution to det G(w) = 0, which is a cubic
equation. Correspondingly, there are three initial conditions to account for: @, (0), 1;(0), and I,(0). As
in the case of the single damped harmonic oscillator, these transients are damped, and for large times
may be ignored. The solution then is

Ql(w) —w? —jw Rl/Ll + 1/L1 4 Rl/Ll -1 0

_ L (2.64)
I(w) iw Ry /Ly —iw + (R1 + Ry)/ Ly V(w)/Le

To obtain the time-dependent @, (¢) and I,(t), we must compute the Fourier transform back to the time
domain.

2.4 Green’s Functions

24.1 General solution of forced damped harmonic oscillator

For a general forcing function f(t¢), we solve by Fourier transform. Recall that a function F'(¢) in the time
domain has a Fourier transform F'(w) in the frequency domain. The relation between the two is:!

[e.e]

F@y:/g;emﬁﬁw) — 1%@::/ﬁm“MF@). (2.65)

—0o0

We can convert the differential equation 2.27 to an algebraic equation in the frequency domain for the
Fourier transform z(w), viz.

B(t) +282(t) + wiax(t) = f(1) e  iw)=GW)flw) , (2.66)
where
Glw) = ! (2.67)

wg — 2ifw — w?
is the Green’s function in the frequency domain. The general solution is written

o0

x@:/%fmm@ﬂWmN), 2.68)

—0o0

!Different texts often use different conventions for Fourier and inverse Fourier transforms. Sometimes the factor of (27)~! is
associated with the time integral, and sometimes a factor of (27)~'/? is assigned to both frequency and time integrals. The
convention I use is obviously the best.
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where z,(t) = >, Cie”™i' is a solution to the homogeneous equation. We may also write the above
integral over the time domain:

2(t) = / dt' G(t —t') (') + 2, (1) (2.69)
G(s) :/;l—: e G(w) (2.70)

= v Lexp(—Ps) sin(vs) O(s)

where O(s) is the step function,

1 ifs>0
m@_{OiM<0 2.71)

where once again v = \/wg — (2. In the overdamped case, we write v = i\ with A = /32 — w%, and we
then have
G(s) = A" exp(—s) sinh(As) O(s) . (2.72)

Example: force pulse

Consider a pulse force

fy f0<t<T
— T —+) = 0 2.7
f(8) = 1,6() O ) { 0 otherwise. @7)
In the underdamped regime, for example, and ignoring the transients, we find the solution
z(t) = f—% {1 — e Pteosvt — ée_ﬁt sin yt} (2.74)
wh v

if 0 <t<Tand

x(t) = f—g { (e_ﬁ(t_T) cosv(t —T) — e P cos Vt> + p (e_ﬁ(t_T) sinv(t —T) — e Plsin Vt) } (2.75)
wp v

2.4.2 General linear autonomous inhomogeneous ODEs

This method immediately generalizes to the case of general autonomous linear inhomogeneous ODEs

of the form
d™x A1z
_|_

dr
—_— — 4+ ... — = . 2.7
dtn Gp—1 din—1 + +a; dt tagr f(t) ( 6)

We can write this as
Lox(t)=f(t) (2.77)
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response

position

| \/A\/A

-05 [~

L 1 n L L i 1 L L L L |
(o] 05 1 1.5 2

time t/T

Figure 2.7: Response of an underdamped oscillator to a pulse force.

where L, is the n'" order differential operator
dn dn—l
Fo = G+ Ot gt

The general solution to the inhomogeneous equation is given by

d
+...+a1E+a0 . (2.78)

[e.e]

z(t) =z (t) +/dt’ Gt t) f(t) (2.79)

where G(t,t') is the Green’s function. Note that £, z, (t) = 0. Thus, in order for eqns. 2.77 and 2.79 to be

true, we must have
this vanishes

Loalt) = Loan(®) + [t £,60) 1) = ) (2.80)
which means that

L,Gtt)y=6(t—1t) |, (2.81)

where §(t — t') is the Dirac d-function. Some properties of 6(z):

b
/dxf(w)é(w—y) = /W ?fa<y<b (2.82)
0 ify<aory>»b .

oz —x;)

5(g(x)) = > —= (2.83)
Z W(%)‘

x . with
i

g(x;)=0
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valid for any functions f(x) and g(z). The sum in the second equation is over the zeros x, of g(z).

Incidentally, the Dirac J-function enters into the relation between a function and its Fourier transform,
in the following sense. We have

£(t) = / poe W) )= [aetp 289

Substituting the second equation into the first, we have

f(t) = /Oog(: it / dt’ e / dt’ { / et~ >} ) (2.85)

—00 —00
which is indeed correct because the term in brackets is a representation of 6(t — ¢):

[oe)
dw
2

—00

e =45(s) . (2.86)

If the differential equation £, z(t) = f(t) is defined over some finite ¢ interval with prescribed boundary
conditions on z(t) at the endpoints, then G(¢,t") will depend on ¢ and ¢’ separately. For the case we are
considering, the interval is the entire real line t € (—o0, c0), and G(¢,t') = G(t — t') is a function of the
single variable ¢ — t'.

Note that £, = £(4) may be considered a function of the differential operator 4. If we now Fourier
transform the equation £, z(t) = f(t), we obtain

tw w dn_l d
/dte tf /dte t{dtn n_1W+...+a1E+a0}x(t)
(2.87)

= /dt et {(—iw)" +a, (=) ay (—iw) + ao} z(t)

—00

where we integrate by parts on ¢, assuming the boundary terms at ¢ = 400 vanish, i.e. z(+o00) = 0, so
that, inside the ¢ integral,

et (%)kw(t) = [(- %)k eiwt] 2(t) = (—iw)F et a(t) . (2.88)

Thus, if we define

3

L(w) = a, (—iw)F (2.89)

then we have X X
Lw)z(w) = flw) , (2.90)
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where a,, = 1. According to the Fundamental Theorem of Algebra, the n'* degree polynomial £(w) may
be uniquely factored over the complex w plane into a product over n roots:

L(w) = (—)" (w—w)(w—ws) - (w—wy) . (2.91)

If the {a, } are all real, then [ﬁ(w)} " = L(—w"), hence if £ is a root then so is —£2*. Thus, the roots
appear in pairs which are symmetric about the imaginary axis. ILe. if {2 = a + b is a root, then so is
—(* = —a +bd.

The general solution to the homogeneous equation is
n
2 (t) = Aje it (2.92)
i=1

which involves n arbitrary complex constants A;. The susceptibility, or Green’s function in Fourier

~

space, G(w) is then

A 1 "
Gw)=—5—= ; 2.93
() L(w) (Ww—wi)(w—wz)  (w—wy) (2.93)
and the general solution to the inhomogeneous equation is again given by
z(t) =z, (t) + /dt’ Git—t)fi) , (2.94)
where 2z, () is the solution to the homogeneous equation, i.e. with zero forcing, and where
Oodw —iws A
G(s) = /% e G(w)
. (2.95)
dw e~ ws DL eyl
= ’ln — — @ S 3
/ 3 oo —w e 2o

where we assume that Im (w;) < 0 for all j. The integral above was done using Cauchy’s theorem and
the calculus of residues — a beautiful result from the theory of complex functions.

As an example, consider the familiar case

L(w)=wi —2ifw—w’=—(w-w,)(w—-w) , (2.96)
withw, = —if+v,and v = (wg — 52)1/2. This yields
L(wy)=Flwy —w_)=F2v . (2.97)

Then according to equation 2.95,

{ . —iw+ N .e—iwis } (_)(3)
L)) L) (2.98)
{6—63 e~ s N e—Bs givs } Os) = 1 =Bs sin(vs)O(s)

G(s)

—2iv 2iv

exactly as before.
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2.4.3 Kramers-Kronig relations

Suppose ¥(w) = G(w) is analytic in the UHP?. Then for all v, we must have

Ood R
/:;;wifzo, (2.99)
2T Vv — w + i€

where € is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming
X (w) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak
restriction on X (w), given the fact that the denominator already causes the integrand to vanish as |w|™!.

Let us examine the function

1 V—w 1€
= — . 2.100
v—w+tie V-w)?P+e (v-—w)?+e ( )

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the
limit € — 0, is equivalent to taking a principal part of the integral. That is, for any function F'(r) which is
regular at v = w,

. T dv vV—w T dv F(v)
1 — = F(v) = — 2.101
50 ) 2n (v —w)? + € () P/Qﬂu—w (2.101)

The principal part symbol P means that the singularity at v = w is elided, either by smoothing out the
function 1/(v — €) as above, or by simply cutting out a region of integration of width € on either side of
V=w.
The imaginary part is more interesting. Let us write
€
h(v) = ——— . 2.102
(W)= —— 2102

For |u| >> ¢, h(u) ~ ¢/u?, which vanishes as ¢ — 0. For u = 0, h(0) = 1/e which diverges as ¢ — 0. Thus,
h(u) has a huge peak at v = 0 and rapidly decays to 0 as one moves off the peak in either direction a
distance greater that e. Finally, note that

oo

/du h(u)=m (2.103)
a result which itself is easy to show using contour integration. Putting it all together, this tells us that

. €

Thus, for positive infinitesimal e,
1

u =+ i€

=P i) | (2.105)

?In this section, we use the notation X (w) for the susceptibility, rather than G/(w)
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a most useful result.
We now return to our initial result 2.99, and we separate x(w) into real and imaginary parts:
X(w) =¥ (W) +i"(w) (2.106)

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore
have, for every real value of w,

0= / g—; [x’(u) + z'x”(u)] [7? ” i — — imd(v - w)] . (2.107)

—00

Taking the real and imaginary parts of this equation, we derive the Kramers-Kronig relations:

4P / dv X , P / v X) (2.108)

™V —Ww ™V —Ww

2.4.4 Laplace transforms

Consider a function F'(t) defined on nonnegative real numbers ¢ > 0. The Laplace transform of F'(t) is
defined to be

= / dt F(t)e *" | (2.109)
where in general z is complex. The inverse transform is given by
c+iood
Z .
Fit)= | == F(z)e* 2.11
0= [ g PO 2.110)

where c is such that the integration lies to the right of any singularities of F'(z) in the complex z-plane.
The Laplace transform is particularly useful in cases where we specify initial conditions, and where the
inhomogeneous term vanishes for sufficiently small values of ¢; here we have taken F'(t) = 0 for ¢t < 0.

Note that the Laplace transform of F(t) is given by
PRI
dt — ¢ = zF(z) = F(0) (2.111)
0

which is easily confirmed via integration by parts. Thus, if F(*)(t) = d*F(t)/dt", we have

F®) (z) = 2 FE=D () — p=1) ()
= M F(z) — IR 0) — - — 2 FR=D(0) — FR-D) ()

n—1
FF(z) - Z 2P Flk=1=p) ()

p=0

(2.112)
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Thus, the Laplace transform of the ntt order linear, autonomous, inhomogeneous ODE in eqn. 2.76,

d"x d" dx
W+a”‘1W+"'+a1E+a0$_f(t) , (2.113)
is given by
n—1
Q) &) = f(2) + 3. G2 (2.114)
p=0
with
Qz)=> a2 (2.115)
k=0
and a,, = 1, and
Cp= > az*1P(0) | (2.116)
k=p+1

which encodes the n initial conditions on z()(0) for I € {0,...,n — 1}. Explicitly,

Cn—l = :L'(O)

(2.117)
Cy = 2"2(0) + a,_y 2(0) + ... + ay 2(0)
Cy=2"V(0) +a, 2"2(0) + ... 4 ay 21(0) + a; 2(0)
Thus, the solution for z(t) is
c+1i00 .
dz f(2) + R(2)
t)y=| —*————"2¢° 2.11
w0=[ 5 g e 1
where
n—1
R(z)=> C,2 (2.119)
p=0

and where the contour lies to the right of all singularities of the integrand. By the Fundamental Theorem
of Algebra, QQ(z) may be factorized uniquely as

n

Q) =]]Gz-7) - (2.120)

j=1
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Examples

Consider the equation

a+yu=f(t) . (2.121)
Thus n = 1 and a;, = 7. Let f(t) = b sin(wt) O(t). Then
b/oodt sin(wt) e~ = 0¥ (2.122)
22+ w? '
0
From the previous analysis we have
Qz)=z+7y , R(z) =x(0) . (2.123)
Thus,
c—i—iood 1 b
o) = | 3 5 <§i%5+“®}”
oo 7 (2.124)
= z(0) + _bw e M _b (7 sin(wt) — w cos(wt))
,72 + w? w? + ,72
The poles of the integrand are at = = —vy and z = +iw, so we chose ¢ > 0 and closed the integration
contour in the left half plane. Note how the solution satisfies the initial conditions at ¢t = 0.
As a second example, consider the equation
4+ (a+B)t +afr = f(t) (2.125)
whence n = 2, a; = a + f and a, = aff. We next identify
Q(z)=(z+a)(z+p) (2.126)
and C, = ©(0) + (o + B) 2(0), C; = zx(0). Thus
R(z) =%(0) + (a+ S+ 2)x(0) . (2.127)

We choose f(t) = re " ©O(t), with a, 8, and ~ all real and positive. The Laplace transform of f(¢) is
easily obtained as

—r / dte et = (2.128)
zZ+y
We then have
c—i—iood ot
z r . e
r (2.129)

=- ((6=e+-a)e+(@-pe)

(@=B)B =70 -a)
()0 (S

Note again that the initial conditions for 2(0) and ©(0) are satisfied in the ¢ — 0 limit.
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Chapter 3

Systems of Particles

3.1 Work-energy theorem

Consider a system of many particles, with positions 7, and velocities ;. The kinetic energy of this
system is

T=>T,=> im#} . 3.1)

Now let’s consider how the kinetic energy of the system changes in time. Assuming each m; is time-
independent, we have

dT; .
7 =M T, (3.2)
Here, we’ve used the relation
d dA
—(A?) =24 = . 3.3
i (A) i (33)

We now invoke Newton’s 2nd Law, m#; = F}, to write eqn. 3.2 as T, = F,-7;. We integrate this equation
from time ¢, to ¢

d

%

tg tg

ng—ng:/dtdf’:/thi-@;Zm‘HB , (3.4)
tA tA

where WA~B is the total work done on particle i during its motion from state A to state B, Clearly the

total kinetic energy is T = 3. 7; and the total work done on all particles is WA=B = >~ WA=B Eqn. 3.4

is known as the work-energy theorem. It says that In the evolution of a mechanical system, the change in

total kinetic energy is equal to the total work done: T® — TA = WA—E,

61
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path II

Ys T o @
A
Yat A >
path I

| |

[ [

'T'IA :‘EB

Figure 3.1: Two paths joining points A and B.

3.1.1 Conservative and nonconservative forces

For the sake of simplicity, consider a single particle with kinetic energy 7 = $m#2. The work done on
the particle during its mechanical evolution is

tg

WA=B = / dtF-v (3.5)
tA
where v = 7. This is the most general expression for the work done. If the force F' depends only on the
particle’s position r, we may write dr = v dt, and then
s
WA=B = / dr-F(r) . (3.6)

TA

Consider now the force
F(r)=K,yz+Kyzy , (3.7)

where K| , are constants. Let’s evaluate the work done along each of the two paths in fig. 3.1:

! Y
W(I) = Kl/dwyA+K2/dwa = KlyA(xB _‘TA) +K2‘TB(yB _yA)
Ta Ya
3.8
vy v (3.8)

W(H) = Kl/dwys +K2/dywA = Kl Ys (xB _‘TA) +K2‘TA (yB - yA)

Tp Ya
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Note that in general W® # WD Thus, if we start at point A, the kinetic energy at point B will depend
on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is
WD =W = (K = ) (20 = 2,) (4o = 1) (3.9)

Thus, we see that if K| = K,, the work is the same for the two paths. In fact, if K; = K,, the work
would be path-independent, and would depend only on the endpoints. This is true for any path, and
not just piecewise linear paths of the type depicted in fig. 3.1. The reason for this is Stokes’ theorem:

j{dﬂ-F:/dS'h-VxF . (3.10)
oc C

Here, C is a connected region in three-dimensional space, C is mathematical notation for the boundary
of C, which is a closed pathl, dS is the scalar differential area element, n is the unit normal to that
differential area element, and V x F'is the curl of F':

T Yy Zz
VxF=det|d, 0, 0,
Fo by I (3.11)
— aFZ_% &+ an_an ] -+ %_%2
~\ 0y 0z 0z ox Y oz oy

For the force under consideration, F'(r) = K, y & + K, x y, the curl is
VxF=(K,—K)% , (3.12)

which is a constant. The RHS of eqn. 3.10 is then simply proportional to the area enclosed by C. When
we compute the work difference in eqn. 3.9, we evaluate the integral § d¢ - F along the path v;* o v,
c

which is to say path I followed by the inverse of path I In this case, n = 2 and the integral of n- V x F
over the rectangle C is given by the RHS of eqn. 3.9.

When V x F = 0 everywhere in space, we can always write F' = —VU, where U(r) is the potential
energy. Such forces are called conservative forces because the total energy of the system, £ = 7'+ U, is then
conserved during its motion. We can see this by evaluating the work done,

4 4

WwA=E :/dr “F(r)=— /dr VU =U(r,) —U(ry) - (3.13)

r r

A A

The work-energy theorem then gives
T8 —TA=U(r,) —U(ry) (3.14)

which says
EB=TB +U(r,)=T*+U(r,) = E* . (3.15)

Thus, the total energy £ = T'+ U is conserved.

'If C is multiply connected, then OC is a set of closed paths. For example, if C is an annulus, dC is two circles, corresponding to
the inner and outer boundaries of the annulus.
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3.1.2 Integrating F = —VU

If V x F =0, we can compute U (r) by integrating, viz.

r

U(r) = U(0) — / ar' - F(r) . (3.16)

0

The integral does not depend on the path chosen connecting 0 and r. For example, we can take

(2,0,0) (,9,0) (z,y,2)
U(z,y,z) =U(0,0,0) — /dx’ F,(2',0,0) — /dy' Fy(z,vy',0) — /dz' F.(z,y,2) . (3.17)
(0,0,0) (2,0,0) (2,,0)

The constant U (0, 0, 0) is arbitrary and impossible to determine from F' alone.

As an example, consider the force

F(r)=—kya —key—4b2 2 | (3.18)

(5 -5)
V><F :< 9% >
vxr).~ (3 8ay>:°’

so V x F = 0 and F must be expressible as F' = —VU. Integrating using eqn. 3.17, we have

where k£ and b are constants. We have

VxF 0

0 (3.19)

(2,0,0) (z,y,0) z,Y,2)
U(z,y,z) =U(0,0,0) /dazk‘ 0 + /dy kxy' + /dz 4bs"3
(0,0,0) (2,0,0) (2,9,0) (3'20)

=U(0,0,0) + kzy + bz*

Another approach is to integrate the partial differential equation VU = —F'. This is in fact three equa-
tions, and we shall need all of them to obtain the correct answer. We start with the -component,

U _ oy (3.21)
Ox

Integrating, we obtain
Ulz,y,2) = kzy + f(y, 2) (3.22)
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where f(y, z) is at this point an arbitrary function of y and z. The important thing is that it has no z-
dependence, so 0f/0x = 0. Next, we have

(??_Z =kxr = Ul(x,y,2)=kry+g(z,z) . (3.23)
Finally, the z-component integrates to yield

ou 3 4

5 = 4bz° = U(z,y,z) =bz" + h(z,y) . (3.24)

We now equate the first two expressions:
kxy + f(y,2) = kzy + g(x,2) . (3.25)

Subtracting kzy from each side, we obtain the equation f(y, z) = g(z, z). Since the LHS is independent
of z and the RHS is independent of y, we must have

fy,2z) = g(z,2) =q(z) , (3.26)
where ¢(z) is some unknown function of z. But now we invoke the final equation, to obtain
b2t 4 hiz,y) = kay + q(z) . (3.27)
The only possible solution is h(z,y) = C + kxy and q(z) = C + bz*, where C is a constant. Therefore,
U(z,y,2) =C + kxy + bzt . (3.28)
Note that it would be very wrong to integrate 90U /0x = ky and obtain U(z, y, z) = kzy+ C’, where C’ is a
constant. As we’ve seen, the ‘constant of integration” we obtain upon integrating this first order PDE is

in fact a function of y and z. The fact that f(y, z) carries no explicit  dependence means that 0f /0x = 0,
so by construction U = kxy + f(y, z) is a solution to the PDE 0U/dz = ky, for any arbitrary function

[y, 2).

3.2 Conservative forces in many-particle systems

3.2.1 Kinetic and potential energies
The kinetic and potential energies are given by
T =Y tm#}
U= V(r)+> v(r—r)

1<j

(3.29)

Here, V() is the external (or one-body) potential, and v(r — r’) is the interparticle potential, which we
assume to be central, depending only on the distance between any pair of particles. The equations of

motion are

(ext) + ﬂ(int)

m, ¥, = F, , (3.30)
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with
(ext) OV(rl)
Fpley - 27V
! 8’)"1'
s (3.31)
(int) _ dv(|r; —rl) _ (int)
p =y 2l 5
j ‘ j
Here, Fi(ji"t) is the force exerted on particle i by particle j:
ity Ov(lri — 7)) Ti —Tj
F. "W =— = — i — . 3.32
) a'l“i |7°i y| (’T TJ’) ( )
Note that ant) = —F j(iint), otherwise known as Newton’s Third Law. It is convenient to abbreviate
r;; = 7; — r;, in which case we may write the interparticle force as
F‘Z-g-mt) = _TA‘Z] v/ (TZ‘]) . (3.33)

3.2.2 Linear and angular momentum

Consider now the total momentum of the system, P = ). p,. Its rate of change is
F(int)+F(int) -0
-3 p, = Z F ¢ Z Fi™ = F59 (3.34)
e i#j
since the sum over all internal forces cancels as a result of Newton’s Third Law. We write

P=> mg,=MR

M = Zml (total mass) (3.35)
R = M (center-of-mass)
D2 mi
Next, consider the total angular momentum,
L= Zri X p;, = Zmiri X7T, . (3.36)

The rate of change of L is then

‘fi—f = Z {m; x 7+ mgr; x i}

—Zr ><F(ext —i—Zr ><F(Int

i#j (3.37)
Ty E.('."t)zo

= Zri X FZ.(eXt 3 Z T, T ) X F (int) _ Néggt)
i i#]
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Finally, it is useful to establish the result
T=3Y"me?= MR+ 1> m(r,—-R)® | (3.38)

which says that the kinetic energy may be written as a sum of two terms, those being the kinetic energy
of the center-of-mass motion, and the kinetic energy of the particles relative to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

final final final
Oz/dE:/dT+/dU
initial  initial initial (3.39)

:TB—TA—Z/dri~F'i ,
%

which is to say

AT:TB—TA:Z/dri-FZ.:—AU : (3.40)

In other words, the total energy E' = T + U is conserved:

b= Z %mmz + Zv(ri) + Zv(ln - rj|) . (3.41)

i<j
Note that for continuous systems, we replace sums by integrals over a mass distribution, viz.
> omd(r,) — / drp(r) ¢(r) (3.42)
i

where p(r) is the mass density, and ¢(r) is any function.

3.3 Scaling of Solutions for Homogeneous Potentials

3.3.1 Euler’s theorem for homogeneous functions

In certain cases of interest, the potential is a homogeneous function of the coordinates. This means
UAry, .. Ary) =N U (e, ry) (3.43)

Here, k is the degree of homogeneity of U. Familiar examples include gravity,

Ck=-1 (3.44)

U(rl,...,rN) = —GZ
i<j

i =7l

|r
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and the harmonic oscillator,

Uty 10n) =3 Voo Qoo 5 k=42 . (3.45)

The sum of two homogeneous functions is itself homogeneous only if the component functions them-
selves are of the same degree of homogeneity. Homogeneous functions obey a special result known as

Euler’s Theorem, which we now prove. Suppose a multivariable function H(z, ..., z,) is homogeneous:
H\xy, ..., z,) =\ H(xy,. .. z,) (3.46)

Then .
% H(Awl,...,)\xn):Zwig—Z:kH . (3.47)

A=1 =1

3.3.2 Scaled equations of motion

Now suppose the we rescale distances and times, defining

r=ar t=p1t . (3.48)
Then ~ ) -
dri _adri drniadm (3.49)
dt B dt ez p% di?
The force F; is given by
Fi:—gU(rl,...,rN)
”’a ) o (3.50)
= P,y ) =af LR,
a(afi)a U(Fy,...,Ty) = P

where f‘l = OU(7y,...,Ty)/OF;. Thus, Newton’s 2nd Law says

« d277'z k—1 =
2 m; e =a F, (3.51)
If we choose 5 such that
a _ _1
@ = ol = 8= al~3k , (3.52)
then the equation of motion is invariant under the rescaling transformation, i.e.
7~
i — =F; . 3.53
m; = F, (359

This means that if {r,(¢)} is a solution to the equations of motion, then so is {a r;(3t) }. This gives us an

entire one-parameter family of solutions, for all real positive a. with 3 = o~ 2k,
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We see that if r(t) is periodic with period T, then r,(t; @) is periodic with period 7" = o'~ 25 T, Further-
more, if L is a length scale associated with an orbit 7,(¢), such as the distance of closest approach, then
we have the following relation between the ratios of the time and length scales:

/ / 1—%]6
oy (B -

Velocities, energies and angular momenta scale accordingly Thus

L o LT

W=7 = S=7/7=a (3.55)
e ML? E (LY /(TY
[E]="F = F= <Z> /<T> =a* (3.56)
and MI2 || L'\ /T ]
R N Vs 637
As examples, consider:
(i) Harmonic Oscillator : Here k = 2 and therefore
1r(t) — g, (t;0) = g, (1) - (3.58)
Thus, rescaling lengths alone gives another solution.
(ii) Kepler Problem : This is gravity, for which k = —1. Thus,
r(t) — r(t;a) = ar(a_3/2 t) . (3.59)

Thus, r3 « t?, i.e.

N3 I\ 2
9

also known as Kepler’s Third Law.

3.4 Appendix: Curvilinear Orthogonal Coordinates

The standard cartesian coordinates are {z,...,z,}, where d is the dimension of space. Consider a dif-
ferent set of coordinates, {q,, ..., q;}, which are related to the original coordinates z,, via the d equations
AT (3.61)

In general these are nonlinear equations.
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Let € = &, be the Cartesian set of orthonormal unit vectors, and define é, to be the unit vector perpen-
dicular to the surface dg,, = 0. A differential change in position can now be described in both coordinate
systems:

d d
ds =) &) dr; =Y é,h,(q)dg, |, (3.62)

where each h,(g) is an as yet unknown function of all the components ¢,. Finding the coefficient of dg,,
then gives

d
R dzi o &0
h,u(Q) €, = Z 8(]# €; Z pi€i > (3.63)
i=1
where 1 g
L
M (q) = —— 3.64
The dot product of unit vectors in the new coordinate system is then
1 4 Ox; Ox;
é, é,=(MM") =——"— L= (3.65)
. ( )/W hu(Q) hu(Q) Zz_; aqM 8qy
The condition that the new basis be orthonormal is then
Ox; Ox; 2
= O - 3.66
Z aq“ aqy (q) M ( )
This gives us the relation
4/ o\
(@) =D <a ) . (3.67)
im1 N\
Note that
Z n2(q) (dg,)* . (3.68)
For general coordinate systems, which are not necessarlly orthogonal, we have
Z 9y (@) da, dg,, (3.69)

Hv=1

where g,,,(¢) is a real, symmetric, positive definite matrix called the metric tensor.

3.4.1 Example : spherical coordinates

Consider spherical coordinates (p, 8, ¢):

r=psinfcos¢p , y=psinfsing , z=pcosh . (3.70)
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Figure 3.2: Volume element {2 for computing divergences.

It is now a simple matter to derive the results
h%zl ) h§:p2 ) hi:p2SiH29
Thus, K R
ds=pdp+p0df+psintd¢do

3.4.2 Vector calculus : grad, div, curl

Here we restrict our attention to d = 3. The gradient VU of a function U(q) is defined by
ou ou ou

dU = S dg, + <= dgy + < d
oq 4 g2 % dq3 %
=VU-ds
Thus,
i@ e 0 & D

For the divergence, we use the divergence theorem, and we appeal to fig. 15.12:

/dVV-A:/dSﬁ-A ,
2 02

71

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

where (2 is a region of three-dimensional space and 0f2 is its closed two-dimensional boundary. The

LHS of this equation is
LHS =V - A - (hy dq1) (hy dgz) (hy dgs)

(3.76)
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The RHS is
+d +d +dg.
RHS = A, hyhy | dgydgs + Ayhy by | dgydgg + Aghy by | dg, day
o o o (3.77)
= i(141 hyhy) + i(142 hy hy) + i(A?, hy hy) | dg, dgy dgs
oqq 0q2 dq3
We therefore conclude
1 0 0 0
A= —— | — (A hoh —(Ash, h —(Ash, b ) 3.78
v h1h2h3[8q1(1 23)+8q2(2 13)+3q3(3 1 2)} (3.78)
To obtain the curl V x A, we use Stokes’ theorem again,
/dSﬁ-VxA:?{dZ-A , (3.79)
) oy

where Y is a two-dimensional region of space and 90X is its one-dimensional boundary. Now consider a
differential surface element satisfying dg; = 0, i.e. a rectangle of side lengths h, dgq, and h4 dg,;. The LHS
of the above equation is

The RHS is
+d 5 +dg.
RHS = A hy | dgy — Ayhy | dg,
12 s (3.81)
= [i (A3 h3) - i (A2 hz)} dg, dgs,
0q2 0q3
Therefore

(V x A),

1 (8(h3 Az)  O(hy A2)> (3.82)

~ hyhs 92 O3

This is one component of the full result

hl él h2 é2 h3 é3
o) 0 o)
hl Al h2 A2 h3 A3

VxA=

hi ha hs

The Laplacian of a scalar function U is given by

VU=V -VU

SN AN NOUN AT WYY (354
hihahg | Ogpn \ h1 Oq Jga \ ha 0go Oz \ hs Og3 '
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Rectangular coordinates

In rectangular coordinates (z,y, z), we have

Thus
ds=xdr+gdy+ 2dz

and the velocity squared is

2

8% =i? +y? + 27

The gradient is
ou _ou  oU

VU =z — — —
m8$+y8y+z8z

The divergence is
0A, 04, 0A,
VA= Oz * oy + 0z

Ux A— <8Az B %>§3+ (aAm B aAz>g+ <6Ay B an>2

The curl is

dy 0z 0z ox dr Oy
The Laplacian is
0’U  0°U = 0°U

277 _
VU= Ox? +8y2 +822

Cylindrical coordinates

In cylindrical coordinates (p, ¢, z), we have
p==&cosp+ysing , &=pcos¢—dsing , dp=pdo

and
G=—Fsing+gcosd , §g=psing+adcosd , dp=—pde

The metric is given in terms of

hy=1 , hy=p , h.=1

p z

Thus R
ds=pdp+ppdp+ 2dz

and the velocity squared is .
§2 = (2 4 2%+ 22
The gradient is
U G U

73

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
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The divergence is
d(pA, 104, O0A,
- -

_1op4d,) 1
v A_p ap > 00 9% (3.98)
The curl is
_(10A, 04y . 04, 0A.)\ ., 10(pAs) 104, .,
VXA‘(E a«b‘az)”*(W‘ap)"”(E w0 09) - B
The Laplacian is
19 /( oU 1 0°U  9*U
V2U:;a—p<pa—p>+ﬁw+w (3100)

Spherical coordinates

In spherical coordinates (7,0, ¢), we have

7

& sinf cos ¢ + ysinfsin ¢ + 2 sin 6
6 = & cos 0 cos ¢ + § cos fsin ¢ — 2 cos 0 (3.101)
¢=—&sinp+gcosgp

for which
rx0=¢ , Oxodp=7 , Oopxr=60 . (3.102)
The inverse is
& = rsinfcos ¢ + écos@cosqb— qﬁsingb
g =7sinfsing + 0 cosfsind + ¢ cos (3.103)
%2 =1fcos — Osinf
The differential relations are
di = 0 df + sin 0 ¢ do
df = —7df + cos 0 ¢ do (3.104)
dq’; = —(sin&f‘ + Cos@é) do
The metric is given in terms of
h.=1 , hy=r |, h¢:rsin9 . (3.105)
Thus
ds=7dr+0rdf+ ¢rsinfdo (3.106)

and the velocity squared is . .
82 =72 4+ r20% 4 r¥sin%0 . (3.107)
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The gradient is
OU 00U ¢ U
VU_T‘W—I_;W—'—T‘SiHe%

The divergence is

1 0(r4,) 1 O(sind Ap) 1 04,
V'A_r_2 or +rsin9 00 rsinf O0¢
The curl is
. 1 8(Sin9A¢) 8A9 ~ 1 1 8147« a(TA¢) ~
VXA_TSiIlQ( 00 0p " \Sing (0] or 0
1 (0(rdg) O0A, )\ :
A ( or o0 >¢
The Laplacian is

w10 (00N 1 ooy 1 gU
VU_T‘Z ar\" or +7‘28in9 00 sinf 00 +7‘2Sin29 02

Kinetic energy

Note the form of the kinetic energy of a point particle:

2
T= %m(i—j) = %m(wz + 92+ 2"2) (3D Cartesian)
= %m(p'2 + p2¢32) (2D polar)
= %m(p’2 + 02 + 2"2) (3D cylindrical)

m(i"2 +726% + r?sin0 <;52) (3D polar)

N~

75

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)
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Chapter 4

Lagrangian Mechanics

4.1 Snell’s Law

Warm-up problem: You are standing at point (z,, y; ) on the beach and you want to get to a point (z,, y5)
in the water, a few meters offshore. The interface between the beach and the water lies at x = 0. What
path results in the shortest travel time? It is not a straight line! This is because your speed v; on the
sand is greater than your speed v, in the water. The optimal path actually consists of two line segments,
as shown in fig. 4.1. Let the path pass through the point (0,y) on the interface. Then the time 7" is a

function of y:
1 1
T(y) = —\ai+y—v)* + — 25+ (v, —v)* . (4.1)
1 2

To find the minimum time, we set

E:Q:i Y= U _r Y2—Y
dy UL Vat (Y —y)? Y2 Vs o+ (o —y)?
. . (4.2)
_ sinfy  sinfs
N V1 V2
Thus, the optimal path satisfies
sin 91 (%1
== 4.3
sin 92 (%) ’ ( )

which is known as Snell’s Law. Snell’s Law is familiar from optics, where the speed of light in a polariz-
able medium is written v = ¢/n, where n is the index of refraction. Thus n; sinf; = n,sinf,. If there
are several interfaces, Snell’s law holds at each one, so that

sinf, sinf,

(2 7

at the interface between media 7 and 7 + 1.

77
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(‘T-'ll ? 9'1)

=0

Figure 4.1: The shortest path between (z,y;) and (z, y,) is not a straight line, but rather two successive
line segments of different slope.

In the limit where the number of slabs goes to infinity but their thickness is infinitesimal, we can regard
n and 6 as functions of a continuous variable . One then has

sinf(z) sinf(z + dx)

= 4.5
v(x) v(z+dx) (45)
which tells us that i /sing
2 <Sm > -0 . (4.6)
de\ v
On a differential scale, trigonometry tells us that
: dy y
sinf(x) = = ) 4.7)
@ Vi +dy? 1+ y”
and therefore eqn. 4.6 yields
d y/ y// y/2y// U/y/
de <vx/1+y’2> o1y oLy V1R 4.8)
1 " v’ 12N 7 '
= ——(1 =0 .
Thus we arrive at the homogeneous second order nonlinear ODE,
" U/ 12\ 1
y =~y )y =0, (4.9)

This is a differential equation that y(x) must satisfy if the functional

- @ - x2 i /—1+y,2
T[y(z)] _/v —:!d o) (4.10)
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pavement
v = v,

Figure 4.2: The path of shortest length is composed of three line segments. The relation between the
angles at each interface is governed by Snell’s Law.

is to be minimized. The solution of eqn. 4.9 will require two initial conditions, such as y(z,) = y, and
y'(xy) = y(, or perhaps two boundary conditions y(z,) = y, and y(z,) = y; . Indeed from eqn. 4.6 we
can already integrate once, yielding

/

sinf Y _p
v vy/1 +y’2 ’

where P is a constant. Thus, we arrive at a first order ODE, which after isolating y’ may be written as

y_, Pl 4.12)
dx 1 — P2v?(x)

(4.11)

and for which we must supply one initial /boundary condition.

4.2 The Calculus of Variations

4.2.1 Functions and functionals

A function is a mathematical object which takes a real (or complex) variable, or several such variables,
and returns a real (or complex) number. A functional is a mathematical object which takes an entire
function and returns a number. In the case at hand, we have

Tly()] = / deLiy,yz) . (4.13)

where the function L(y, v, z) is given by

L(y,y ) = —=\/1+y? . (4.14)
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(5, 4s)

- y(z) + dy(x)
o y(z)

A

Figure 4.3: A path y(x) and its variation y(x) + dy(z).

Here v(x) is a given function characterizing the medium, and y(z) is the path whose time is to be eval-
uated.

In ordinary calculus, we extremize a function f(z) by demanding that f not change to lowest order
when we change z — x + dz:

fle+dz) = f(x)+ f(x)dz + § f"(z) (dz)* + ... . (4.15)
We say that x = z* is an extremum when f’(z*) = 0.

For a functional, the first functional variation is obtained by sending y(z) — y(x) + 0y(z), and extracting
the variation in the functional to order éy. Thus, we compute

z2

T[y(z) + dy(z)] = /dw L(y + 6y,y + 0y, x)

/d:p{ +—5y+%5y —|—(9((5y)2)}
o (4.16)
= T[y(a:)] +/dx {g—ly;dy—k g;, %dy}

1

o [t 4 (3

x1

Tg

1

Now one very important thing about the variation dy(x) is that it must vanish at the endpoints: dy(z;) =
dy(z,) = 0. This is because the space of functions under consideration satisfy fixed boundary conditions
y(x;) = y; and y(x4) = y,. Thus, the last term in the above equation vanishes, and we have

T Tor oL
6T:/d [a—y——<ay>]5y . (4.17)

1
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We say that the first functional derivative of 7" with respect to y(x) is

oL d (0L
() @‘ﬂ@)] 19

where the subscript indicates that the expression inside the square brackets is to be evaluated at z.
The functional T'[y(z)] is extremized when its first functional derivative vanishes, which results in a

differential equation for y(x),
oL d (0L
— (=) = 4.1
5 ay) =0 1)

oT

known as the Euler-Lagrange equation.

L(y,y',x) independent of y

Suppose L(y, ', z) is independent of y. Then from the Euler-Lagrange equations we have that

p= 2—5 (4.20)

is a constant. In classical mechanics, this will turn out to be a generalized momentum. For L = v I/1 + 2

we have )

Y
P=——= (4.21)
vV/1+y?
Setting dP/dx = 0, we recover the second order ODE of eqn. 4.9. Solving for y/,
dy _ i% 7 (4.22)
TN )

where v, = 1/P.

L(y,y',x) independent of z

When L(y,y', ) is independent of =, we can again integrate the Euler-Lagrange equation. Consider the
quantity

H=y 2= -L . (4.23)

Then
aH _ d

,8L_L _ ,,a_L ,d (OL oL , 0L , OL
dzx dzx

Vo M Ve a\ay) "o T e e
d (0L\ OL] OL L (#24)

N O e W I G R o
_y[dx<8y’> 8y} ox oz’

where we have used the Euler-Lagrange equations to write % (g—yL,) = g—i. So if 0L/0x = 0, we have
dH/dz = 0, i.e. H is a constant.
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4.2.2 Functional Taylor series
In general, we may expand a functional F'ly + 0y] in a functional Taylor series,
Fly-+ 3] = Flol + [doy KaCe)8ytay) + 3 [ day [y Koyl ) By(o) o)
(4.25)
+ %/d%/dwz/diﬂs Ks(wy, 79, 3) 0y (1) 0y(29) 0y(23) +

and we write
onF

oy (@) - - oy(w,)

K, (z,...,1,) (4.26)

th

for the n*" functional derivative.

4.2.3 Examples

Here we present three useful examples of variational calculus as applied to problems in mathematics
and physics.

Example 1 : minimal surface of revolution

Consider a surface formed by rotating the function y(z) about the z-axis. The area is then

/dm 2my 4|1 + (4.27)

and is a functional of the curve y(z). Thus we can define L(y,') = 2ry+/1 + 3’*> and make the identifi-
cation y(z) <> ¢(t). Since L(y,y’, x) is independent of z, we have

, OL dH oL

and when L has no explicit x—dependence, H is conserved. One finds

12

y 2 2my
H=2ry —— —2my\/1+y“=—— . (4.29)
/1 + y/2 /1 + yl2

Solving for v/,

dy 2my 2

—=3/—-) -1 4.30

o ( a ) , (430)
which may be integrated with the substitution y = 4 cosh u, yielding

y(z) =b (:osh<3j ; a) ) (4.31)
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1 —

~08F __—

L -

50.6:—

%0.4_—

5 .

702 F
O:ll|||||||||||||||||||||:
1.4 1.6 1.8 2 2.2 2.4 2.6

Yo/ Xq

Figure 4.4: Minimal surface solution, with y(x) = bcosh(x/b) and y(zo) = yo. Top panel: A/2my3 vs.
yo/xo. The discontinuous configuration is shown by the dashed black line. Bottom panel: sech(zo/b)
vs. yo/xo. The blue curve corresponds to a global minimum of Afy(x)], and the red curve to a local
minimum or saddle point.

where a and b = £ are constants of integration. Note there are two such constants, as the original

equation was second order. This shape is called a catenary. As we shall later find, it is also the shape
of a uniformly dense rope hanging between two supports, under the influence of gravity. To fix the
constants a and b, we invoke the boundary conditions y(z,) = y; and y(z5) = ys.

Consider the case where —z; = z, = 2y and y; = y5 = y,. Then clearly a = 0, and we have
Yo = b cosh (%) = ~y=rtcoshk |, (4.32)

with v = y,/z, and k = z,/b. One finds that for any v > 1.5089 there are two solutions, one of which
is a global minimum and one of which is a local minimum or saddle of A[y(z)]. The solution with the
smaller value of « (i.e. the larger value of sech ) yields the smaller value of A, as shown in fig. 4.4. Note

that h(z/b)
y  cosh(z
Lz =—"= 4.33
yo  cosh(zg/b) (4.33)

so y(x = 0) = ygsech(zy/b).
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When extremizing functions that are defined over a finite or semi-infinite interval, one must take care
to evaluate the function at the boundary, for it may be that the boundary yields a global extremum
even though the derivative may not vanish there. Similarly, when extremizing functionals, one must
investigate the functions at the boundary of function space. In this case, such a function would be the
discontinuous solution, with
y, ifr=ux
y(x) =40 ifz, <z <y (4.34)
Yy if x =2,

This solution corresponds to a surface consisting of two discs of radii y; and ys,, joined by an infinitesi-
mally thin thread. The area functional evaluated for this particular y(z) is clearly A = 7(y? + y3). In fig.
4.4, we plot A/2my? versus the parameter v = y,/x,. For v > 7. ~ 1.564, one of the catenary solutions is
the global minimum. For v < ., the minimum area is achieved by the discontinuous solution.

Note that the functional derivative,

Sy(x) Oy dx

6A 0L d [OL o (1 + 42 — yy”

K (z) = (1+ y/2)3/2

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous solution, where
K, (z) = 2m throughout the interval (—z, z;). Since y = 0 on this interval, y cannot be decreased. The
fact that K (z) > 0 means that increasing y will result in an increase in A, so the boundary value for A4,
which is 2792, is indeed a local minimum.

We furthermore see in fig. 4.4 that for v < 7, ~ 1.5089 the local minimum and saddle are no longer
present. This is the familiar saddle-node bifurcation, here in function space. Thus, for v € [0,~.) there
are no extrema of A[y(z)], and the minimum area occurs for the discontinuous y(z) lying at the boundary
of function space. For v € (74,7c), two extrema exist, one of which is a local minimum and the other
a saddle point. Still, the area is minimized for the discontinuous solution. For v € (v, o0), the local
minimum is the global minimum, and has smaller area than for the discontinuous solution.

Example 2 : geodesic on a surface of revolution

We use cylindrical coordinates (p, ¢, z) on the surface z = z(p). Thus,
ds® = dp* + p* d¢? + da®

4.36
:{1+ [Z,(p)]z}dp—i-pzd(bz , (1.36)

and the distance functional D[¢(p)] is

p2

waﬂz/@Lwdm>, (4.37)

P1

where

L($, ¢, p) = \/1+22(0) + 2 92(p) - (439
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The Euler-Lagrange equation is

oL d (0L oL
8_¢ — d_p <8—¢’> =0 = 8—<z5’ = const. (4.39)
Thus,
aL - p2 ¢/

(4.40)

a_(ﬁ,_ /1+Z/2+p2¢/2-:a )

where a is a constant. Solving for ¢, we obtain

/ 2
dp = -V L+ [#)] dp (4.41)

Py p?—a?

which we must integrate to find ¢(p), subject to boundary conditions ¢(p;) = ¢;, withi =1, 2.
On a cone, z(p) = Ap, and we have

2

db—avVizn—P  _ Txdtan—ty/2 1 (4.42)

p\/p? —a? a’
which yields
(p) =B+ V1+ A2 tan ! Z—z -1, (4.43)
which is equivalent to
p COoS < Q;;ﬁ)@) =a . (4.44)

The constants /5 and a are determined from ¢(p;) = ¢;.

Example 3 : brachistochrone

Problem: find the path between (z,,y,) and (z,,y,) which a particle sliding frictionlessly and under
constant gravitational acceleration will traverse in the shortest time. To solve this we first must invoke
some elementary mechanics. Assuming the particle is released from (z,,y, ) at rest, energy conservation
says

%mfu2 +mgy = mgy; . (4.45)

Then the time, which is a functional of the curve y(z), is

2

T2 T2
ds 1 [1 42
T[l/(m)] == /dmL(y,y’,x) :/7 = \/—2—g/d$ y _yy : (4.46)
1
1 1

z1

with
1+ y?

29(y; —v) ®47)

L(y,y' x) =
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Since L is independent of x, eqn. 4.24, we have that

oL 9 1—1/2

_ %Y . /

H=y 5L [29 -y (1+y )] (4.48)
is conserved. This yields
Y17Y

dv = — | —1 =Y g 4.49
z Sy (4.49)

with a = (4gH?)~1. This may be integrated parametrically, writing
Yy, — Y =2a sin2(%0) = dr=2a sinz(%e) do | (4.50)

which results in the parametric equations

T — 1 :a(G—sinH)
(4.51)
y—y; =—a(l—cosb)

This curve is known as a cycloid.

4.2.4 QOcean waves

Surface waves in fluids propagate with a definite relation between their angular frequency w and their
wavevector k = 27/\, where X is the wavelength. The dispersion relation is a function w = w(k). The
group velocity of the waves is then v(k) = dw/dk.

In a fluid with a flat bottom at depth h, the dispersion relation turns out to be

Vghk shallow (kh < 1)
w(k) = /gk tanh kh ~ (4.52)

Vgk  deep (kh > 1)

Suppose we are in the shallow case, where the wavelength ) is significantly greater than the depth h
of the fluid. This is the case for ocean waves which break at the shore. The phase velocity and group
velocity are then identical, and equal to v(h) = v/gh. The waves propagate more slowly as they approach
the shore.

Let us choose the following coordinate system: z represents the distance parallel to the shoreline, y the
distance perpendicular to the shore (which lies at y = 0), and h(y) is the depth profile of the bottom. We
assume h(y) to be a slowly varying function of y which satisfies h(0) = 0. Suppose a disturbance in the
ocean at position (z,, y,) propagates until it reaches the shore at (x,,y; = 0). The time of propagation is

_ [ds 7 1+y?



4.2. THE CALCULUS OF VARIATIONS 87

increasing h ——»

Figure 4.5: For shallow water waves, v = /gh. To minimize the propagation time from a source to the
shore, the waves break parallel to the shoreline.

We thus identify the integrand
1+y”
9h(y)

As with the brachistochrone problem, to which this bears an obvious resemblance, L is cyclic in the
independent variable x, hence

L(y,y',x) = (4.54)

, 0L

oL on]—1/2
H=y oy L= [g h(y) (14y )] (4.55)
is constant. Solving for y/(z), we have
dy a

where a = (gH) ™! is a constant, and where @ is the local slope of the function y(z). Thus, we conclude
that near y = 0, where h(y) — 0, the waves come in parallel to the shoreline. If h(y) = ay has a linear
profile, the solution is again a cycloid, with

x(0) =b(0 —sin6) , y(0) =b(1 —cosb) (4.57)

where b = 2a/a and where the shore lies at § = 0. Expanding in a Taylor series in 6 for small §, we may
eliminate 0 and obtain y(z) as

y(x) = (%)1/3 L3234 (4.58)

A tsunami is a shallow water wave that propagates in deep water. This requires A > h, as we've seen,
which means the disturbance must have a very long spatial extent out in the open ocean, where h ~
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10km. An undersea earthquake is the only possible source; the characteristic length of earthquake fault
lines can be hundreds of kilometers. If we take h = 10 km, we obtain v = v/gh ~ 310m/s or 1100 km /hr.
At these speeds, a tsunami can cross the Pacific Ocean in less than a day.

As the wave approaches the shore, it must slow down, since v = /gh is diminishing. But energy is
conserved, which means that the amplitude must concomitantly rise. In extreme cases, the water level
rise at shore may be 20 meters or more.

4.2.5 More on functionals

We remarked in section 4.2.1 that a function f is an animal which gets fed a real number = and excretes
areal number f(z). We say f maps the reals to the reals, or f: R — R. Of course we also have functions
g: C — C which eat and excrete complex numbers, multivariable functions h: RY — R which eat
N-tuples of numbers and excrete a single number, etc.

A functional F[f(x)] eats entire functions (!) and excretes numbers. That is,
F {f(:n) EX: R} ~R (4.59)

We may write F': C(R) — R, where C(R) is the space of continuous functions'. This says that I operates
on the set of real-valued functions of a single real variable, yielding a real number. Some examples:

Flf() = L / dz [ ()]’

Flf(@) =} [ do [do' K(o.o!) f(@) ) (4.60)
o 2
Fli@) =} [de | A7) + B (j—f)]

—0o0
In classical mechanics, the action S is a functional of the path ¢(?):

23

Sla(®) = [at {mé?* - U@)} . (4.61)

t

a

We can also have functionals which feed on functions of more than one independent variable, such as

st - forfoe 120 -1:(22)) e

ta

!The notation C*°(R) indicates the space of continuous smooth (i.e. infinitely differentiable) real functions of a real variable.
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glt)

Figure 4.6: A functional S[¢(t)] is the continuum limit of a function of a large number of variables,
S(ar, - - am)-

which happens to be the functional for a string of mass density ; under uniform tension 7. Another
example comes from electrodynamics:

S[AH(z, )] /dt/d3 {—FWF + j A”} , (4.63)

which is a functional of the four fields { A%, A, A%, A3}, where A = c¢. These are the components of the

4-potential, each of which is itself a function of four independent variables (z°, !, 22, 23), with 2° = ct.

The field strength tensor is written in terms of derivatives of the A*: F},, = 0,,A,, — 0, A,,, where we use
a metric g, = diag(+, —, —, —) to raise and lower indices. The 4-potential couples linearly to the source
term J,, which is the electric 4-current (cp, J).

We extremize functions by sending the independent variable x to  + dz and demanding that the varia-
tion df = 0 to first order in dz. That is,

fla+de) = f(z) + f'(x) de + 5 f"(@)(de)? + ..., (4.64)
whence df = f'(z) dz + O((dz)?) and thus

fl(x*) =0 <= 2* an extremum. (4.65)

We extremize functionals by sending
f(@) = f(2) + of (z) (4.66)
and demanding that the variation 0F in the functional F[f(z)] vanish to first order in § f(x). The vari-

ation 0 f(z) must sometimes satisfy certain boundary conditions. For example, if F'[f(x)] only operates
on functions which vanish at a pair of endpoints, i.e. f(z4) = f(x;) = 0, then when we extremize the
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functional F' we must do so within the space of allowed functions. Thus, we would in this case require
df(xq) = 0f(x;,) = 0. We may expand the functional F'[f + ¢ f] in a functional Taylor series,

FIf +6f] = F[f] + /dxl Ky(@)8f(2) + & /dxl/dw2 Ky (g, 29) 8 (1) 5f (1)

(4.67)
b [doy [do [doy Ky, ) 85(0,) 56 (23) 31 () +

and we write
o"F

6f (1) 0f(xn)

In a more general case, F' = F [{ fi(x)}] is a functional of several functions, each of which is a function
of several independent variables’. We then write

FI{f, + 61} = FILAY + / oy Kj (@) 6F,(w)) + 5 [ doy [ damy K5 (@1, ,) @) 81, (@)

K, (x,...,x,) (4.68)

1 - (4.69)
+ g/dml/dm2/dm3 Ké (@1, @y, ®3) 0 f;(2) 0f;(®) O fp(@3) + .00,
with s
K2 "y, @y, . @) = . (4.70)
Another way to compute functional derivatives is to send
f(@) = fx)+ed(x—xy)+... +€,0(x—2x,) 4.71)
and then differentiate n times with respect to ¢, through ¢,. That is,
3w o"
= Flf(x)+ed(x—z)+...+ 6,0z —mz,)] . 4.72)
5f(:1:1) R 6f($n) 661 R aEn 51:62:"'6n:0

Let’s see how this works. As an example, we’ll take the action functional from classical mechanics,

tb
_ /dt{%qu—U(q)} . (4.73)
12

To compute the first functional derivative, we replace the function ¢(t) with ¢(¢) +¢€d(t —¢1), and expand
in powers of e:

by

S[alt) + (¢ — t0)] = Sla@)) + ¢ [t {mi (¢ — 1) - U'(q) 8t 1)}

= —¢ {mij(t1;+ U/(Q(tl))} )

’It may be also be that different functions depend on a different number of independent variables. FE.g. F =

Flf(2), g(z,y), h(z,y,2)]-

(4.74)
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hence 55
—— = —ymq(t "(q(t 4.7
Son) =~ Lmi() + U'(a(0) } (4.75)
and setting the first functional derivative to zero yields Newton’s Second Law, m§ = —U’(q), for all
t € [t,,t,]. Note that we have used the result

/dt §(t—t1)h(t) = -h(t1) , (4.76)

which is easily established upon integration by parts.
To compute the second functional derivative, we replace
q(t) = q(t) + € 0(t —t1) + e 6(t —t2) 4.77)

and extract the term of order ¢; €3 in the double Taylor expansion. One finds this term to be

t

€, €9 /dt {m §(t—t1)8(t—t2) —U"(q)0(t —t1)6(t — tg)} . (4.78)

t

a

Note that we needn’t bother with terms proportional to €2 or €3 since the recipe is to differentiate once
with respect to each of ¢; and ¢, and then to set ¢; = ¢, = 0. This procedure uniquely selects the term
proportional to ¢, €,, and yields

528

52 30 _ —{m5”(751 —to) + U" (g(t1)) 6(t1 — tg)} . (4.79)

In multivariable calculus, the stability of an extremum is assessed by computing the matrix of second
derivatives at the extremal point, known as the Hessian matrix. One has

of O*f
The eigenvalues of the Hessian H;; determine the stability of the extremum. Since H;; is a symmetric

matrix, its eigenvectors n“ may be chosen to be orthogonal. The associated eigenvalues )\, defined by
the equation

=0 Vi N Hij = (480)

x* x*

Hij 77]0‘[ = )‘a 77? ) (4.81)
are the respective curvatures in the directions n®, where a € {1,...,n} where n is the number of vari-
ables. The extremum is a local minimum if all the eigenvalues )\, are positive, a maximum if all are

negative, and otherwise is a saddle point. Near a saddle point, there are some directions in which the
function increases and some in which it decreases.

In the case of functionals, the second functional derivative K> (z,, z,) defines an eigenvalue problem for
Sf (x):

Ty

/daz2 Koy, 2) 6f(2q) = A3f(x,) . 4.82)

Tq



92 CHAPTER 4. LAGRANGIAN MECHANICS

In general there are an infinite number of solutions to this equation which form a basis in function space,

subject to appropriate boundary conditions at z, and z,. For example, in the case of the action functional
from classical mechanics, the above eigenvalue equation becomes a differential equation,

d2
- {m@ +U"(q*(t)) } dq(t) = Xoq(t) (4.83)

where ¢*(t) is the solution to the Euler-Lagrange equations. As with the case of ordinary multivariable
functions, the functional extremum is a local minimum (in function space) if every eigenvalue )\, is
positive, a local maximum if every eigenvalue is negative, and a saddle point otherwise.

Consider the simple harmonic oscillator, for which U(q) = 3 mw3 ¢*>. Then U” (¢*(t)) = mw}; note that
we don’t even need to know the solution ¢*(¢) to obtain the second functional derivative in this special
case. The eigenvectors obey m (3G + wg dg) = —\ §q, hence

dq(t) = Acos (\/wg + (N/m)t+ cp) , (4.84)
where A and ¢ are constants. Demanding dq(t,) = dq(t,) = 0 requires
wg + (A/m) (t, —t,) =nm | (4.85)

where n is an integer. Thus, the eigenfunctions are

dq,,(t) = Asin <n7r Il > , (4.86)
t, — t,

and the eigenvalues are
nm\ 2 9
Ap = m(?> —mwy (4.87)

where T' = t, — t,. Thus, so long as T' > 7/w, there is at least one negative eigenvalue. Indeed, for

e <T< ("I—l)” there will be n negative eigenvalues. This means the action is generally not a minimum,

but rather lies at a saddle point in the (infinite-dimensional) function space.

To test this explicitly, consider a harmonic oscillator with the boundary conditions ¢(0) = 0 and ¢(T") =
Q. The equations of motion, ¢ + w% g = 0, along with the boundary conditions, determine the motion,

(1) = Q Sin(wot)

7l sin(wyT) (459
The action for this path is then
T
Sla" () = [ at (3mi ~ dmaf ?)
0 (4.89)

2 )2

muw

= me @ /dt <coszw0t - sin2w0t> = imuw, Q? ctn (w,T)
2 sinszT

0
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Next consider the path ¢(t) = Qt/T which satisfies the boundary conditions but does not satisfy the
equations of motion (it proceeds with constant velocity). One finds the action for this path is

Sla(®)] = smw, Q? (LT — %wOT> . (4.90)

Wo

Thus, provided w,T" # n, in the limit 7" — oo we find that the constant velocity path has lower action.

Finally, consider the general mechanical action,

= / dtL(q,q,t) . (4.91)

We now evaluate the first few terms in the functional Taylor series:

L oL oL
S[ t) + dq(t) /dt{ q*,q*,t) 8(] c5qZ 90 0q;
@ 4.92)
1 aZL 2 2
1 5q: 64 0005+ 5 5o 5“5
T2 940q| *1°Y T ag 04| 40U T3 agag | C40U T }
q*

To identify the functional derivatives, we integrate by parts. Let ® (¢) be an arbitrary function of time.

Then
t t

b b

/ dt ;(t) 83 (¢) / dt (1) 6¢;(t) (4.93)
t, t,
and
tb
d
[t 5(e) e 850 / dt / A iy (1) (¢ — 1) 5 6a5(0) 345 (1)
fa (4.94)
b b
= [at [t @000 3¢ - ) date) s
and
tb tb
. . d d
[t dite) s ) = [ar [ @061 5(¢ ) 5 5 0it) )
a ta t(L
(4.95)

b b

—— [arfa [%(t) 5t~ 1) + Byy(1) 8 (t — )| dai(t) by (¢)

ta t(L



94 CHAPTER 4. LAGRANGIAN MECHANICS

Thus, the first two functional derivatives are given by

08 oL d (0L
_|9L _d (oL 4,
dqi(t) [aQi dt (3%)] (456
q*(t)
and
2 2 2
= o] Sty =g S 1)
0qi(t)og;(t) | 94i 0g5 ., 06 945 | .

q q (4.97)

PL  d[ L L
+ [2 aqi Z?qj - % <8q, aq]>] is(t()t —t )
q

4.3 Lagrangian Mechanics

4.3.1 Generalized coordinates

A set of generalized coordinates q, . .., q, completely describes the positions of all particles in a mechani-
cal system. In a system with d; degrees of freedom and k constraints, n = d; —k independent generalized
coordinates are needed to completely specify all the positions. A constraint is a relation among coordi-
nates, such as 22 4+ y* + 22 = a? for a particle moving on a sphere of radius a. In this case, d; = 3 and
k = 1. In this case, we could eliminate z in favor of z and y, i.e. by writing z = £+/a? — 22 — y2, or we
could choose as coordinates the polar and azimuthal angles 6 and ¢.

For the moment we will assume that n = d; — k, and that the generalized coordinates are independent,
satisfying no additional constraints among them. Later on we will learn how to deal with any remaining
constraints among the {Q17 RN qn}.

The generalized coordinates may have units of length, or angle, or perhaps something totally different.
In the theory of small oscillations, the normal coordinates are conventionally chosen to have units of
(mass)'/2? x (length). However, once a choice of generalized coordinate is made, with a concomitant set
of units, the units of the conjugate momentum and force are determined:

ML? 1 ML? 1
[p]:T’m ) [FU]ZTQ'm7

(4.98)

where [A] means ‘the units of A’, and where M, L, and T stand for mass, length, and time, respectively.
Thus, if ¢, has dimensions of length, then p, has dimensions of momentum and F, has dimensions
of force. If ¢, is dimensionless, as is the case for an angle, p, has dimensions of angular momentum
(ML?/T) and F, has dimensions of torque (M L?/T?).
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4.3.2 Hamilton’s principle

The equations of motion of classical mechanics are embodied in a variational principle, called Hamilton's
principle. Hamilton’s principle states that the motion of a system is such that the action functional

to

Sfat] = [dLig.d.1 (4.99)
t1
is an extremum, i.e. 6S = 0. Here, ¢ = {q;,...,¢,} is a complete set of generalized coordinates for our
mechanical system, and
L=T-U (4.100)

is the Lagrangian, where T is the kinetic energy and U is the potential energy. Setting the first variation
of the action to zero gives the Euler-Lagrange equations,

momentum ps  force F,

47 oL oL
a(%) = (410D

Thus, we have the familiar p, = F,, also known as Newton’s second law. Note, however, that the {¢,}
are generalized coordinates, so p, may not have dimensions of momentum, nor F;, of force. For example,
if the generalized coordinate in question is an angle ¢, then the corresponding generalized momentum
is the angular momentum about the axis of ¢’s rotation, and the generalized force is the torque.

4.3.3 Invariance of the equations of motion

Suppose

L@QQZL@@0+%G@Q : (4.102)
Then i
Slq(t)] = Slq(t)] + Glap, ) — G(qa,ta) - (4.103)

Since the difference S—Sisa function only of the endpoint values {q,, ¢, }, their variations are identical:
05 = 6S. This means that L and L result in the same equations of motion. Thus, the equations of motion
are invariant under a shift of L by a total time derivative of a function of coordinates and time.

4.3.4 Remarks on the order of the equations of motion

The equations of motion are second order in time. This follows from the fact that L = L(q, ¢,t). Using
the chain rule,

2 2 2
d(@L) 0L oL . 0°L (4.104)

a 8—% B aq.cr aq.d Qo' 8@0 8(10’ Gor aq.cr ot

That the equations are second order in time can be regarded as an empirical fact. It follows, as we have
just seen, from the fact that L depends on g and on ¢, but on no higher time derivative terms. Suppose
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the Lagrangian did depend on the generalized accelerations ¢ as well. What would the equations of
motion look like? Taking the variation of S,

tb
- oL OL .. d (0L b
5/dtL(q>q7q7t) - |:a—qo_ 5% + a—q.g 5% - a(a—qo> 5QO’:|t
t
ty,
/dt oL _d (oL d (or)],
9q,  dt\dd, ) " a2\ dg, ) [P
t(L

The boundary term vanishes if we require dq,(t,) = ¢ (t,) = 045 (t,) = 64s(t,) = 0V 0. The equations
of motion would then be fourth order in time.

(4.105)

4.3.5 Lagrangian for a free particle

For a free particle, we can use Cartesian coordinates for each particle as our system of generalized
coordinates. For a single particle, the Lagrangian L(x,v,t) must be a function solely of »?. This is
because homogeneity with respect to space and time preclude any dependence of L on « or on ¢, and
isotropy of space means L must depend on v?. We next invoke Galilean relativity, which says that
the equations of motion are invariant under transformation to a reference frame moving with constant
velocity. Let V' be the velocity of the new reference frame K’ relative to our initial reference frame K.
Then ' = ¢ — Vt,and v = v — V. In order that the equations of motion be invariant under the change

in reference frame, we demand

L'(v') = L(v) + di G(x,t) . (4.106)
The only possibility is L = 2mwv?, where the constant m is the mass of the particle. Note:
d aG
r_ 1 . 2 _ 1 2, 2% (1 24 . -
L'={m(o— V)’ = fmo® + = (ZmV t—mV m) L+— . (4.107)
For N interacting particles,
al dx
L=1%"m, ( “) — U({ma} {#a}) . (4.108)
a=1

Here, U is the potential energy. Generally, U is of the form

U= ZU1 (@) + > v(Ta — Tr) (4.109)

a<a’

however, as we shall see, velocity-dependent potentials appear in the case of charged particles interact-
ing with electromagnetic fields. In general, though,

L=T-U |, (4.110)

where T'is the kinetic energy, and U is the potential energy.
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4.3.6 Conserved quantities

A conserved quantity A(q, ¢,t) is one which does not vary throughout the motion of the system. This

means
dA

=0 . 4.111
o (4.111)

a=q(t)
We shall discuss conserved quantities in detail in the chapter on Noether’s Theorem, which follows.

Momentum conservation

The simplest case of a conserved quantity occurs when the Lagrangian does not explicitly depend on
one or more of the generalized coordinates, i.e. when

L
F, = oL _ 0 . (4.112)
945
We then say that L is cyclic in the coordinate ¢,. In this case, the Euler-Lagrange equations p, = F,, say

that the conjugate momentum p, is conserved. Consider, for example, the motion of a particle of mass
m near the surface of the earth. Let (z, y) be coordinates parallel to the surface and z the height. We then
have

T = $m(i® + 4% + 2°)
U =mgz (4.113)
L=T-U= %m($2+y'2+22) —mgz

Since oL oL
F,=—=0 d F,=—=0 4114
L= =0 ad B=30=0 (4114)
we have that p, and p, are conserved, with
oL . oL .
Dy = %= mi ., p, = a_y =my . (4.115)
These first order equations can be integrated to yield
Dz Dy
t)=x(0) +—1 t)=y0)+—=1t . 4.116
o) = 2(0) + 20, y() = y(0) + 2 (@.116)
The z equation is of course
p,=mi=-mg=F, |, (4.117)
with solution
2(t) = 2(0) + 2(0) t — 1gt* . (4.118)

As another example, consider a particle moving in the (z,y) plane under the influence of a potential

U(z,y) = U(y/2? + y?) which depends only on the particle’s distance from the origin p = /22 + y2.
The Lagrangian, expressed in two-dimensional polar coordinates (p, ¢), is

L=13m(p*+p*¢*) -~ U(p) . (4.119)
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We see that L is cyclic in the angle ¢, hence

_ 24 4120
29 mp¢ ( )

Dy

is conserved. p, is the angular momentum of the particle about the 2z axis. In the language of the
calculus of variations, momentum conservation is what follows when the integrand of a functional is
independent of the independent variable.

Energy conservation

When the integrand of a functional is independent of the dependent variable, another conservation law
follows. For Lagrangian mechanics, consider the expression

n
H(q,4,t) = psdo—L - (4.121)
o=1

Now we take the total time derivative of H:

n

dH oL oL oL

ad ooy o oL oL 0L 4122

- Uzz:l {po Go Py = 5= 5 qo} o (4.122)
We evaluate H along the motion of the system, which entails that the terms in the curly brackets above
cancel for each o

oL oL
— ) = 4.123
Pe=5a.  Pr= aa ( )
Thus, we find
dH oL
— = 4.124
dt ot ( )

which means that H is conserved whenever the Lagrangian contains no explicit time dependence. For a
Lagrangian of the form

L=Y gmgia—Ulr,....,ry) (4.125)

we have that p, = m, 7., and

H=T+U=> tml+U(ry,...,ry) . (4.126)
a
However, it is not always the case that H =T + U is the total energy, as we shall further on below.

4.3.7 Choosing generalized coordinates

Any choice of generalized coordinates will yield an equivalent set of equations of motion. However,
some choices result in an apparently simpler set than others. This is often true with respect to the form
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of the potential energy. Additionally, certain constraints that may be present are more amenable to
treatment using a particular set of generalized coordinates.

The kinetic energy T is always simple to write in Cartesian coordinates, and it is good practice, at
least when one is first learning the method, to write 7" in Cartesian coordinates and then convert to
generalized coordinates. In Cartesian coordinates, the kinetic energy of a single particle of mass m is

T=3m(#®+9*+2%) . (4.127)

If the motion is two-dimensional, and confined to the plane z = const., one of course has 7' = %m (m’z +
7).

Two other commonly used coordinate systems are the cylindrical and spherical systems. In cylindrical
coordinates (p, ¢, z), p is the radial coordinate in the (z,y) plane and ¢ is the azimuthal angle:

r=pcos¢ , y=psing |, j:zcosqbp'—psinqﬁg{b y:sin¢p+pcos¢¢3 , (4.128)
and the third, orthogonal coordinate is of course z. The kinetic energy is
T=13m @ +?+3%) =im (P +p°¢*+2%) . (4.129)

When the motion is confined to a plane with z = const., this coordinate system is often referred to as
‘two-dimensional polar’ coordinates.

In spherical coordinates (r, 6, ¢), r is the radius, 6 is the polar angle, and ¢ is the azimuthal angle. On
the globe, # would be the ‘colatitude’, which is § = 7= where )\ is the latitude. Le. 8 = 0 at the north
pole. In spherical polar coordinates,

x =r sinf cos ¢ & =sinf cosdr +r cosb cosgf —r sinfsing ¢ (4.130)
y=r sinf sin¢o § =sinf sind 7+ r cosf sing 6 + r sin 6 cos ¢ ¢ (4.131)
z=1rcost Z=cosOr—rsinhl . (4.132)

The kinetic energy is

T= %m (j:2 + 92 + 22) = %m (732 +1r26% 4+ r? sin%0 ¢2) . (4.133)

4.4 How to Solve Mechanics Problems

Here are some simple steps you can follow toward obtaining the equations of motion:

1. Choose a set of generalized coordinates {q,, ..., q,}-

2. Find the kinetic energy T'(¢, g, t), the potential energy U(q, t), and the Lagrangian L(q, ¢,t) = T—U.
It is often helpful to first write the kinetic energy in Cartesian coordinates for each particle before
converting to generalized coordinates.

3. Find the canonical momenta p, = 2£ and the generalized forces F, =

oL
a4, dq, *
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4. Identify any conserved quantities (more about this later).

5. Evaluate the time derivatives p, and write the equations of motion p, = F|,. Be careful to differ-
entiate properly, using the chain rule and the Leibniz rule where appropriate.

6. Integrate the equations of motion to obtain {q,(t)} (easier said than done).

We not consider several examples:

44.1 One-dimensional motion

For a one-dimensional mechanical system with potential energy U (z),

L=T-U=1imi*-Ulz) . (4.134)
The canonical momentum is oL
oz
and the equation of motion is
d (0L oL . /
(=) == = — 41
g <8w> e = mi Ulx) , (4.136)

which is of course F' = ma.
Note that we can multiply the equation of motion by & to get

0= {mx + U’(ac)} - %{%mﬁc? + U(x)} - Z—f , (4.137)

where E =T + U.

44.2 Central force in two dimensions

Consider next a particle of mass m moving in two dimensions under the influence of a potential U(p)
which is a function of the distance from the origin p = /22 + y2. Clearly cylindrical (2d polar) coordi-
nates are called for:

L=1im(p*+p*¢*) —U(p) . (4.138)

The equations of motion are

d (0 0 .
i(55) =5 = mi=med-U)

“N08/ B (4.139)
d (0L\ 0L d, 5. '
ils) =% = atwd=o



4.4. HOW TO SOLVE MECHANICS PROBLEMS 101

m

M

Figure 4.7: A wedge of mass M and opening angle « slides frictionlessly along a horizontal surface,
while a small object of mass m slides frictionlessly along the wedge.

Note that the canonical momentum conjugate to ¢, which is to say the angular momentum, is conserved:
Py = mp? ¢ = const. (4.140)

We can use this to eliminate ¢ from the first Euler-Lagrange equation, obtaining

mp=—"o—-U'(p) . (4.141)
We can also write the total energy as

E=3m(p°+p° %) + Ulp)

2 4.142)
P (

1, -2 ¢

= smp° + Smp? +U(p)

from which it may be shown that F is also a constant:

dE . D .
== (mp - m—zg + U’(p)) p=0 . (4.143)

We shall discuss this case in much greater detail in the coming weeks.

4.4.3 A sliding point mass on a sliding wedge

Consider the situation depicted in fig. 4.7, in which a point object of mass m slides frictionlessly along a
wedge of opening angle a. The wedge itself slides frictionlessly along a horizontal surface, and its mass
is M. We choose as generalized coordinates the horizontal position X of the left corner of the wedge,
and the horizontal distance x from the left corner to the sliding point mass. The vertical coordinate of
the sliding mass is then y = x tan a, where the horizontal surface lies at y = 0. With these generalized
coordinates, the kinetic energy is

T=iMX*+1im (X +2)+ Imy®

. . 4.144
= (M +m)X* + mXi + $m (1 + tan’a) 2 ( )
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k
y=01" 86088

(z1,91)

Figure 4.8: The spring—pendulum system.

The potential energy is simply
U=mgy =mgz tan«

Thus, the Lagrangian is
L=YM+m)X?+mXz+im (1 +tan’a)i® — mgz tana
and the equations of motion are

d [ OL oL - ..
E(a—X>_3—X = (M+m)X+mi=0

d (OL oL . 2 |\ .
E<%>_% = mX +m(l+tana)i = —mgtana

At this point we can use the first of these equations to write

m

X:— .
M—l—mx

Substituting this into the second equation, we obtain the constant accelerations

(M 4+ m)g sina cos « % ™My sin v cos «
B ~ M +msin’a

M + msin’a

4.4.4 A pendulum attached to a mass on a spring

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

Consider next the system depicted in fig. 4.8 in which a mass M moves horizontally while attached to a
spring of spring constant k. Hanging from this mass is a pendulum of arm length ¢ and bob mass m.
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A convenient set of generalized coordinates is (x, #), where z is the displacement of the mass M relative
to the equilibrium extension a of the spring, and 6 is the angle the pendulum arm makes with respect to

the vertical. Let the Cartesian coordinates of the pendulum bob be (z,,y,). Then
ry=a+x+{sinf , y, =—lcosf
The kinetic energy is
T = $Mi* + gm (i* + §°)
= iMi* + Im [(ac +£cosf8)% 4 (¢sin 6 6)?
=i(M +m) i+ %mfzéz +mlcosOif
and the potential energy is

U= %k:a:2 + mgy,

= %k‘x2 — mgl cos 6

Thus, _ .
L= %(M+m):t2 + %mfzﬁz +mlcosfi6— %k:a:2 + mgl cos 6

The canonical momenta are

Py = 8—L = (M +m)i+mlcoshf
0%

Py = 8—L =mlcosO i +ml*0
00

and the canonical forces are
OL
)9 .
Fy = g—e = —mfsinfz 0 — mgl sin 6

The equations of motion then yield

M +m)i+ml cos0 —ml sinh 6% = —kx
( )

ml cosO & +ml?6 = —mgl sin 6

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

(4.155)

(4.156)

Small Oscillations : If we assume both x and 6 are small, we may write sin# ~ ¢ and cos # ~ 1, in which

case the equations of motion may be linearized to

(M +m)i+mlh+kr=0
ml i +ml? 0 +mglh =0

(4.157)
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If we define "

uz% , az% , ngM , w%z% , (4.158)
then may be linearized to
1+a)i4+ald+wiu=0
(1+a) 0 (4.159)

i+ 0+w0=0

()
(0 22) (-

In order to have a nontrivial solution (i.e. without a = b = 0), the determinant of the above 2 x 2 matrix
must vanish. This gives a condition on w?, with solutions

We can solve by writing

in which case

wi = %[wg—i—(l—i—a)w%] + %\/[wg - (1+a)w%]2+4aw3w% ) (4.162)

4.4.5 The double pendulum

As yet another example of the generalized coordinate approach to Lagrangian dynamics, consider the
double pendulum system, sketched in fig. 4.9. We choose as generalized coordinates the two angles 6,
and 6,. In order to evaluate the Lagrangian, we must obtain the kinetic and potential energies in terms
of the generalized coordinates {f,,,} and their corresponding velocities {6, 6,}.

In Cartesian coordinates,
T = gmy (&7 + 1) + 5my (i3 + 93)
(4.163)
U=mygy; +mygys

We therefore express the Cartesian coordinates {x,y;, 5, y,} in terms of the generalized coordinates
{91, 92}1

x; = +¥¢; sinb, , Xy = L1 sin@y + {5 sin by (4.164)
Yy, = —¥; cos b, , Yy = —; cos By — {y cos b, '
Thus, the velocities are
11.:1 = El 9.1 COS 01 s i:z = El 9.1 COS 91 + Ez 0.2 COS 92 (4 165)
yl = El 9.1 sin 01 s 92 = El 9.1 sin 91 + Ez 9.2 sin 92 ‘
Thus,
T = %ml E% 9% + %m2{£% 0% + 261 £2 COS(@I — 02) 0.1 9.2 + E% 9%}
(4.166)

U=—-mygl cost; —mygl cosl; —mygl, cosby |,
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Figure 4.9: The double pendulum, with generalized coordinates #; and ¢,. All motion is confined to a
single plane.

and

L=T-U = 3(my +my) 30} +myl, by cos(6y — 0) 0, 0y + Lm, (363

(4.167)
+ (my +my) gy cosby +mygly cosb,
The generalized (canonical) momenta are
oL 9 .
p1 = o7 = (my +my) (10, + my ly £y cos(0) — 0,) 0,
00,
oL _ _ (4.168)
Do = —— =My El €2 COS(Hl — 92) 91 + mo E% 92 s
00,
and the equations of motion are
pl = (ml + m2) E% él + me El £2 005(91 — 92) 52 — My El €2 Sin(91 — 92) (91 — 92) 9.2
0L (4.169)

= —(ml + mz)gél sin 01 — My El Ez Sin(91 — 92) 0.1 9.2 = W
1

and

Do = mg by Uy cos(0) — 0;) 0; — my by £y sin(0) — 0,) (91 - 92) 91 +my @ éz

oL (4.170)

= —m2 g£2 Sin 92 + m2 El €2 Sin(91 — 92) 9.1 9.2 = W
2
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We therefore find

@1 91 + ﬁ COS(Hl — 02) 92 + ﬁ Sln(gl — 92) 9% + g Sln91 =0

(4.171)
0y cos(B — 0y) 0y + Ly By — £y sin(f; — 0,) 67 + g sinfy =0

Small Oscillations : The equations of motion are coupled, nonlinear second order ODEs. When the
system is close to equilibrium, the amplitudes of the motion are small, and we may expand in powers
of the 6, and 6,. The linearized equations of motion are then

él +04502 +wg01 :0
o 4.172)
91—|—ﬁ92—|—w092:0 5

where we have defined
L)

&
Sho
Il

, B

o (4.173)

S

mq + my 1

We can solve this coupled set of equations by a nifty trick. Let’s take a linear combination of the first
equation plus an undetermined coefficient, r, times the second:

(14+7)0; + (a+7)B0y+wi (0, +76,) =0 . (4.174)

We now demand that the ratio of the coefficients of 6, and 6, is the same as the ratio of the coefficients
of 6, and 6,:

%:r = ry=3(B8-1)£3/(1-B)?2+4ap (4.175)
When r = r_, the equation of motion may be written

2 2
d Wy

(6, 414 0,) (4.176)

and defining the (unnormalized) normal modes &, = (6, + r.. 6,) we find £, +wlé, = 0with
Wy = ——0
SRV e

Thus, by switching to the normal coordinates, we have decoupled the equations of motion, and identi-
tied the two normal frequencies of oscillation. We shall have much more to say about small oscillations in
chapter 6.

(4.177)

For example, with ¢; = ¢, = £ and m; = m, = m, we have a = }, and 8 = 1, in which case

T T Uy wi:\/2:|:\/§\/%. (4.178)

Note that the oscillation frequency for the ‘in-phase’ mode & is low, and that for the ‘out of phase’ mode
&_ is high.
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4.4.6 The thingy

Four massless rods of length L are hinged together at their ends to form a thombus. A particle of mass
M is attached to each vertex. The opposite corners are joined by springs of spring constant k. In the
square configuration, the strings are unstretched. The motion is confined to a plane, and the particles
move only along the diagonals of the rhombus. Introduce suitable generalized coordinates and find the
Lagrangian of the system. Deduce the equations of motion and find the frequency of small oscillations
about equilibrium.

Solution

The rthombus is depicted in figure 4.10. Let a be the equilibrium length of the springs; clearly b = % a.

Let ¢ be half of one of the opening angles, as shown. Then the masses are located at (X, 0) and (0, £Y"),
with X = f acospand Y = f asin ¢. The spring extensions are 6X = 2X —a and §Y = 2Y — a. The

Figure 4.10: The thingy: a rhombus with opening angles 2¢ and 7 — 2¢.

kinetic and potential energies are therefore

T =M(X?+Y?) = iMd® ¢ (4.179)
and
U= 1k(6X)* + 3k (sY)?
- %k (V2coso—1)"+ (V2 sing — 1) (4.180)

Il
l\)lr—-

/—/h\/—/h\

213-2V2 cos<;5+sm¢)}
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Note that minimizing U(¢) gives sin ¢ = cos ¢, i.e. poq = 5. The Lagrangian is then

L:T—U:%Ma2q52+\/§k (cos¢+sm¢)+const (4.181)

The equations of motion are

doL 0L

W95 = 9 Ma? ¢ = V2 ka® (cos ¢ — sin ¢) (4.182)

It’s always smart to expand about equilibrium, so let’s write ¢ = 7 + J, which leads to
S+ wdsind=0 , (4.183)
with w, = /2k/M. This is the equation of a pendulum! Linearizing gives 0 + w3 d = 0, so the small

oscillation frequency is just w,.

4,5 The Virial Theorem

The virial theorem is a statement about the time-averaged motion of a mechanical system. Define the
virial,

=> P,y - (4.184)

Then

dG ) .
% = Z (pcrqo +p0'qo)

=S Ft Yo g

Now suppose that 7' = 3 ZU o L /(q)d, 4, is homogeneous of degree k = 2 in ¢, and that U is homo-
geneous of degree zero in g. Then

(4.185)

Zqo a qu aq r, (4.186)

which follows from Euler’s theorem on homogeneous functions.
Now consider the time average of G’ over a period 7

(% =2 / at % = o) - o) (4.187)

T T
0

If G(t) is bounded, then in the limit 7 — oo we must have (G) = 0. Any bounded motion, such as the
orbit of the earth around the Sun, will result in (G), o, = 0. But then

<C§> +<qu =0, (4.188)
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which implies
<T>:—%<ZQUFO_>:<%Z$ZVZU($1,,mN)>:%kT<U> ’ (4189)

where above equation pertains to homogeneous potentials of degree k in the Cartesian coordinates®.
Finally, since 7'+ U = E is conserved, we have

<T>=k—E ; <U>=£ : (4.190)

4.6 Noether’s Theorem

4.6.1 Continuous symmetry implies conserved charges

Consider a particle moving in two dimensions under the influence of an external potential U(r). The
potential is a function only of the magnitude of the vector r. The Lagrangian is then

L=T-U=3m (2 +r*¢*) -U(r) , (4.191)

where we have chosen generalized coordinates (7, ¢). The momentum conjugate to ¢ is p 6= r2 ¢. The

generalized force F; clearly vanishes, since L does not depend on the coordinate ¢. (One says that L is
‘cyclic” in ¢.) Thus, although r = r(t) and ¢ = ¢(t) will in general be time-dependent, the combination
py=m r2 ¢ is constant. This is the conserved angular momentum about the 2 axis.

If instead the particle moved in a potential U(y), independent of z, then writing
L=im(#*+¢*) -Uly) |, (4.192)

we have that the momentum p, = J0L/0i = md is conserved, because the generalized force F, =
OL/0x = 0 vanishes. This situation pertains in a uniform gravitational field, with U(z,y) = mgy,
independent of z. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry, there is an associated conserved charge.
(The terminology ‘charge’ is from field theory.) Indeed, this is a rigorous result, known as Noether’s
Theorem. Consider a one-parameter family of transformations,

4 — G,(¢:C) (4.193)

where ( is the continuous parameter. Suppose further (without loss of generality) that at ( = 0 this
transformation is the identity, i.e. ¢,(¢q,0) = g,. The transformation may be nonlinear in the generalized

°Note that — > ¢, F, = =>4, (0L/dq,) # >, 45 (0U/9q,) in general because T = 2>, T,.,(q)q, 4,, and so the
inequality holds whenever T, (q) is g-dependent. In a Cartesian coordinate system, however, we have T' = 1 >y &3 and
therefore eqn. 4.189 holds
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coordinates. Suppose further that the Lagrangian L is invariant under the replacement ¢ — ¢. Then we
must have

d . " | 0L 8g, oL g
0= _O(q,q,t) UZ::I { %0, 3| + 36 3 0}
= = = (4.194)
X S COA T RN P
= | dt\9is ) ¢ o e dt \ OC J—y dt\04s OC ) ._g
Thus, there is an associated conserved charge
" 9L 9q,
A=) — =2 (4.195)
= 94o O¢ o
4.6.2 Examples of one-parameter families of transformations
Consider the Lagrangian
L=1Im@@+9%) - U(Va2+y?) . (4.196)
In two-dimensional polar coordinates, we have
L=4im(p>+p°¢*) = Ulp) | (4.197)
and we may now define .
pQ)=p , Q=0+ C . (4.198)
Note that 5(0) = p and ¢(0) = ¢, i.e. the transformation is the identity when ¢ = 0. We now have
L 0j, OL dp OL d¢ o
9, o |~ opoc|_ Tagac) T MY @19)

Another way to derive the same result which is somewhat instructive is to work out the transformation
in Cartesian coordinates. We then have

Z(¢) = x cos( — y sin(

4.200
g(¢) =z sin¢ +y cos( ( )
Thus, o3 o0
T 9% _ .
ac g, ac z (4.201)
and
_ 0L oz OL 0y B . .
= 9% ac + 39 ac = m(xy —yi) . (4.202)
¢=0 ¢=0
But

m(zy —yi) =mz-p x p=mp*dp . (4.203)
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As another example, consider the potential
Up.#.2) = V(pag +z) (4.204)

where (p, ¢, z) are cylindrical coordinates for a particle of mass m, and where a is a constant with di-
mensions of length. The Lagrangian is

Im(p* + p?* + %) = V(pap +2) . (4.205)

This model possesses a helical symmetry, with a one-parameter family

pC)=p ,  Q=0¢+¢ ,  EH)=z—-Ca . (4.206)

Note that )
ap+zZ=ap+z , (4.207)

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter family of
transformations. The conserved charge for this symmetry is

_ oL op

ol — mold — :
=9 ac mp“¢$ —maz . (4.208)

oL 96 +%%
o 00 0C|_ 020C| _

We can check explicitly that A is conserved, using the equations of motion

d <8L> ¢ () = O oV

_ —_ e — = — = —qQ—
dt dt F) F)

06 ¢ : (4.200)

A(OLY _d . 0L _ oV

a\oz) " a\" T 0 T b

Thus,
A= i(mp%) —a i(mz) =0 (4.210)
dt dt ' )

4.6.3 Conservation of linear and angular momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation of all
particles in the n direction. Then our one-parameter family of transformations is given by

&, =x,+(h (4.211)

and the associated conserved Noether charge is

oL . .,
A:Z&ba-n:n-P , (4.212)

where P = ) p, is the total momentum of the system.



112 CHAPTER 4. LAGRANGIAN MECHANICS

If the Lagrangian of a mechanical system is invariant under rotations about an axis n, then
z,=R((,n)x,
=, + (R xz, +OC7)

where we have expanded the rotation matrix R(¢,n) in powers of (. The conserved Noether charge
associated with this symmetry is

(4.213)

L
A:tha-fzxwa:ﬁ-Zwaxpa:ﬁ-L , (4.214)

where L is the total angular momentum of the system.

4.6.4 Invariance of L vs. invariance of S

Observant readers might object that demanding invariance of L is too strict. We should instead be
demanding invariance of the action S*. Suppose S is invariant under

t=Het.0)  ,  ¢t) 2 G(et0) . (4.215)
Then invariance of S means )
tb tb
S = /dt L(q,q,t) = /dt L(G,q,t) . (4.216)
ta ta

Note that ¢ is a dummy variable of integration, so it doesn’t matter whether we call it ¢ or . The end-
points of the integral, however, do change under the transformation. Now consider an infinitesimal
transformation, for which ¢t = ¢ — t and dq = G(f) — ¢(t) are both small. Thus,

t, t,+0t,
oL - oL -
= [dtL(q,q,t) = | dt4L(q,q,t — —0Gy + ... , 4217
S (a,4,t) / { (a,4, )+aqg qo+aqg o + } (4.217)
ta to+ot,
where
gqo‘(t) = qg(t) - qo‘(t)

Gy (8) = G5 (8) + 4 (t) — g5 (1) (4.218)
0q, — 4, 6t + O(0q 6t)
Subtracting eqn. 4.217 from eqn. 4.216, we obtain

tb+5tb
OL | < OL | < OL d (0L =
=L,0t,— L, 0t, + —|0q, ,— =—1|9 dt s =— — —| =— | ¢ g, (t
0= Loty = Lubta b 5| Bios = | Biea't | {aqa dt(aq'(f)}q“()
ty+6t,

(4.219)

tb
d oL . oL
:/dt%{<“a—qa%>&+a—%5qﬁ} |

la

“Indeed, we should be demanding that S only change by a function of the endpoint values.
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where L,yis L(q,q,t) evaluated at t = babr Thus, if ( = 6 is infinitesimal, and
ot = A(q,t) 6¢C , 0q, = B,(q,t)6C (4.220)

then the conserved charge is

oL | oL
A= <L - a—q-o_ QU> A(q>t) + 8—%Bo(q>t)

(4.221)
= — H(q,p, t) A(q, t) +po BO’(Q? t)

Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of L. Note that
conservation of H follows from time translation invariance: ¢ — ¢ + ¢, for which A = 1 and B, = 0.

Here we have written
H=p,q,—-L |, (4.222)

and expressed it in terms of the momenta p,, the coordinates ¢,, and time ¢. H is called the Hamiltonian.

4,7 The Hamiltonian

4.71 From Lagrangian to Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical momentum

conjugate to the generalized coordinate ¢, is
L
p, =2k (4.223)
9o

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the Legendre trans-
form® of L:

H(q.p,t) =Y pyd,—L (4.224)
Let’s examine the differential of H:
oL oL oL
dH = 7 d dq, — —dg. — ——dg, | — —dt
2 (qa Po ¥ Po o = 5g, 7 ~ B, ”> ot

7 5L 5L (4.225)
:zo-:(qo_dpo_—a—quqo.>—adt N

where we have invoked the definition of p,, to cancel the coefficients of dg,,. Since p, = 0L/dq,, we have

Hamilton’s equations of motion,
0H 0H
Iy = 7 e = —7— . 4.226
Go=gp P o0 (4.226)

®See the appendix in §4.12 for more on Legendre transformations.
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Thus, we can write

. . L
dH =" (qa dp, — p, dqa> - St (4.227)
Dividing by dt, we obtain
dH L
dH _ 0L 422
dt ot (4.228)

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever there is no
explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = imi? — U(x), we have p = md and
P2
H=pi—L=3imi*+U(z) = o HU@) (4.229)

Example #2 : Consider now the mass point — wedge system analyzed above, with
L=3(M+ m)X? +mXi + sm sec’ai? — mgtan(a)z | (4.230)

The canonical momenta are

L )
P = 8— =(M+m)X +mz
0X
(4.231)
L )
p= 8— =mX + msec’a i
ox
The Hamiltonian is given by
H=PX+pi—L
=1(M + m)X? +mXd + %msecQa i% 4+ mgtan(a) z
A (4.232)
1, (M+m m X
=5 (X ) < m msec2a> <x> + mgtan(o) x

However, this is not quite H, since H = H(X,z, P,p,t) must be expressed in terms of the coordinates
and the momenta and not the coordinates and velocities. So we must eliminate X and # in favor of P
and p. We do this by inverting the relations

P M+ m m X X
<p>:< m msec2a> <¢>:A<5E> (4.233)

X 1 sec2a -1 P 4 (P
= =A . 4.234
<3:> M sec?a + m tan?a < -1 %—Fl) <p> <p> ( )

to obtain
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Substituting into 4.232, we obtain

<H::%(P p)A—1<§>-+nmtmma)x

P? 2P 2 M 1 1) p? cosa
— —— — pCOS_O; + (m )p —— + mgtan(a)z
2(M + msin“a)  2(M 4+ msin“a)  2(M + msin®«)

(4.235)

Notice that P = 0 since g—)L( = 0. P is the total horizontal momentum of the system (wedge plus particle)
and it is conserved. As a sanity check, consider the limit A/ — oo with P and p finite. The wedge then
has infinite inertia and remains fixed. Accordingly, we find

_ p?cos’a

H(X7$7P7p7t)|M_>oo_ om

+ mgtan(a)x . (4.236)

472 IsH=T+U?

The most general form of the kinetic energy is
= 1157 (q.1) 4y dor + T (0:1) G5 + To(a:t)

where T),(q, ¢,t) is homogeneous of degree n in the velocities’. We assume a potential energy of the
form

(4.237)

U=0U,+U,
= Ula(qﬂt) qo + UO(Q7t) )

which allows for velocity-dependent forces, as we have with charged particles moving in an electro-
magnetic field. The Lagrangian is then

L=T-U= %TZO—O—, (q7 t) QU q.cr’ + Tf(Qv t) q.O' + TO(q7 t) - Ulo—(q7 t) (jo' - UO(qv t) . (4239)

(4.238)

The canonical momentum conjugate to g, is

oL

%=%<:W%+H@Q—W@w (4.240)

which is inverted to give
i, = (1,17 (pa’ — 17 +Uf ) . (4.241)

The Hamiltonian is then

H=p,q4,—L
=3 (@) (py —T7 +U7) (por = I7 + U7 ) = Ty + U (4242)
== T2 - TO + UO

°A homogeneous function of degree k satisfies f(Azq,...,Az,) = )\kf(ml, ...,Tp). Itis then easy to prove Euler’s theorem,

o)
>ic1 ffi@—g{i =kf.
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m

Figure 4.11: A bead of mass m on a rotating hoop of radius a.

If T, Ty, and U, vanish, i.e. if T(q,q,t) is a homogeneous function of degree two in the generalized
velocities, and U(q,t) is velocity-independent, then H = T + U. But if T}, or T} is nonzero, or the
potential is velocity-dependent, then H # T + U.

4.7.3 Example: a bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is further con-
strained to rotate with angular velocity ¢ = w about the 2-axis, as shown in fig. 4.11.

The most convenient set of generalized coordinates is spherical polar (r, 8, ¢), in which case
T = Im(#? +1r26% + r?sin 0 §°)

= %ma2 (92 + w? sin? 9)

(4.243)

Thus, T, = ma’ % and T, = %ma w?sin?@. The potential energy is U(8) = mga(l — cos®). The

momentum conjugate to 6 is p, = ma?0, and thus

H(Q,pe)_T —T0+U

2ma292 2ma2w2 sin? 0 + mga(l — cos 0) (4.244)
2
= 2p9 5 ;ma2w2 sin” 0 + mga(1 — cos 0)
ma

For this problem, we can define the effective potential

Ug(0) =U — T,y = mga(l — cos0) — §ma2w2 sin? @
2 4.245)
_ Ccost - n? (
= mga(l cos 6 22 sin 9) ,

where w? = g/a. The Lagrangian may then be written

L=1ima® —Ug(0) (4.246)
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Figure 4.12: The effective potential U (6) = mga[l — cos§ — 2“;—22 sin? ]. (The dimensionless potential
0

Uet(z) = Uesr/mga is shown, where = 6/r.) Left panels: w = 3v/3wj. Right panels: w = v/3wg.

and thus the equations of motion are

ma’*f = 5 (4.247)
Equilibrium is achieved when U/;(6) = 0, which gives
OUcgr _ . w? _
90 —mgasme{l—w—%COSG} =0 , (4.248)

ie.0* =0,0" = m,or * = £ cos~!(wd /w?), where the last pair of equilibria are present only for w? > w?.
The stability of these equilibria is assessed by examining the sign of U/;;(0*). We have

2
%5(0) = mga { cosf — :—(2) (2 cos? 6 — 1)} . (4.249)
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Thus,
(+mga(1— 2) at0* =0

o€w| &

M

(O = -mga(1+%)  ater=n (4.250)

2
0

€

w2

2 2
| +mga (g—j - %) at 0* = £cos™! <ﬂ)
0

Thus, 6* = 0 is stable for w? < w? but becomes unstable when the rotation frequency w is sufficiently
large, i.e. when w? > w2. In this regime, there are two new equilibria, at 0* = =+ cos ™! (w2 /w?), which are
both stable. The equilibrium at 8* = 7 is always unstable, independent of the value of w. The situation
is depicted in fig. 4.12.

4.7.4 Charged particle in an electromagnetic field

Consider next the case of a charged particle moving in the presence of an electromagnetic field. The
particle’s potential energy is

Ur,#) = qo(r.t) = 2 Ar.t) -7 (4.251)

which is velocity-dependent. The kinetic energy is T = $m#?, as usual, and L = T — U. Here ¢(r, ) is
the scalar potential and A(r,t) the vector potential. The electric and magnetic fields are given by

E=-V —1% , B=VxA . (4.252)
c Ot

The canonical momenta and forces are

= 8_L =mr + 94
or c
4.253)
oL q (
F = I = —qVo+ EV(A r)
The Euler-Lagrange equations are
. d (0L oL
which is to say
. qdA q .
mit 4= —— =—qVo+-=-V(A-7) | (4.255)
c dt c
or, in component notation,
dA,/dt
L q(0A . 0A\ 09  q 04 .
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Here we are using the Einstein convention of summing over repeated indices. Thus,

axi awj J

(4.257)

mi; = —
¢ qaxi c Ot ¢

It is convenient to express the cross product in terms of the completely antisymmetric tensor of rank

three, ¢, ik

0A,,
Bk = €Lim a—xl s (4:.258)
and using the result
€kij Ekim = 031 Ojm — Oim 01 (4.259)
we have oA oA
€hij B = =L — o (4.260)
J 8:L'Z al’j
and therefore 96 oA
.. q i 4 .
m; = —q oz, ¢ ot + ~ gk T B, . (4.261)
In vector notation, using €, v; B;, = (v x B);, we have
mi=qE+1ixB | (4.262)
c
which is, of course, the Lorentz force law.
Next, we compute the Hamiltonian:
H(r,p,t)=p-7—1L
=mi?+ LAl LA 4o
c c
4.263
1

_ 1 (p _ % Alr, t))2 + qo(r, 1)

- 2m

If A and ¢ are time-independent, then dH/dt = —0L/0t = 0 and H (7, p) is conserved.

4.8 Motion in Rapidly Oscillating Fields

4.8.1 Slow and fast dynamics

Consider a free particle moving under the influence of an oscillating force F'(t) = F|, cos(wt). Newton’s
second law is then m¢§ = F cos wt, the solution to which is

F, coswt

q(t) = a+bt — . (4.264)

mw
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where ¢, (t) = a + bt is the solution to the homogeneous (unforced) equation of motion. Note that the
amplitude of the response g — g, goes as w™? and is therefore small when w is large.

Now consider a general n = 1 system, with
H(g,p,t) = H(¢,p) + V(q) cos(wt) (4.265)

where we will assume V(g) is small. We also assume that w is much greater than any natural oscillation
frequency associated with H,. We separate the motion ¢(t) and p(t) into slow and fast components:

q(t) = Q) +¢(¢)

p(t) = P(t) +7(t) (4.266)

where ((t) and 7(t) oscillate with the driving frequency w. Since ¢ and 7 will be small, we expand
Hamilton’s equations in these quantities:

Q+<-_8H0+62H0 N 0*H <+1 O3HY 2y O3HY +183H0 2,
~ 9P " apr2 " T aQar° T 280%0P aQapz°" "o gps T T
i 0 2770 2770 370 370 3r70
poa_ OH" O ‘. CH 19 o OH o FH (4267)
90 802 ° aQoP " 2 80Q® 902 9P 2 90 OP?
ov 02V

~ 20 cos(wt) — 707 ¢ cos(wt) — ...

We now average over the fast degrees of freedom to obtain an equation of motion for the slow variables
@ and P, which we here carry to lowest nontrivial order in averages of fluctuating quantities:

Q=Hp+ LTHYop () + Hopp (Cm) + $Hppp (12)
(4.268)
P =—H} — $H)oq (¢*) — Hop () — 3HOpp (12) — Vg (coswt)

where we now adopt the shorthand notation H %Q p= a?;—H;P , etc. The fast degrees of freedom obey

(=Hgp(+Hppm
(4.269)
T = —HC%Q ¢— H%P 7 — Vg cos(wt)

We can solve these by replacing ‘N/Q cos wt with VQ e~ and writing ((t) = (e~ ! and 7 (t) = mye ™",

resulting in
0 ; 0
(HQPSFZ” e > <<0> - <~0 > . (4.270)
—Hyg —Hgp+iw) \m Vo

We now invert the matrix to obtain ¢, and 7, then take the real part, which yields
((t)=w 2 HYp ‘~/Q coswt + O(w™)

g ! (4.271)
w(t) = —w? H%P VQ coswt —w! VQ sin wt + O(w_?’)
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Invoking (cos(wt)) = (sinwt)) = § and (cos(wt) sin(wt)) = 0, we substitute into eqns. 4.268 to obtain

Q = H% + %w_2 H%PP ‘7@2 + O(w_4)

(4.272)
P = —H% — iw_2 H%PP VQ2 — %w_zH?)P VQ VQQ + O(CU_4)
These equations may be written compactly as
. 0K . 0K
- P=——"—— 4.273
Q 8P ) 8@ ) ( )
where ~
1 0%HY [0V
— go _ -
K(Q,P)=H"(Q,P)+ 12 op? <8Q> (4.274)

4.8.2 Example: pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the pendulum
bob are
x =/ sinf , y=a(t)— ¢ cosf . (4.275)
The Lagrangian is easily obtained:
L= %mﬁz 6% + mlasinb + mgl cos b + %méﬂ — mga
these may be dropped

(4.276)
. d
= %mﬁz 62 + m(g + @)l cos O+ %méﬂ —mga— — (mla cos6)
Thus we may take the Lagrangian to be
L=4im?60* +m(g+a)lcosd (4.277)

from which we derive the Hamiltonian

2
p—92 — mgl cos — mli cos 6
2mib (4.278)

= Hy(0,p,,t) + V(6) sinwt

H(0,p,) =

We have assumed a(t) = a, sinwt, so

V() = mlagw? cos® . (4.279)
Writing 0 = © + ¢ and p, = L + 7, the effective Hamiltonian, per eqn. 4.274, is

2

K®,L) = 2m?

—mglcos O + %m ag w?sin’6 . (4.280)
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Figure 4.13: Dimensionless potential v(©) for r = 0 (black curve), » = 0.5 (red), and r = 2 (blue).

Let’s define the dimensionless parameter r = w?a2/2g¢. The slow variable © then executes motion in
the effective potential V_(©) = mglv(O), with

v(@) = —cosO + g sin?6 . (4.281)
Differentiating, we find that V_;(©) is stationary when

V(O)=0 = rsin@cos® =—sinO . (4.282)

Thus, © = 0 and © = 7, where sin © = 0, are equilibria. When > 1 (note » > 0 always), there are two
new solutions, given by the roots of cos © = —r~1.

To assess stability of these equilibria, we compute the second derivative:

v"(©) = cos O + 1 cos20 . (4.283)
From this, we see that © = 0 is stable, i.e. v"(© = 0) > 0, always, but © = 7 is stable for » > 1 and
unstable for » < 1. When r > 1, two new solutions appear, at cos © = —r~1 for which

v"(cos H(=1/r)) =r"t =71 | (4.284)

which is always negative since r > 1 in order for these equilibria to exist. The situation is sketched in
fig. 4.13, showing v(©) for three representative values of the parameter r. For » < 1, the equilibrium
at © = 7 is unstable, but as r increases, a subcritical pitchfork bifurcation is encountered at » = 1, and
© = 7 becomes stable, while the outlying © = cos~!(—1/r) solutions are unstable.
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4.9 Field Theory: Systems with Several Independent Variables

4.9.1 Equations of motion and Noether’s theorem

Suppose ¢, (z) depends on several independent variables: z = {z!, 22, ..., 2"}. Furthermore, suppose

[{¢a /dnx‘c ¢a ,LLQSav ) 9 (4285)

i.e. the Lagrangian density L is a function of the fields ¢,; their partial derivatives d¢,/0x", and possibly
the independent variables z# as well. Here () is a region in R". In dynamical field theories, we write
r = (20,2, ..., %) where d is the dimension of space and z° = ct, where t is time and c is a constant

with dimensions of speed. In such cases n = d + 1 and we can identify 20 = 2™,

Then the first variation of S is

: oL 956,
"= / o {8% 3(00) axu}
, . o (4.286)
_ WL . foc < c > s
Ezf S o) %*Q/ TN 060~ 90 \Bnan) ) [ 20

where 0Q is the (n — 1)-dimensional boundary of 2, dX is the differential surface area, and n* is the unit
vector normal to 9. If we demand 9L/9(0,¢a)| a0 = 001 d¢q|,, = 0, the surface term vanishes, and
we conclude

P

o5 oL 0 < oL >
6ba(x)  Opy  Oxi \ 9(0u¢a)

Next, consider the one-parameter family of field transformations
ba(@) = by (D(2),¢) (4.288)

such that ¢, (¢(z),¢ = 0) = ¢,(x). If the Lagrangian density £ is independent of this transformation,
then

(4.287)

dc| oL 99, "L 99,0,
d< ¢=0 B 8¢a 8( — 8(8;1,¢a) 8< ¢=0
B oL 09, oL 9 <a$a>
Z {ay( u%)) F) =0 8(%%) oxn \ ¢ c:o} (4.289)

_ oL a¢a>
;ax“ <a(ap,¢a) E?C ¢=0

We can write this as J,, J#* = 0, where

0L  Odba
0(0upa) OC

W=

(4.290)
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We call A = J%/c the total charge. If we assume J = 0 at the spatial boundaries of our system, then
integrating the conservation law 9,, J* (summation convention) over the spatial region () gives

%:/d?’anJO:_/d?’mV.J:_fdzﬁ.J:O , (4.291)
20

dt
Q Q
assuming J = 0 at the boundary 0.

As an example, consider the case of a stretched string of linear mass density p and tension 7. The action
is a functional of the height y(x,t), where the coordinate along the string, x, and time, ¢, are the two
independent variables. The Lagrangian density is

dy ’ dy ’
1 A I e i
L 5P ( t> 5 < > . (4.292)
The Euler-Lagrange equations are

oo 0S _ a(ocy o (oc
- oy(z,t) Oz \ 0y ot \ 0y

0 (7_ 8y> 0%

(4.293)
AN

where iy = 0y/0z and y = Jy/0t. We've assumed boundary conditions where dy(zq,t) = 0y(z,,t) =
dy(x,tq) = dy(x,t,) = 0. At this point, p(x) and 7(x) may be position-dependent. For constant p and 7,
we obtain the Helmholtz equation pjj = 7", where ¢ = (7/p)'/? is the speed of wave propagation.

0 1 _

For practice with the Minkowski notation, we define z” = ¢t and = z and the two-dimensional
space-time coordinate vector is then z# = (2°,2!) = (ct,x). The Lagrangian can then be written £ =
%T((‘)ﬂy)((‘)“y), where z, = g, ¥ = (ct,—z), in which case 9, = 9/0z" and O* = 9/0z,. Clearly L
remains invariant under the one-parameter family of transformations y — y + ¢, and the conserved
Noether current is

Jh =7 (4.294)

oz,

“w
and we have 9, J# = 0, which is equivalent to 6*J,, = 0. (Upper indices are called covariant while lower
ones are contravariant.) Current conservation in this system is simply a restatement of the Helmholtz
equation.

Maxwell’s equations

The Lagrangian density for an electromagnetic field with sources is

1 1
- B~ i AR
L T6m F,F = A (4.295)
The equations of motion are then
oL 0 oL 4r
- =0 = G =4 4.2
DAR  dzv <a(auAv)> 0 On ¢t (4.296)

which are Maxwell’s equations.
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Relativistic complex scalar field

As an example, consider the case of a complex scalar field, with Lagrangian density

L, %, 0,0, 0u0") = 3K (8,90*)(8"9) — U (v*y) . (4.297)
This is invariant under the transformation ¢ — €% 1, * — e~ ¢»*. Thus,
8_C_Z€ Y , ac e Yt (4.298)

and, summing over both ¢ and v* fields, we have

oL ) oL s

FICED) () + 9 (0,0%) (=) (4.299)
K

5 )

- (0 —

JH =

The potential, which depends on [¢|?, is independent of (. Hence, this form of conserved 4-current is
valid for an entire class of potentials.

4.9.2 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

2
= iha* —¢ - h— — VUV g (I = ng)® . (4.300)

This describes a nonrelativistic Bose fluid with repulsive short-ranged interactions. Here )(z, t) is again
a complex scalar field, and " is its complex conjugate. Using the Leibniz rule, we have

OS[™, ] = S[Y™ + 6¢*, ¢ + 69
:/dt/ddx{zhw 85—¢+ ih oy a—w—h—2v¢ Vw—h—zv&p -V

29 (1 — ny) <w*5w+ww*>}

/dt/dd {[—zha¢*+—v2 29 ([9]* — ng) ¥ }&p

+ 81/} + —V2 (|1,Z)|2 - no) } 51/)*} ,

(4.301)

at

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing
S[*, 9] therefore results in the nonlinear Schrodinger equation (NLSE),

N h2

ihgr = =5~ v%/} +2g (|U* —ng) ¥ (4.302)
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as well as its complex conjugate,
oY~ h?
—ih N _ ™ V2* +2g (|02 —ng) v* . (4.303)

ot

Note that these equations are indeed the Euler-Lagrange equations:
08 oL 0 < oc >

oY Dzt \ DD
(4.304)
05 oL 0 oL
Sy Oy* Oxk \ 9 0,np* ’
with z# = (¢,)”. Plugging in
oL 9 . oc ., oL n y
g0 = 20 (WP =) vt g =it gor = gy (4.305)
and oL oL oL h?
=ihy — 2 2 = =—— 4.
we recover the NLSE and its conjugate.
The Gross-Pitaevskii model also possesses a U(1) or O(2) invariance, viz.
Y(z,t) — ZZ($, t) = e’ Y, t) , P(x,t) — J* (x,t) = e V¥ (x,t) (4.307)
Thus, the conserved Noether current is then a (d + 1)-dimensional vector with components
oL oy ' oL oy
no_ .l B - (4.308)
00,4 0¢ o 00,9* OC o
In terms of time (1 = 0) and space (¢ € {1,...,d}) components, we have
JO = —hfuf?
(4.309)
h2
J=_—— * . *
S (07— VYY)
Dividing out by 4, taking J° = —hp and J = —hj, we obtain the continuity equation,
ap .
E_Fvﬂ_o , (4.310)
where B
p=lf =g (VG - uVy) (4311)
im

are the particle density and the particle current, respectively.

"In the nonrelativistic case, there is no utility in defining z° = ¢t, so we simply define 20 =t
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Figure 4.14: A cylinder of radius a rolls along a half-cylinder of radius R. When there is no slippage,
the angles 6; and 6, obey the constraint equation R6; = a(2 — 6;).

4.10 Constraints: General Theory

4.10.1 Introduction

A mechanical system of N point particles in d dimensions possesses n = dN degrees of freedom®.
To specify these degrees of freedom, we can choose any independent set of generalized coordinates

{¢y,--.,qn}. Oftentimes, however, not all n coordinates are independent.

Consider, for example, the situation in fig. 4.14, where a cylinder of radius a rolls over a half-cylinder
of radius R. If there is no slippage, then the angles ; and 6, are not independent, and they obey the
equation of constraint,

R91 =a (92 — 91) . (4.312)

In this case, we can easily solve the constraint equation and substitute ; = (1 + £) 6;. In other cases,
though, the equation of constraint might not be so easily solved (e.g. it may be nonlinear). How then do
we proceed?

4.10.2 Constrained extremization of functions: Lagrange multipliers

Given F(x,,...,z,) to be extremized subject to k constraints of the form G;(zy,...,z,) = 0 where
j=1,...,k, construct
k
Fo (2, @i Ay ) = Flay,m,) + YN G, 2,) (4.313)
J=1
SFor N rigid bodies, the number of degrees of freedom is n’ = 1d(d + 1)N, corresponding to d center-of-mass coordinates

and 1d(d — 1) angles of orientation for each particle. The dimension of the group of rotations in d dimensions is 3d(d — 1),
corresponding to the number of parameters in a general rank-d orthogonal matrix (i.e. an element of the group O(d)).
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which is a function of the (n + k) variables {3517 U S ST )\k}, where the quantities {\,..., . } are

y»n

Lagrange undetermined multipliers. We now freely extremize the extended function F™*:

n k
OF* OF*
dF™* = — dz, —d)\;
2 oz, 7 ; DV
. . (4.314)
" [ oF oG
o=1 j=1 j=1
This results in the (n + k) equations
k
OF 0G;
+ Ni—L =0 c=1,...,n
0z, ]z:; ! 0y ( ) (4.315)

Gi=0 (j=1,....k)

The interpretation of all this is as follows. The first n equations in 4.315 can be written in vector form as

k
VF+) A\VG =0 . (4.316)
j=1

This says that the (n-component) vector VI is linearly dependent upon the k vectors VG,. Thus, any
movement in the direction of V F' must necessarily entail movement along one or more of the directions
VG,. This would require violating the constraints, since movement along VG, takes us off the level
set G; = 0. Were VI linearly independent of the set {VG,}, this would mean that we could find a
differential displacement dx which has finite overlap with V F' but zero overlap with each VG,. Thus

z + dx would still satisty G, (x + dz) = 0, but I would change by the finite amount dF" = VF(z) - d.

Put another way, when we extremize F'(x) without constraints, we identify points € R" where the
gradient VI vanishes. However, when we have k constraints of the form G, (x) = 0, the subset

T={xecR"|Gjx)=0Yje{l,.. . k}} (4.317)

is a hypersurface of dimension n — k. Generically we should not expect any of the solutions to VF = 0
to lie within the subspace Y. Extremizing F(z) subject to the k constraints G;(z) = 0 means that we
must find the extrema of F(z) for x € T C R™. All such extrema satisfy that V F(x) is perpendicular to
the hypersurface T, i.e. VF(z) must lie in the k-dimensional subspace spanned by the vectors VG, ().

Example : volume of a cylinder

To see how this formalism works in practice, let’s extremize the volume V' = ma?h of a cylinder of radius
a and height h, subject to the constraint

2
G(a,h) =2ma + % —{=0 . (4.318)
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We therefore define

V*(a,h,\) =V(a,h) + AG(a,h) (4.319)
and set
88‘/ = 2mah +27A =0 (4.320)
a
88‘2 = ma® + 2)\% =0 (4.321)
* 2
%K = 2ma + % —0(=0 . (4.322)
Solving these three equations simultaneously gives
_ 2 _ ¥ _ 2 172 43)2 «_ 4 s

4.10.3 Constraints and variational calculus

Before addressing the subject of constrained dynamical systems, let’s consider the issue of constraints
in the broader context of variational calculus. Suppose we have a functional

Fly(z)] = / dr L(y,y',x) (4.324)

which we want to extremize subject to some constraints. Here y stands for an n-component vector of

functions {y,(x)}. We assume that the endpoint values y,(z,) and y,(z,) are fixed for each o. There are
two classes of constraints we will consider:

1. Integral constraints: These are of the form
Tp
/dw Nj(y,y',w) =C; (4.325)

where j labels the constraint.
2. Holonomic constraints: These are of the form

G,(y,x)=0 . (4.326)

The cylinders system in fig. 4.14 provides an example of a holonomic constraint. There, G(6,t) =
RO; —a(f2 —0;) = 0. As an example of a problem with an integral constraint, suppose we want to
know the shape of a hanging rope of fixed length C. This means we minimize the rope’s potential

energy,
Ty Ty

Ulol@)] = pg [ dsyta) = pg [ do /147 (4327)

Za
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where p is the linear mass density of the rope, subject to the fixed-length constraint

Sp Ty
C:/ds:/dw\/l—ky’z

(4.328)

Note ds = \/dz? 4 dy? is the differential element of arc length along the rope. To solve problems like

these, we again use the method of Lagrange multipliers.

4.10.4 Extremization of functionals : integral constraints

Given a functional
Ty

Fl{yo(2)}] = / Ly h b)) (0=1,....n)

Ta

subject to boundary conditions dy,(z,) = dyo(x;,) = 0 and k constraints of the form
Tp
JaN (b k) =€, =1k
construct the extended functional

P [{a, @) (] /d{ (o). {0, +ZAN{yo}{yg }Zw

and freely extremize over {y;,...,¥,;A;,..., A, }. This results in (n + k) equations

k
oL d (0L ON; d [ON B _
8—%_%<8y3>+ZA1{6—%_%<8y3>}_0 7= b

/dm Ny (o }a) =G (I=1,....k)

Za

4.10.5 Extremization of functionals : holonomic constraints

Given a functional

Fl{yo(a) /de W) e)  (o=1,....n)

subject to boundary conditions 0y, (x,) = dy,(z,) = 0 and k constraints of the form

Gj({yo(x)},x) =0 G=1,...,k)

(4.329)

(4.330)

(4.331)

(4.332)

(4.333)

(4.334)
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construct the extended functional
F* o (o)} Dy / d:c{ (TARTAS +ZA G ({ue}s) | (@33

and freely extremize over the (n + k) functions {y,(z), ..., y,(x); A\ (2),..., A (2)}:

/dm{ (7‘%(

resulting in the (n + k) equations

d [ 0L
T£<ay/> Ay, §: ig,, (@=1....n)

=1 (4.337)

) Z/\ >5y0 ZG O } : (4.336)

4.10.6 Examples of functional extremization with constraints
Hanging rope

We minimize the potential energy functional

x2
o) =g [z /140” (4.338)
1

where p is the linear mass density, subject to the constraint of fixed total length,

2
= / dr\/1+y? . (4.339)

Thus,

U[y(x),\] =Uly(z)] + ACy /d:n L*(y,y/,x) (4.340)

with
L*(y, /@) = (pgy + A) /1 +y° . (4.341)

Since OL*/0x = 0 we have that

O po_ P99+ (4.342)

H=y
Ay V1+y?
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is constant. Thus,

Z—z = +H " lpgy+ N2 —H? | (4.343)
with solution \ I
Py
x :——+—cosh<— w—a) . 4.344
y(@) = 74 - cosh( B (2 a) (4344

Here, H, a, and X are constants to be determined by demanding y(x,) = y; (: = 1,2), and that the total
length of the rope is C.

Geodesic on a curved surface

Consider next the problem of a geodesic on a curved surface. Let the equation for the surface be
G(x,y,z) =0 . (4.345)

We wish to extremize the distance,

b b
D= / ds = / Vdz? + dy? +d=? . (4.346)

a

We introduce a parameter ¢ defined on the unit interval: ¢ € [0, 1], such that 2(0) = z,, z(1) = z,, efc.
Then D may be regarded as a functional, viz.

1
Dlz(t),y(t),2(t)] = /dt Viz+ g2+ 22 . (4.347)
0
We impose the constraint by forming the extended functional, D*:
1
D*[x(t), y(t), 2(t), A(t)] = /dt {\/552 + 92+ 22+ AG(w,y, z)} , (4.348)
0
and we demand that the first functional derivatives of D* vanish:
o*  d & 3 oG 0
Sx(t)  dt\ /32 + 2 + 22 oxr
0D* d < Y > oG
—— = Y A=—=0
y(t) dt \ \/i2 + 42 + 22 dy
(4.349)
o d z \ oG 0
6z(t)  dt\ \/i% 1 2 + 22 0z
o = Gl.,2) =0

BY0)
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Thus, .. . . .. . . .. . .
vE — 20 vy -y vE— 20
= = = 4.
A) v2 0,G 02 9,G v20,G (4.350)
with v = /@2 4+ 92+ 22 and 0, = a%, etc. These three equations are supplemented by G(x,y,z) = 0,
which is the fourth.

4.10.7 Constraints in Lagrangian mechanics

Let us write our system of constraints in the differential form

> Gigla,t)dg, + hilg,t)dt =0  (j=1,...,k) . (4.351)
o=1

If the partial derivatives satisfy

8gj0 agjgl Z?gjg 8hj
— =1 4.352
P ~ 00 0t g (4352
then the k differentials can be integrated to give dG j(q, t) =0foreach j € {1,...,k}, where
_0G, _0G,
9jo = 0, , h; = 5 (4.353)
The action functional is
Sl{a, (1) / #L{a} {irht)  (o=1,.om) | (4354)

subject to boundary conditions dq,, (t.) = dq,(t,) = 0. The first variation of S is given by

68 = / dt Z { T %(%) } 5qs . (4.355)

Since the {¢-(t)} are no longer independent, we cannot infer that the term in brackets vanishes for each
index 0. What are the constraints on the variations dg,(¢)? The constraints are expressed in terms of
virtual displacements which take no time: 6¢ = 0. Thus,

> 9i0(a:1) 6q,(1) =0 (4.356)

where j = 1,...,k is the constraint index. We may now relax the constraint by introducing % un-
determined functions \;(t), by adding integrals of the above equations with undetermined coefficient

functions to 4S:
f: oL _ Z)\ )gio(q,t) p0q, () =0 . (4.357)
<\ 94 aqg A

o= 7=1
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Now we can demand that the term in brackets vanish for all 0. Thus, we obtain a set of (n+k) equations,

d (LY 0L < _
a <a_q0> — 8—(]0 = Z_:)\](t) gyo(q>t) == Qo

=t (4.358)
Zgyo(Q7t)qcr+hj(Q7t) =0 )
o=1
in (n 4+ k) unknowns {ql, RN D S k} Here, Q. is the force of constraint conjugate to the generalized
coordinate q,. Thus, with
k
oL oL
_ 9 F =2 = X qg. 4.359
pcr aq.o— ) o 8(]0 ) QO’ jz_; ¥ gjO' ) ( )
we write Newton’s second law as
P, =F, +Q, . (4.360)
Note that we can write 55 oL  d /L
—_—— = — — = 4.361
sat) = 3~ i 5) (436D
and that the instantaneous constraints may be written
g;-6g=0 (Gj=1,...,k) . (4.362)
Thus, by demanding
o5 Ek: A.g. =0 (4.363)

we require that the functional derivative be linearly dependent on the & vectors g,.

4.10.8 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter family of coordinate
transformations results in an associated conserved quantity A, and how a lack of explicit time depen-
dence in L results in the conservation of the Hamiltonian H. In deriving both these results, however,
we used the equations of motion p, = F,. What happens when we have constraints, in which case

p0:F0+Q0?

Let’s begin with the Hamiltonian. We have H = ¢, p, — L, hence

this vanishes this is Qa
—N— —N—
B 2 it (1o 25 4,2
dt 7 84,) ° 7 0q,) 7 Ot (4.364)
oL
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We now use

Q,4, = /\j 9io 4o = —/\j hj (4.365)
to obtain JH 5L
= M\ h - = 4.
o )\j i B (4.366)

We therefore conclude that in a system with constraints of the form g;, 4, + h; = 0, the Hamiltonian is
conserved if each h; = 0 and if L is not explicitly dependent on time. In the case of holonomic constraints,

h; = %, so H is conserved if neither L nor any of the constraints G, is explicitly time-dependent.

Next, let us rederive Noether’s theorem when constraints are present. We assume a one-parameter
family of transformations ¢, — G- (¢) leaves L invariant. Then
o dL _ 0L 9is 0L 0i,
¢ 94, 9¢  9g, I¢

= (Py — Q) %—i" + Py % (%—%) (4.367)
d (. 04 _ 04y
~i( 5) 05
Now let us write the constraints in differential form as
G0 Gy + hydt +k;d =0 . (4.368)
We now have o i
= Akjo (4.369)

which says that if the constraints are independent of ¢ then A is conserved. For holonomic constraints, this
means that
- 0G;

G;(q(¢),t) =0 = kﬂ'—a—g_o , (4.370)

i.e. G;(q,t) has no explicit ¢ dependence.

4.11 Constraints: Worked Examples

Here we consider several example problems of constrained dynamics, and work each out in full detail.

4.11.1 One cylinder rolling off another
As an example of the constraint formalism, consider the system in fig. 4.14, where a cylinder of radius a
rolls atop a cylinder of radius R. We have two constraints:

Gy(r,0,,0,)) =r—R—a=0 (cylinders in contact) (4.371)
Gy (r,0,,0,) = RO —a (62 —61) =0 (no slipping) (4.372)
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from which we obtain the g;,:

1 0 0
which is to say
-1, d-p , ZL=0
aac: ggl " oG (4374
Gy _ o0ty _ 9y _ _
o 0 0 g, Rt g =
The Lagrangian is
L=T-U=sM(#*+r%03) + 1103 — Mgr cost, , (4.375)

where M and [ are the mass and rotational inertia of the rolling cylinder, respectively. Note that the
kinetic energy is a sum of center-of-mass translation 73, = 2 M (72 + 7% 67) and rotation about the center-

of-mass, Tro1 = %I 9%. The equations of motion are

d (0L L )
<8> g —Mf—Mr9%+Mgcosl91=/\15Qr

dt\or )  or

d (0L oL . . .

pr (8—91> ~ 20, = Mr?6; + 2Mri 6, — Mgrsinf; = (R+a) Ay = Qy, (4.376)
d ( OL oL .

dt <392> 005 bo=—ak=0Q,

To these three equations we add the two constraints, resulting in five equations in the five unknowns
{T7 917 927 )\17 )\2}

We solve by first implementing the constraints, which give r = (R + a) a constant (i.e. 7 = 0), and
05 = (14 £) 6,. Substituting these into the above equations gives

~M(R+a)0} + Mgcosy =\ (4.377)
M(R+ a)*0; — Mg(R+a)sinf; = (R+a) Ay (4.378)
I<R : a>9’1 - —a)y . (4.379)
From eqn. 4.379 we obtain
T . .
o= —thy= Tt (4.380)
a a

which we substitute into eqn. 4.378 to obtain

I N
<M + ¥> (R+ a)291 — Mg(R+a)sin; =0 . (4.381)
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Multiplying by 6;, we obtain an exact differential, which may be integrated to yield

I \. Mg Mg
1 2 o
§M<1+Ma2>91+R+a00501:R+a00891 . (4.382)

Here, we have assumed that §; = 0 when §; = 03, i.e. the rolling cylinder is released from rest at §; = 6.
Finally, inserting this result into eqn. 4.377, we obtain the radial force of constraint,

Mg

QT:1+a

{(3 + a) cosf; — 2cos 9;’} , (4.383)

where o = I/Ma? is a dimensionless parameter (0 < « < 1). This is the radial component of the normal
force between the two cylinders. When @, vanishes, the cylinders lose contact — the rolling cylinder flies
off. Clearly this occurs at an angle 6, = 6}, where

2cos 6°
0F =cos™t [ L) 4.384
oot (520 (438)

The detachment angle 67 is an increasing function of «, which means that larger I delays detachment.
This makes good sense, since when I is larger the gain in kinetic energy is split between translational
and rotational motion of the rolling cylinder. Note also that Q,(67) = Mg cos 6 balances the initial
radial component of the force of gravity.

Finally, note that the differential equation

1/2
dt = <R il “) d0 (4.385)

29 \/cos By — cos b,

may be integrated to yield 6, (¢) for ¢ € [0,¢*], where 6, (t*) = 67, i.e. t* is the time to detachment.

4.11.2 Frictionless motion along a curve

Consider the situation in fig. 4.15 where a skier moves frictionlessly under the influence of gravity along
a general curve y = h(z). The Lagrangian for this problem is

L=1im(@*+ ) — mgy (4.386)

and the (holonomic) constraint is
G(z,y)=y—h(z)=0 . (4.387)

Accordingly, the Euler-Lagrange equations are

d(0L\ 0L 4G
i5) o= (4359
where ¢; = x and ¢, = y. Thus, we obtain
= )\ h/ -Q,
e () =Q (4.389)

mij+mg=\=Qy
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Figure 4.15: Frictionless motion under gravity along a curved surface. The skier flies off the surface
when the normal force vanishes.

We eliminate y in favor of z by invoking the constraint. Since we need §j, we must differentiate the
constraint, which gives
y=h'(zx)z , G=h(x)i+h"(z)i* . (4.390)

Using the second Euler-Lagrange equation, we then obtain
% =g+h(x)i+n"(x)i* . (4.391)
Finally, we substitute this into the first E-L equation to obtain an equation for = alone:
(1 + [h'(m)]2> i+ W ()W (@) i+ gh(z) =0 . (4.392)
Had we started by eliminating y = h(x) at the outset, writing
L(x,%) = %m(l + [h/(az)]2> 2 —mgh(z) (4.393)

we would also have obtained this equation of motion.

The skier flies off the curve when the vertical force of constraint (), = A starts to become negative,
because the curve can only supply a positive normal force. Suppose the skier starts from rest at a height
Yo- We may then determine the point « at which the skier detaches from the curve by setting A(z) = 0.
To do so, we must eliminate 7 and & in terms of . For &, we may use the equation of motion to write

/ W h -2
= _ <M> : (4.394)
1+ H

which allows us to write

"2
A= m<%> . (4.395)
L+
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Figure 4.16: Finding the local radius of curvature: z = 1?/2R.

To eliminate &, we use conservation of energy,

E = mgyy = sm(1 + 1'*) &% + mgh (4.396)
which fixes
—h

i2 — 9 (yo > : 4.397
A (.597)

Putting it all together, we have

mg /2 "
MNz)=—"—==51+h"+2(y,—h)h . (4.398)
(1+ 12)? { ’ j

The skier detaches from the curve when A(z) = 0, i.e. when

14+ K%+ 2y, —h) " =0 . (4.399)

There is a somewhat easier way of arriving at the same answer. This is to note that the skier must fly off
when the local centripetal force equals the gravitational force normal to the curve, i.e.

) =mg cosf(z) , (4.400)

where R(z) is the local radius of curvature. Now tanf = 1/, so cosf = (1 + A’ 2)_1/ ?. The square of

the velocity is v = @2 + ¢* = (1 + K 2) i2. What is the local radius of curvature R(z)? This can be
determined from the following argument, and from the sketch in fig. 4.16. Writing x = 2* + ¢, we have

y = h(z*) + h'(z*) e + 10" (z) e+ . (4.401)
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We now drop a perpendicular segment of length z from the point (z,y) to the line which is tangent to
the curve at (2*, h(z*)). According to fig. 4.16, this means

(Z) - \/ﬁ (11’) -z \/ﬁ <_1h/> : (4.402)

Thus, we have
Yy = h e+ %h”e2
— < 77+Zh/ > —i—lh”< 77+Zh/ >2
Viznr) P \Viaz (4.403)

:nh’+zh’2 h//nz nh’—z

+ +0(nz) = —/m—
Vitn? o 2(1+07) e) V1+h?
from which we obtain
h// 772 3
z=——————+0(n°) (4.404)

2(1+ 12)*?

and therefore

1 ;o 12\3/2
R() =~y (1+ @) (4.405)
Thus, the detachment condition,
mu? m b/ 32 mg
=— = = mg cos 0 (4.406)
R V1I+R? /14 h?

reproduces the result from eqn. 4.395.

4.11.3 Disk rolling down an inclined plane

A hoop of mass m and radius R rolls without slipping down an inclined plane. The inclined plane has
opening angle o and mass M, and itself slides frictionlessly along a horizontal surface. Find the motion
of the system.

Solution : Referring to the sketch in fig. 4.17, the center of the hoop is located at

r=X+scosa—asina
. (4.407)
y=sslna—+acosa

where X is the location of the lower left corner of the wedge, and s is the distance along the wedge to
the bottom of the hoop. If the hoop rotates through an angle 6, the no-slip condition is a § + $ = 0. Thus,

L:%MX2+%m(i2+y2)+%Ié2—mgy
L I\., o - ) (4.408)
=3 m+¥ 5%+ 5(M +m)X* +mcosa X § —mgs sina — mga cos a
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Figure 4.17: A hoop rolling down an inclined plane lying on a frictionless surface.

Since X is cyclic in L, the momentum
Py = (M +m)X + mcosas , (4.409)

is preserved: Py = 0. The second equation of motion, corresponding to the generalized coordinate s, is
I \. s .
<1+—2>3+cosaX:—g sina . (4.410)
ma

Using conservation of Py, we eliminate 5 in favor of X, and immediately obtain

g sin a cos o

X = =ay . (4.411)
(1+2) (14 55 ) — co?a
The result
M\ -
g(l + R) sin o
§= = a, (4.412)
<1+ M) (1+ #) — cos? a

follows immediately. Thus,

(0) + X (0)t + 2at?
s(t) = s(0) + 5(0) t + La t?

Jad
I
<

(4.413)

Note that as < 0 while ay > 0, i.e. the hoop rolls down and to the left as the wedge slides to the right.
Note that I = ma? for a hoop; we’ve computed the answer here for general 1.

4114 Pendulum with nonrigid support

A particle of mass m is suspended from a flexible string of length ¢ in a uniform gravitational field. While
hanging motionless in equilibrium, it is struck a horizontal blow resulting in an initial angular velocity
wy. Treating the system as one with two degrees of freedom and a constraint, answer the following:
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(a) Compute the Lagrangian, the equation of constraint, and the equations of motion.

Solution : The Lagrangian is .
L= %m (7"2 + 72 92) + mgr cosf . (4.414)

The constraint is r = ¢. The equations of motion are

mit —mr % —mg cos = X

) . (4.415)
mr2 60 +2mri 6 —mgsind = 0
(b) Compute the tension in the string as a function of angle 6.
Solution : Energy is conserved, hence
%mfz 02 — mgl cos § = %mfz 93 —mglcost, . (4.416)
We take 6, = 0 and 6, = w,. Thus,
62 = w% — 202 (1 — cos 9) , (4.417)
with 2 = /g/¢. Substituting this into the equation for A, we obtain
wp
A=mg{2—3cosf — 02 . (4.418)

(c) Show that if w? < 2¢/¢ then the particle’s motion is confined below the horizontal and that the tension
in the string is always positive (defined such that positive means exerting a pulling force and negative
means exerting a pushing force). Note that the difference between a string and a rigid rod is that the
string can only pull but the rod can pull or push. Thus, the string tension must always be positive or else the
string goes “slack”.

Solution : Since 6?2 > 0, we must have

W01 st (4.419)

502 2 . .
The condition for slacknessis A = 0, or

2

wWo 3

Thus, if w3 < 2022, we have
2
1>%>1—0089>1—%0089 , (4.421)

and the string never goes slack. Note the last equality follows from cos > 0. The string rises to a
maximum angle

6. =cos ( - %) . (4.422)

(d) Show that if 2¢g/¢ < w? < 5g/¢ the particle rises above the horizontal and the string becomes slack
(the tension vanishes) at an angle 6*. Compute 0*.



4.11. CONSTRAINTS: WORKED EXAMPLES 143

Solution : When w? > 2(2?, the string rises above the horizontal and goes slack at an angle

2
. _ w
6* = cos! (g - 3—(32) . (4.423)

This solution craps out when the string is still taut at = 7, which means w3 = 507
(e) Show that if w? > 5¢/¢ the tension is always positive and the particle executes circular motion.

Solution : For w? > 5§22, the string never goes slack. Furthermore, § never vanishes. Therefore, the
pendulum undergoes circular motion, albeit not with constant angular velocity.

4.11.5 Falling ladder

A uniform ladder of length ¢ and mass m has one end on a smooth horizontal floor and the other end
against a smooth vertical wall. The ladder is initially at rest and makes an angle 6, with respect to the
horizontal.

¥

()

%

x

Figure 4.18: A ladder sliding down a wall and across a floor.

(a) Make a convenient choice of generalized coordinates and find the Lagrangian.

Solution : I choose as generalized coordinates the Cartesian coordinates (z,y) of the ladder’s center of
mass, and the angle 6 it makes with respect to the floor. The Lagrangian is then

L=3im @ +¢*) +316%—mgy . (4.424)

There are two constraints: one enforcing contact along the wall, and the other enforcing contact along
the floor. These are written

Gi(z,y,0) =2 —10cos§ =0

1(@9,) 20" (4.425)

Ga(z,y,0) =y —5{sinf =0

(b) Prove that the ladder leaves the wall when its upper end has fallen to a height 2 L sin 6.
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Solution : The equations of motion are

d (0L oL 0G;
Rl i N A —2 4.426
dt (&jg) 945 2]: ? 94y (420
Thus, we have
my+mg = Ay = Q, (4.427)
16= %6()\1 sinf — A, cosH) =Qy

We now implement the constraints to eliminate « and y in terms of §. We have

iz—%ﬁsin@é , a'éz—%ﬁcos@@—%ﬁsin@é

| . . 4.428
y:%KCOSHH ) y:_%681n992+%600899 ( )

We can now obtain the forces of constraint in terms of the function 6():

A\, = —2ml (sin6 6 + cos 0 6>
1= ol . : ) (4.429)
Ay = —i—%m@ (00599 — sin992) + mg

We substitute these into the last equation of motion to obtain the result

16 =—1I,6—Lmgt coso (4.430)

which is to say (1+a) § = —2w? cos @, with I = 1m(?, o = I /I and w, = \/g/¢. This may be integrated
once (multiply by 6 to convert to a total derivative) to yield

1(1+a) 0% 4+ 2w2 sinf = 2wd sinf, (4.431)

which is of course a statement of energy conservation. This,

02— 4wi (sinfp — sin0) , b _2w3 cos 6 (4.432)
I+a 1+«
We may now obtain X, (#) and \,(0):
A(0) =— 1719& (3sinf — 2sin6,) cosf
Ay (0) = % {(3 sinf — 2sin6,) sinf + a} 49

Demanding A, (#) = 0 gives the detachment angle = 6, where

sinf, = % sinf, . (4.434)
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Note that A\, (6,) = mga/(1 + a) > 0, so the normal force from the floor is always positive for 6 > 6.
The time to detachment is

0
Tl(eo):/de_ Lt

— = / : : (4.435)
0 2wp v/sinfy — sin 6
fa
(c) Show that the subsequent motion can be reduced to quadratures (i.e. explicit integrals).
Solution : After the detachment, there is no longer a constraint ;. The equations of motion are
ma =0 (conservation of z-momentum)
my+mg=A\ (4.436)

Ié:—%ﬁ)\ cosf |

along with the constraint y = 3¢ sinf. Eliminating y in favor of ¢ using the constraint, the second
equation yields . )
A=mg— imlsin06®+ iml cos0 . (4.437)

Plugging this into the third equation of motion, we find
I6=-2 I, wi cos b + I, sin6 cos 6 62 — I, cos’06 . (4.438)

Multiplying by § one again obtains a total time derivative, which is equivalent to rediscovering energy
conservation: _
E=34(I+41,cos®0) 6> + 21 wj sinf . (4.439)

By continuity with the first phase of the motion, we obtain the initial conditions for this second phase:

sin 6,

0 =sin~! (sinf,) , O=-2u, S0t (4.440)
Thus,
) 4w? sin by .
= %(I + 1, — IO sin? 90) : m + %mgﬁ sin 6,

. (4.441)
9 4 sin? 0y .
:210(4.)0‘ 1—1—?1_‘_—& SIHGO

(d) Find an expression for the time 7'(6,) it takes the ladder to smack against the floor. Note that,
expressed in units of the time scale \/L/g, T' is a dimensionless function of §,. Numerically integrate
this expression and plot 7" versus 6, .

Solution : The time from detachment to smack is

2
T,(60) = dH 1 dﬂ\/ 1+ o cos? 0 ' (4.442)

" 2w wo 247 511n+§0 sin @, — sin 6
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Inf37):= T[x_] s= NIntegrate[‘\/(‘l /3) /7 (x-8inly]) , {y, Arcsin[2x / 3], ArcSin[x] - 10'9}]/2

Inf38]:= 8[x_] := NIntegrate[

(1+(a/3) (cos[yl)~2) / ((1-(x/3)~2) x - sin[y]) , {y, O, Arcsin[2x /3]}] /2

Inf39]:= Q[x_] :=T[x] +s[x]

Inf43):= Plot[Q[x], {x, O, 1}]

8

! I
0.2 0.4 0.6 0.8 1

Figure 4.19: Plot of time to fall for the slipping ladder. Here = = sin 6.

The total time is then 7'(6,) = T,(8,) + T(6,). For a uniformly dense ladder, I = -5 m(?
therefore o = 1.

(e) What is the horizontal velocity of the ladder at long times?
Solution : From the moment of detachment, and thereafter,

4g/t

. 3/2
(o) b

T = —%E sinff =

(f) Describe in words the motion of the ladder subsequent to it slapping against the floor.

= %Io,and

(4.443)

Solution : Only a fraction of the ladder’s initial potential energy is converted into kinetic energy of
horizontal motion. The rest is converted into kinetic energy of vertical motion and of rotation. The
slapping of the ladder against the floor is an elastic collision. After the collision, the ladder must rise
again, and continue to rise and fall ad infinitum, as it slides along with constant horizontal velocity.

4.11.6 Point mass inside rolling hoop

Consider the point mass m inside the hoop of radius R, depicted in fig. 4.20. We choose as generalized
coordinates the Cartesian coordinates (X, Y') of the center of the hoop, the Cartesian coordinates (z,y)
for the point mass, the angle ¢ through which the hoop turns, and the angle # which the point mass
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makes with respect to the vertical. These six coordinates are not all independent. Indeed, there are only
two independent coordinates for this system, which can be taken to be § and ¢. Thus, there are four
constraints:

X-Rp=G, =0
Y-R=G,=0
r—X —Rsin0 =G5 =0
y—Y +Rcos0 =G, =0

(4.444)

T M

__ |
I

0

Figure 4.20: A point mass m inside a hoop of mass M, radius R, and moment of inertia /.

The kinetic and potential energies are easily expressed in terms of the Cartesian coordinates, aside from

the energy of rotation of the hoop about its CM, which is expressed in terms of ¢
T — LM(X2+V2) 4 (2 + 02) + LT 42
sM(X™+Y7) + gm(i”+9°) + 51 ¢ (4.445)
U= MgY +mgy

The moment of inertia of the hoop about its CM is I = M RZ, but we could imagine a situation in which
I were different. For example, we could instead place the point mass inside a very short cylinder with
two solid end caps, in which case I = ;M R%. The Lagrangian is then

L=3iM(X*+Y?) + im(i® +9?) + 314> — Mgy —mgy . (4.446)

Note that L as written is completely independent of § and 6!

Continuous symmetry

Note that there is a continuous symmetry to L which is satisfied by all the constraints, under

XQO=X+ . VQO=Y . #Q=vtC . 0=y , HQ)=otw . 6QO=0 . (@44

Thus, according to Noether’s theorem, there is a conserved quantity

OL OL 1 0L . I .
N=—+——+——=MX r + — . 4.44
8X+556+R(9¢ +m:13—|—R<;5 (4.448)

This means A = 0. This reflects the overall conservation of momentum in the z-direction.
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Energy conservation

Since neither L nor any of the constraints are explicitly time-dependent, the Hamiltonian is conserved.
And since T" is homogeneous of degree two in the generalized velocities, we have H = E =T + U:

E=LiMX?*+ V%) + $m(@® +9) + 316> + MgY +mgy . (4.449)

Equations of motion

We have n = 6 generalized coordinates and £ = 4 constraints. Thus, there are four undetermined
multipliers {A1, A2, A3, A4} used to impose the constraints. This makes for ten unknowns: X, Y, z, y, ¢,
0, A1, Ay, A3, and \,. Accordingly, we have ten equations: six equations of motion plus the four equations
of constraint. The equations of motion are obtained from

k

d (LY oL oG,
a(%) . +;AJ o (4.450)

Taking each generalized coordinate in turn, the equations of motion are thus

MX =X\ — )3
MY = Mg+ Xy — M\
mIL = A3

. (4.451)
myj = —mg + Ay

I$=—RX\
0= —Rcosf 3 — Rsinf \4

Along with the four constraint equations, these determine the motion of the system. Note that the last

of the equations of motion, for the generalized coordinate ¢, = 0, says that (), = 0, which means that
the force of constraint on the point mass is radial. Were the point mass replaced by a rolling object, there
would be an angular component to this constraint in order that there be no slippage.

Implementation of constraints

We now use the constraint equations to eliminate X, Y, z, and y in terms of § and ¢:
X=R¢ , Y=R , xz=R¢p+Rsinf , y=R(l—cosb) . (4.452)
We also need the derivatives:
i =Rd+RcoshO , i&=R¢+ Rcos00— Rsinfd? (4.453)

and . .. .
g =Rsinff , ij=Rsinf0+ Rcos6* (4.454)
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as well as . )
X=R¢ , X=R¢op , Y=0 , Y=0 . (4.455)

We now may write the conserved charge as

1

A
R

(I + MR*+ mR?) ¢+ mRcosf6 . (4.456)

This, in turn, allows us to eliminate (b in terms of § and the constant A:
S <— ~ fcos 9> , (4.457)

where v = mR2?/(I + M R?).

The energy is then
E =3I+ MR? P + sm(R? ¢* + R%6? + 2R? cosﬂ(ﬁé) + MgR+ mgR(1 — cos6)

1+ vysin?6\ . 2g vy AV 2Mg (4.458)
_ 1, p2 2 _
= 3mR {( T >9 —i—R(l COSQ)+1+’Y 7 + i .

The last two terms inside the big bracket are constant, so we can write this as

_ gk

1 + vsin?6
_ 4.459
( = (4.459)

2 _ p—
Ty >9 + R(l cos 0)

Here, k is a dimensionless measure of the energy of the system, after subtracting the aforementioned
constants. If k > 1, then §> > 0 for all §, which would result in “loop-the-loop’ motion of the point
mass inside the hoop — provided, that is, the normal force of the hoop doesn’t vanish and the point mass
doesn’t detach from the hoop’s surface.

Equation motion for 6(t)

The equation of motion for 6 obtained by eliminating all other variables from the original set of ten
equations is the same as E = 0, and may be written

1+’ysin29> . <’ysin0czos€> o g
— ] — === . 4.460
< 1+7v + 147 R ( )

We can use this to write 6 in terms of 62, and, after invoking eqn. 4.459, in terms of 6 itself. We find

. 4q 147 .
92 = = <m> (k: — sm2%9)

(4.461)
g (1+7)sind

/= 21 .
" R (1+78in29)2 [47 (k — sin®46) cos 6 + 1 + ysin”6
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Forces of constraint

We can solve for the );, and thus obtain the forces of constraint

A3 = mi = mR ¢+ mRcosf —mRsin 6§ §?

.. . 4.462
:m—R[H cosf — 6%sin 6 ( )
1+
and
A = mij+mg = mg +mRsinf 0 + mR cos 0 6>
b o g (4.463)
= mR[Q sinf + 0°sinf + R]
and
I . (1491
M=——0¢= A
L= TROT T (4.464)

A2 = (M +m)g+mj =+ Mg
One can check that A3 cosf + A\4sinf = 0.

The condition that the normal force of the hoop on the point mass vanish is A3 = 0, which entails Ay = 0.
This gives

— (1 + ysin?0) cos6 = 4(1 + ) (k —sin*16) . (4.465)
Note that this requires cos§ < 0, i.e. the point of detachment lies above the horizontal diameter of the

hoop. Clearly if £ is sufficiently large, the equality cannot be satisfied, and the point mass executes a
periodic ‘loop-the-loop” motion. In particular, setting § = 7, we find that

1

k. =1
¢ +4(1—1—7)

(4.466)

If £ > k., then there is periodic ‘loop-the-loop” motion. If k < k., then the point mass may detach at a
critical angle 6%, but only if the motion allows for cos ¢ < 0. From the energy conservation equation, we
have that the maximum value of § achieved occurs when 6§ = 0, which means

cosl .. =1—2k . (4.467)

If % < k < k¢, then, we have the possibility of detachment. This means the energy must be large enough
but not too large.

412 Appendix: Legendre Transformations

A convex function of a single variable f(z) is one for which f”(x) > 0 everywhere. The Legendre transform
of a convex function f(z) is a function g(p) defined as follows. Let p be a real number, and consider the
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Figure 4.21: Construction for the Legendre transformation of a function f(x).

151

line y = px, as shown in fig. 4.21. We define the point x(p) as the value of = for which the difference
F(z,p) = px — f(z) is greatest. Then define g(p) = F(z(p),p).” The value z(p) is unique if f(z) is

convex, since z(p) is determined by the equation
f'(x) =p

Note that from p = f’(z(p)) we have, according to the chain rule,

hence

In higher dimensions, the generalization of the definition f”(z) > 0 is that a function F(z,...

convex if the matrix of second derivatives, called the Hessian,

O%’F

Hij(@) = Ox; Oz

“Note that g(p) may be a negative number, if the line y = px lies everywhere below f(z).

(4.468)

(4.469)

(4.470)
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is positive definite. That is, all the eigenvalues of H;;(x) must be positive for every x. We then define
the Legendre transform G(p) as
G(p)=p -z — F(x) (4.473)

where p = V F. Note that
dG =z -dp+p-de—VF -de=x-dp , (4.474)

which establishes that G is a function of p and that

96 _ T; . (4.475)

8pj
Note also that the Legendre transformation is self dual, which is to say that the Legendre transform of
G(p)is F(x): F — G — F under successive Legendre transformations.

We can also define a partial Legendre transformation as follows. Consider a function of ¢ variables F'(z,y),
where x = {z{,...,2z,,} and y = {yy, ..., yn}, with ¢ = m + n. Define p = {p;,...,p,,}, and

Gp,y)=p-z— F(z,y) , (4.476)
where oF
Po=75— » a€ {1,...,m} . (4.477)

a

These equations are then to be inverted to yield

ra=ap9) = (4479
Note that OF
Pa= g (z(p.y).y) - (4.479)
Thus, from the chain rule,
2 2
5ab:%: OF axc: oF  9G 7 (4.480)
op, 0Ox,0x.dp, Ox,0x. dp.Op,
which says
oG Ox
=2 Kl 4.481
OpoOp,  Op, (145D
where the m x m partial Hessian is
o°F dp
= 2t — 4.482
Oz, 0z, Ox, ab ( )
Note that K, = K;, is symmetric. And with respect to the y coordinates,
G O°F
= L (4.483)

0y, 9y, 0y, 0y,
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where
_OF
w By, Oy,

is the partial Hessian in the y coordinates. Now it is easy to see that if the full ¢ x ¢ Hessian matrix H;;
is positive definite, then any submatrix such as K, or L, must also be positive definite. In this case, the
partial Legendre transform is convex in {p,,...,p,,} and concave in {y,,...,y,}

(4.484)
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Chapter 5

Central Forces and Orbital Mechanics

5.1 Reduction to a one-body problem

Consider two particles interacting via a potential U(r;,7,) = U(|r; — ry|). Such a potential, which
depends only on the relative distance between the particles, is called a central potential. The Lagrangian
of this system is then

L=T-U=3m# +3myp3 —U(jry —1y|) . (5.1)

5.1.1 Center-of-mass (CM) and relative coordinates

The two-body central force problem may always be reduced to two independent one-body problems,
by transforming to center-of-mass (R) and relative () coordinates (see fig. 5.1), viz.

myT + Moty

my + mo r=r o (5.2)
r =R+ _m2 T Ty =R~ M r (5.3)
mi1 + msy mi +ma
We then have
L="1mq7?+imyr?—U(r, —7r
2T 2MaT9 (| 1 2|) (5.4)
= g MR + gy —U(r)
where
M =m; +m, (total mass)
(5.5)
mimsg
h=— (reduced mass)
m1 + ma

155



156 CHAPTER 5. CENTRAL FORCES AND ORBITAL MECHANICS

my

my

Figure 5.1: Center-of-mass (R) and relative (r) coordinates.

We may thus write L = L, + L., where L, = %]\JR2 and

rel”
Ly = g = U(r) = 5u(i* +r26*) = U(r) . (5.6)
2D polar coordinates

Recall that in 2D polar coordinates,

T =cos¢x+singy

(5.7)
¢=—sinpx +cosopy
whence # x ¢ = % et cyc. The differentials are then dr = d¢ ¢ and dp = —d¢#, and so
f:%(rﬁ)zww%:fﬁww : (5.8)
Squaring, we obtain 72 = 72 + r2¢?. Note also that
ou(r) ., or v,
Sa = U'(r) 5o = uir) , (5.9)
since
1 30,2 10,2 2 2 or o
rdr = 5d(r°) = sd(z” +y° +2°) = vdx +ydy + zdz = e = o= (5.10)
Thus, F(r) = —=VU(r) = =U'(r) 7.
5.1.2 Solution to the CM problem
We have 0L/0R = 0, which gives R = 0 and hence
R(t) = R(0) + R(0)t . (5.11)

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.
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5.1.3 Solution to the relative coordinate problem

Angular momentum conservation: We have that £ = r» x p = ur X 7 is a constant of the motion.
This means that the motion 7(¢) is confined to a plane perpendicular to £. It is convenient to adopt
two-dimensional polar coordinates (7, ¢). The magnitude of £ is

0= wr’d=2uA (5.12)

where dA = %r2d¢ is the differential element of area subtended relative to the force center. The relative
coordinate vector for a central force problem subtends equal areas in equal times. This is known as Kepler’s
Second Law.

Energy conservation: The equation of motion for the relative coordinate is

d (0L oL . ou
E(%)‘ar RO 1)
Taking the dot product with 7, we have
. . oUu .
O=pur-r+ -7
or (5.14)

= il v} =

Thus, the relative coordinate contribution to the total energy is itself conserved. The total energy is of
course By, = E + $ M R>.

Since £ is conserved, and since r - £ = 0, all motion is confined to a plane perpendicular to £. Choosing
coordinates such that 2 = £, we have

€2
1,52 _ 1,2
E=sur”+U(r) = gur” + 22 +U(r)
— Lui? + Ut (r) (5.15)
52

UCH(T) = W—FU(T)

Integration of the Equations of Motion, Step I: The second order equation for r(t) is

dE L dU(r)  dUe(r)

— = = — = . 5.16
dt 0 = w purs3 dr dr (5:16)

However, conservation of energy reduces this to a first order equation, via
=y (E - Ueﬁ(r)) ~ dt=+ . (5.17)

\/E — 5k - U(r)
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This gives ¢(r), which must be inverted to obtain r(¢). In principle this is possible. Note that a constant
of integration also appears at this stage — call it 7o = r(t = 0).

Integration of the Equations of Motion, Step II: Afterfindingr(t) one can integrate to find ¢(t)
using the conservation of ¢:
14 14
= dp=——dt . 5.18
6= (5.18)

This gives ¢(t), and introduces another constant of integration — call it ¢, = ¢(t = 0).

¢

:W

Pause to Reflect on the Number of Constants: Confined to the plane perpendicular to ¢, the rela-
tive coordinate vector has two degrees of freedom. The equations of motion are second order in time,

leading to four constants of integration. Our four constants are £, ¢, rg, and ¢,,.

The original problem involves two particles, hence six positions and six velocities, making for 12 ini-
tial conditions. Six constants are associated with the CM system: R(0) and R(0). The six remaining
constants associated with the relative coordinate system are £ (three components), E, r,, and ¢,.

Geometric Equation of the Orbit: From /= ur?¢, we have

d ¢ d
- = = Ad
dt  pr?de (5-19)
leading to
dr  2(dr\? ur?
- =) =_F 2
it v <d¢>> @ Fotr (520
where F(r) = —dU(r)/dr is the magnitude of the central force. This second order equation may be
reduced to a first order one using energy conservation:
E = %m“z + Ueg(7)
2 (drY (5.21)
= 5 (1) * 0
Thus,
14 dr
dp = + . , 5.22
i V2 12 V E — Ueff(’r) ( )

which can be integrated to yield ¢(r), and then inverted to yield r(¢). Note that only one integration
need be performed to obtain the geometric shape of the orbit, while two integrations — one for r(¢) and
one for ¢(t) — must be performed to obtain the full motion of the system.

It is sometimes convenient to rewrite Eqn. 5.20 in terms of the variable s = 1/r:

d’s K -1
W+s:—mF(s ) - (5.23)
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Ueff \. gQ
\‘ 2 ur?
\‘
\ .
NS
i ———
R L r
i ~ T "
. E
g F=g
3 |
-2,
Figure 5.2: Stable and unstable circular orbits. Left panel: U(r) = —k/r produces a stable circular orbit.
Right panel: U(r) = —k/r* produces an unstable circular orbit.

As an example, suppose the geometric orbit is 7(¢) = k e®?, known as a logarithmic spiral. What is the
force? We invoke (5.20), with s”(¢) = o? s, yielding

2
F(sH)=-(1+a*)—s = F@r)= —% (5.24)
with o
o = ’“2—2 1. (5.25)

The general solution for s(¢) for this force law is

Acosh(ag) + Bsinh(—a¢)  if £2 > uC
s(¢) = (5.26)
A’ cos (Jal¢) + B sin (|al¢) if 2 < pC

The logarithmic spiral shape is a special case of the first kind of orbit.

5.2 Almost Circular Orbits

A circular orbit with r(t) = r, satisfies #* = 0, which means that U/;(r;) = 0, which says that F(r,) =
—0?/urd. This is negative, indicating that a circular orbit is possible only if the force is attractive over
some range of distances. Since 7 = 0 as well, we must also have E = U.g(r,). An almost circular orbit
has r(t) = ry + n(t), where |n/r,| < 1. To lowest order in 7, one derives the equations

dn

1
az —wn ) w? = ; e/icf(TO) . (5.27)

If w? > 0, the circular orbit is stable and the perturbation oscillates harmonically. If w? < 0, the circular
orbit is unstable and the perturbation grows exponentially. For the geometric shape of the perturbed
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orbit, we write r = r, + 1), and from (5.20) we obtain

d*n ura
= <€—20 Fl(ry) — 3> n=-5n, (5.28)
with
dlog F
g2 = g4 doeFr) (5.29)
dlogr
To
The solution here is
n(¢) = ny cos B(¢ —&g) (5.30)
where 7, and §, are initial conditions. Setting = 7, , we obtain the sequence of ¢ values
2
B
at which 7(¢) is a local maximum, i.e. at apoapsis, where r = r, + n,. Setting n = —n,, (i.e. r = r, — 1) is

the condition for closest approach, i.e. periapsis. The condition for periapsis is thus ¢ = ¢,, + 747 1. The
difference,

27

/8 )
and so A¢ — 2m is the amount by which the apsides (i.e. periapsis and apoapsis) precess during each cycle.
If 5 > 1, the apsides advance, i.e. it takes less than a complete revolution A¢ = 27 between successive
periapses. If 5 < 1, the apsides retreat, and it takes longer than a complete revolution between successive
periapses. The situation is depicted in fig. 5.3 for the case § = 1.1. Below, we will exhibit a soluble
model in which the precessing orbit may be determined exactly. Finally, note that if 3 = p/q is a rational
number, then the orbit is closed, i.e. it eventually retraces itself, after every g revolutions.

Ap=¢, 1 — b, = (5.32)

As an example, let F'(r) = —kr~®. Solving for a circular orbit, we write
k 2
/ = — = — =
() = o T 0, (5.33)

which has a solution only for k£ > 0, corresponding to an attractive potential. We then find

2\1/3-0)
ro = <E> , (5.34)

and 3% = 3 — . The shape of the perturbed orbits follows from 7 = — 2. Thus, while circular orbits
exist whenever k£ > 0, small perturbations about these orbits are stable only for B2 > 0,ie. for o < 3.
One then has 7(¢) = Acos (¢ — do). The perturbed orbits are closed, at least to lowest order in 7, for
a = 3 — (p/q)? ie. for B = p/q. The situation is depicted in fig. 5.2, for the potentials U(r) = —k/r
(a =2)and U(r) = —k/r* (a = 5).



5.3. PRECESSION IN A SOLUBLE MODEL 161

5.3 Precession in a Soluble Model

Let’s start with the answer and work backwards. Consider the geometrical orbit,
r(9) = 1 —ecosfo
Our interest is in bound orbits, for which 0 < e < 1 (see fig. 5.3). What sort of potential gives rise to this
orbit? Writing s = 1/r as before, we have

(5.35)

s(¢) = sy (1 —ecos Bop) . (5.36)
Substituting into (5.23), we have
K -1\ _ d’s _ 2 _ 2 2
—@F(s )_dTSQ—i_S_ﬁ specosBp+s=(1—p")s+ s, , (5.37)
from which we conclude v C
F(?") = 72 T_3 ) (538)
with
72 72
k=p3%sg— C=p*-1)— . (5.39)
I I
The corresponding potential is
k C

where Uy is an arbitrary constant, conveniently set to zero. If  and C are given, we have

2 C uC
= + = ) B = 1+€—2

=— 5.41

To
When C = 0, these expressions recapitulate those from the Kepler problem. Note that when /2 + uC <
0 that the effective potential is monotonically increasing as a function of r. In this case, the angular
momentum barrier is overwhelmed by the (attractive, C' < 0) inverse square part of the potential, and
Ues () is monotonically increasing. The orbit then passes through the force center. It is a useful exercise
to derive the total energy for the orbit,

k2 2E(0% + u0)
E=(2—1) "t 2= 5.42
(e )2(£2+NC) = ¢ + e (5.42)
5.4 The Kepler Problem: U(r) = —k/r
5.4.1 Geometric shape of orbits
The force is F(r) = —kr~2, hence the equation for the geometric shape of the orbit is
2
T (5.43)

252 iz

dg?
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Figure 5.3: Precession in a soluble model, with geometric orbit 7(¢) = ro/(1 — € cos 8¢), shown here
with 3 = 1.1. Periapsis and apoapsis advance by an angle 27 (1 — 37!) per cycle.

with s = 1/r. Thus, the most general solution is
s(¢) = sy + Ccos(¢p — ¢y) (5.44)
where C' and ¢, are constants. Thus,

"o

r(¢) = 1 4 ecos(¢p — o)

, (5.45)

where r, = ¢*/uk and where we have defined a new constant e = Cr,. The closest approach of the
two bodies occurs when their relative distance r is minimized. This occurs for ¢ = ¢, + 27n, where
r(¢g) = ro/(1 + €), corresponding to periapsis. The furthest separation occurs for ¢ = ¢, + (2n + 1),
where r(¢, + 7) = ry/(1 — €), corresponding to apoapsis.

5.4.2 Laplace-Runge-Lenz vector
Consider the Laplace-Runge-Lenz vector,

A=pxt— ks (5.46)
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Figure 5.4: The effective potential for the Kepler problem, and associated phase curves. The orbits are
geometrically described as conic sections: hyperbolae (E > 0), parabolae (E = 0), ellipses (Enyin < E <
0), and circles (E = Epin).

where 7 = r/|r| is the unit vector pointing in the direction of r. We may now show that A is conserved:

dA d T . . rT — T
E:E{pxe—uk;}:pxe—i—pxe—uk =
:_k_;' X (urxﬁ)—uk[%-,uk:% (5.47)
r r r
:_Mkr(r?;r)—i-uk‘r(r?;r)—Mki+”k%:0
T T T T

So A is a conserved vector which clearly lies in the plane of the motion. A points toward periapsis, i.e.
toward the point of closest approach to the force center.

Let’s assume periapsis occurs at ¢ = ¢,. Then

A-r=Arcos(¢ — ¢y) = 0% — pkr (5.48)
giving
2 all —¢e?
") = __oefl-el (5.49)
pk 4+ Acos(p —¢y) 1+ecos(dp— )
where )
A 9 ¢
5—@ s a|1—€|—ﬁ . (550)
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The orbit is a conic section with eccentricity €. Squaring A, one finds
A? = (p x £)? = 2uk+ - p x £+ p2k?

k
:p2£2 . 2M£2 n —|—,u2/<;2
r

(5.51)
o op2(PP_k pk? 2 pk?
_”<2u 74+2€2> 2£<E+2£2 :
and thus ) ) )
A 2F/¢ 1 V4 k
2
R 0 TS W 2E (552

Note that for circular orbits A = 0. Furthermore, by squaring the equation uk» = p x £ — A, we obtain
the relation
P = A2+ PP +2-px A= ((p—2x A)® | (5.53)

where we have taken £ = /2. This says that the momentum vector p always lies on a circle of radius
wk/l centered at the momentum value 2x A/(.

Aside : hidden symmetry in the Kepler problem

The fact that the Laplace-Runge-Lenz vector is conserved and lies in the plane of the motion entails
that bound Keplerian orbits, which are ellipsoidal, do not precess. Remarkably, this feature is also
responsible for the degeneracy of the energy spectrum of hydrogenic atoms in quantum mechanics. The
energy eigenvalues E, ;, = —Ze?/2na, , where +Ze is the nuclear charge and a,, = i /me* = 0.529 A
is the Bohr radius, are dependent only on the principal quantum number n € {1,2,...} and not on
the angular momentum quantum number [ € {0,1,...,n — 1}, nor the angular momentum and spin
polarizations m; € {—I,...,+{} and m, = j:% . While one might expect the symmetry of the relative
coordinate problem to be SO(3), corresponding to the isotropy of three-dimensional space, in fact the
symmetry group is SO(4).

5.4.3 Kepler orbits are conic sections

There are four classes of conic sections:

e Circle: ¢ =0, E = —pk?/202, radius a = %/ k. The force center lies at the center of circle.

e Ellipse: 0 < e < 1, —pk?/20? < E <0, semimajor axis a = —k/2E, semiminor axis b = a1 — £2.
The force center is at one of the foci.

'Defining the scaled Laplace-Runge-Lenz vector d; = A;//2m|E], the Poisson brackets, which we will discuss in ch. 16, are
givenby {£;,£;} = €;;1 Ly, {d;, £;} = €451 dy, and {d;,d;} = —sgn (E) €4 di, . When E < 0 (bound orbits), this corresponds
to the Lie algebra so(4), while for £ > 0 (unbound orbits) this corresponds to the Lie algebra so(3, 1). In quantum mechanics,
the Poisson bracket becomes the commutator, viz. {A, B} — [A, B]/ih, where A and B are operators. The LRL and angular
momentum vectors are conserved because {d;, H} = {{;, H} = 0, where H is the Hamiltonian.
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Figure 5.5: Keplerian orbits are conic sections, classified according to eccentricity: hyperbola (¢ > 1),
parabola (¢ = 1), ellipse (0 < € < 1), and circle (¢ = 0). The Laplace-Runge-Lenz vector, A, points
toward periapsis, but its length A = pike vanishes for circular orbits.

e Parabola: e = 1, EE = 0, force center is the focus.

e Hyperbola: € > 1, E > 0, force center is closest focus (attractive) or farthest focus (repulsive).

To see that the Keplerian orbits are indeed conic sections, consider the ellipse of fig. 5.6. The law of
cosines gives

p* =124+ 4f% —drfcos¢ (5.54)

where f = ca is the focal distance. Now for any point on an ellipse, the sum of the distances to the left
and right foci is a constant, and taking ¢ = 0 we see that this constant is 2a. Thus, p = 2a — r, and we
have

(2@ — 74)2 = 4a2 — 4dar + 7‘2 = 7‘2 + 452a2 — 4er COS¢ y (555)
which says
a(l—¢€?)
(b ey ©20

corresponding to periapsis at ¢ = ¢, = m. We therefore conclude that

ro=—=a(l—¢%) . (5.57)
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Figure 5.6: The Keplerian ellipse, with the force center at the left focus. The focal distance is f = «a,
where a is the semimajor axis length. The length of the semiminor axis is b = V1 — £2 a.

Next let us examine the energy,

%#7:‘2 UCH(T)
¢ ar\Y 2k
=1 /- - _Z
E—oMQM%w>+2wa ; (5.58)
2 (ds\' 2,
=5 (@)t
with . "
_ KR
s=-="7 (1 ECOSQS) . (5.59)
Thus,
ds uk .
P =2 esing (5.60)
and

ds\* 2k .

5.61
plk2e? uk 2 9 2uk 9 w2k? Gel)
=~ |\ ) =3 +€—23—|—(€—1) /i
Substituting this into eqn. 5.58, we obtain
k2
E:(ﬁ-&)%a . (5.62)

For the hyperbolic orbit, depicted in fig. 5.7, we have r — p = F2a, depending on whether we are on the
attractive or repulsive branch, respectively. We then have

(r +2a)? = 4a® & dar + 12 = r? + 4e%a® — dercos (5.63)
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Figure 5.7: The Keplerian hyperbolae, with the force center at the left focus. The left (blue) branch
corresponds to an attractive potential, while the right (red) branch corresponds to a repulsive potential.
The equations of these branches are r = p = F2a, where the top sign corresponds to the left branch and
the bottom sign to the right branch.

from which we obtain ( )
a(ef—1)
r(@) = +1+ecos¢

Note that 7(+¢,,) = oo, where ¢, = cos™(F1/e).

(5.64)

5.4.4 Period of bound Kepler orbits

From ¢ = pur?¢ = 2uA, the period is 7 = 2u.A/{, where A = ma?y/1 — €2 is the area enclosed by the orbit.

This gives
S (”T“?’fﬂ: 2w<;_j4>1/2 (5.6
as well as 5o
Rl (5.66)

where k = Gm,m, and M = m, + m, is the total mass. For planetary orbits, m; = M, is the solar mass
and m, = m,, is the planetary mass. We then have

Mg

a3 <1 L > GMs  GMg

v el (5.67)

72

which is to an excellent approximation independent of the planetary mass. (Note that m, /M, ~ 1073
even for Jupiter.) This analysis also holds, mutatis mutandis, for the case of satellites orbiting the earth,
and indeed in any case where the masses are grossly disproportionate in magnitude.
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5.4.5 Escape velocity

The threshold for escape from a gravitational potential occurs at E = 0. Since £ = T' + U is conserved,
we determine the escape velocity for a body a distance r from the force center by setting

G [2GM
E=0= %luvgsc(t) - M = ,Uesc(’r) = : (568)
r T
with M = m; + m,. For an object on earth’s surface, v, = v/2gRr = 11.2km/s, assuming the object is

much less massive than the earth itself.

5.4.6 Satellites and spacecraft

A satellite in a circular orbit a distance h above the earth’s surface has an orbital period

2

= (Re +h)32 (5.69)
E

T =

where we take m_, ... < Mg. For low earth orbit (LEO), h < Rp = 6.37 x 10 m, in which case
Tiro = 2m\/Rg/g = 1.4hr.

Consider a weather satellite in an elliptical orbit whose closest approach to the earth (perigee) is 200
km above the earth’s surface and whose farthest distance (apogee) is 7200 km above the earth’s surface.
What is the satellite’s orbital period? From fig. 5.6, we see that

dapogee = R + 7200km = 13571 km
dperigee = Ry + 200 km = 6971 km (5.70)
a = (dapogee + dperigee) = 10071 km

We then have

a \3/2
T= (R_E) Tigo =~ 2.65hr . (5.71)

What happens if a spacecraft in orbit about the earth fires its rockets? Clearly the energy and angular
momentum of the orbit will change, and this means the shape will change. If the rockets are fired (in
the direction of motion) at perigee, then perigee itself is unchanged, because v - » = 0 is left unchanged

2F0?
1+ e

efficient way of boosting a satellite into an orbit with higher eccentricity. Conversely, and somewhat
paradoxically, when a satellite in LEO loses energy due to frictional drag of the atmosphere, the energy £
decreases. Initially, because the drag is weak and the atmosphere is isotropic, the orbit remains circular.
Since E decreases, (I') = —F must increase, which means that the frictional forces cause the satellite to
speed up!

at this point. However, E is increased, hence the eccentricity ¢ = increases. This is the most
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7¢(9)

Figure 5.8: At perigee of an elliptical orbit ri(¢), a radial impulse Ap is applied. The shape of the
resulting orbit 7¢(¢) is shown.

5.4.7 Two examples of orbital mechanics

e Problem #1: At perigee of an elliptical Keplerian orbit, a satellite receives an impulse Ap = p,7.
Describe the resulting orbit.

o Solution #1: Since the impulse is radial, the angular momentum £ = r x p is unchanged. The

energy, however, does change, with AE = p3/2u. Thus, using e = 1 + 2/%;, we have
2E; (2 Ipo \2
2=14 u—/; =24 (%) . (5.72)

The new semimajor axis length is

_ Cluk 1—¢e2 ai

= = a. - = 5.73
T e? G e 1— (ap3/uk) (5.73)
The shape of the final orbit must also be a Keplerian ellipse, described by
(2 1
re(d) = — - 7 5.74
2 pk 1 — e cos(¢ + ) G749
where the phase shift § is determined by setting
o1
ri(m) = re(n) = — - 5.75
()= rlm) = T 5.75)
Solving for §, we obtain
§=cos ! (5,/5) - (5.76)

The situation is depicted in fig. 5.8.
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Figure 5.9: The larger circular orbit represents the orbit of the earth. The elliptical orbit represents that
for an object orbiting the Sun with distance at perihelion equal to the Sun’s radius.

e Problem #2: Which is more energy efficient — to send nuclear waste outside the solar system, or to

send it into the Sun? Neglect the eccentricity of earth’s orbit.

Solution #2: Escape velocity for the solar system is v o(r) = \/2GMg /7. At a distance of the
earth’s orbital radius a; = 149.6 x 10° km, we have Vese,0(ar) = V2 v, where v, is earth’s orbital
speed?, vy = /GMgy/ar = 2mag /s = 29.9km/s. The rocket is launched from earth, and clearly
the most energy efficient launch will be one in the direction of the earth’s motion, in which case
the velocity after escape from earth must be u = (V2 — 1)v, = 12.4km/s. The speed just above the
earth’s atmosphere must then be i, where

- GMem
%muz— Rz :%mu2 , (5.77)

or, in other words,

~2 2 2
u=u +Uesc7E

(5.78)

We find % = 16.7 km/s. This is the speed of the rocket relative to the earth once it has escaped earth’s
gravitational pull.

The second method is to place the trash ship in an elliptical orbit whose perihelion is the Sun’s
radius, R, = 6.98 x 10® m, and whose aphelion is a. Invoking the general equation for the shape
of the Keplerian orbit 7(¢) = (¢2/uk)/(1 — € cos ¢), we then solve the two equations

o=m=Ro=
2 (5.79)
r(¢=0)=a= 1:?%
We thereby obtain
_ % — 0991 (5.80)

? Assuming a circular orbit, we equate the centrifugal and gravitational forces: Myvz/ay = GMgMy/ag . This yields earth’s

orbital speed vy, = \/GM /ag.
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which is a very eccentric ellipse, and

2 a2 v? ag v?
= ~ 3
pk  G(Mg +m) v2 (5.81)
=1—-¢)ag = 2a5 o
B " as+ Ro
Hence,
2R
2 © 2
5.82

and the necessary velocity relative to earth is

[ 2Rq
= — -1 ~ —0.904 5.83
U ( on t Ry )vE 0.904 v (5.83)

ie. w = —27.0km/s. Launch is in the opposite direction from the earth’s orbital motion, and from
% = u?+ vgsw we find & = —29.2km /s, which is larger (in magnitude) than in the first scenario.
Thus, it is cheaper to ship the trash out of the solar system than to send it crashing into the Sun,

by a factor @2 /42 = 0.327.

5.5 Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch 3/3/72), Pioneer 11
(launch 4/6/73), Voyager 1 (launch 9/5/77), and Voyager 2 (launch 8/20/77)°. The latter two are still
functioning, and each are moving away from the Sun at a velocity of roughly 3.5 AU/ yr.

As the first objects of earthly origin to leave our solar system, both Pioneer spacecraft featured a graphic
message in the form of a 6” x 9”7 gold anodized plaque affixed to the spacecrafts’ frame. This plaque
was designed in part by the late astronomer and popular science writer Carl Sagan. The humorist Dave
Barry, in an essay entitled Bring Back Carl’s Plaque, remarks,

It’s all well and good for Carl Sagan to talk about how neat it would be to get in touch with
the aliens, but I bet he’d change his mind pronto if they actually started oozing under his
front door. I bet he’d be whapping at them with his golf clubs just like the rest of us.

But the really bad part is what they put on the plaque. I mean, if we're going to have a
plaque, it ought to at least show the aliens what we're really like, right? Maybe a picture of
people eating cheeseburgers and watching “The Dukes of Hazzard.” Then if aliens found it,
they’d say, “Ah. Just plain folks.”

But no. Carl came up with this incredible science-fair-wimp plaque that features drawings
of — you are not going to believe this — a hydrogen atom and naked people. To represent the
entire Earth! This is crazy! Walk the streets of any town on this planet, and the two things
you will almost never see are hydrogen atoms and naked people.
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HYPERFINE TRANSITION OF SILHOUETTE OF BINARY EQUIVALENT
NEUTRAL HYDROGEN SPACECRAFT OF DECIMAL 8

POSITION OF SOUN PLANETS OF SOLAR
RELATIVE TO 14 SYSTEM AND BINARY
PULSARS AND THE RELATIVE DISTANCES

CENTER OF THE GALAXY

Figure 5.10: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct trip to Neptune along a
Keplerian ellipse with 7, = aiy = 1 AU and r, = ay = 30.06 AU would take 30.6 years. To see this, note
thatr, =a (1 —¢)and ry = a (1 + ¢) yield

an — ag

a= %(QE + CLN) =1553AU0 , ¢e= ot O =0.9356 . (5.84)
Thus,
a\3/2
r=gm (o) =06y (5.85)

The energy cost per kilogram of such a mission is computed as follows. Let the speed of the probe
after its escape from earth be v, = Avg, and the speed just above the atmosphere (i.e. neglecting atmo-
spheric friction) is v,,. For the most efficient launch possible, the probe is shot in the direction of earth’s
instantaneous motion about the Sun. Then we must have

Imuf — =im(A-12%v3 | (5.86)

since the speed of the probe in the frame of the earth is v, — vz = (A — 1) vg. Thus,

E
= %2}3 = %()\— 1)2 —i—h]fug
5.87)
u (
v = Ga © —6.24 x 10" R, /kg
E

3There is a very nice discussion in the Barger and Olsson book on ‘Grand Tours of the Outer Planets’. Here I reconstruct and
extend their discussion.
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Figure 5.11: Mission to Neptune. The figure at the lower right shows the orbits of Earth, Jupiter, and
Neptune in black. The cheapest (in terms of energy) direct flight to Neptune, shown in blue, would
take 30.6 years. By swinging past the planet Jupiter, the satellite can pick up great speed and with even
less energy the mission time can be cut to 8.5 years (red curve). The inset in the upper left shows the
scattering event with Jupiter.

where M
a
h=—. -2 =7050x10"% . 5.88
Therefore, a convenient dimensionless measure of the energy is
2E v}
n=—— =0 _(A-12+2n . (5.89)
mvi Vi

As we shall derive below, a direct mission to Neptune requires

2ay

A>
ay + ag

=1.3913 (5.90)

which is close to the criterion for escape from the solar system, Aesc = /2. Note that about 52% of the
energy is expended after the probe escapes the Earth’s pull, and 48% is expended in liberating the probe
from Earth itself.

This mission can be done much more economically by taking advantage of a Jupiter flyby, as shown
in fig. 5.11. The idea of a flyby is to steal some of Jupiter’s momentum and then fly away very fast
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before Jupiter realizes and gets angry. The CM frame of the probe-Jupiter system is of course the rest
frame of Jupiter, and in this frame conservation of energy means that the final velocity u; is of the same
magnitude as the initial velocity u;. However, in the frame of the Sun, the initial and final velocities are
v; + u; and v, + u, respectively, where v is the velocity of Jupiter in the rest frame of the Sun. If, as

shown in the inset to fig. 5.11, u, is roughly parallel to v;, the probe’s velocity in the Sun’s frame will be
enhanced. Thus, the motion of the probe is broken up into three segments:

I: Earth to Jupiter
IT: Scatter off Jupiter’s gravitational pull
IIT:  Jupiter to Neptune

We now analyze each of these segments in detail. In so doing, it is useful to recall that the general form

of a Keplerian orbit is

d 2

T(QS):W ; d= uk =|e*—1]a (5.91)

The energy is E = (¢2 — 1) uk? /202, with k = GMm, where M is the mass of either the Sun or a planet.
In either case, M dominates, and i = Mm/(M + m) ~ m to extremely high accuracy. The time for the

trajectory to pass from ¢ = ¢, to ¢ = ¢, is

6
/dt /‘@ E/ b1 uk2/ﬁ . (5.92)

1

For reference,
agr = 1 AU a; =5.20AU ayn = 30.06 AU
M, = 5.972 x 10** kg M, = 1.900 x 10*" kg M, =1.989 x 10¥ kg

with 1 AU = 1.496 x 10® km. Here a, , y and M, 51,0 are the orbital radii and masses of Earth, Jupiter, and
Neptune, and the Sun. The last thing we need to know is the radius of Jupiter,

R, = 9.558 x 107+ AU

We need R, because the distance of closest approach to Jupiter, or perijove, must be R, or greater, or else
the probe crashes into Jupiter!

5.5.1 Earth to Jupiter (Phase I)

The probe’s velocity at perihelion is v, = Avg. The angular momentum is ¢ = pay, - Avg, whence

apAvg)?

_ 2
d= e =Na, . (5.93)

From r(7) = ag, we obtain
=M —-1 . (5.94)
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This orbit will intersect the orbit of Jupiter if 7, > a;, which means

d Sa, = A> 2a;

=1.2952 . (5.95)

1—¢ ay; + ag

If this inequality holds, then intersection of Jupiter’s orbit will occur for

- \a
=27 —cos ! L2 0E .
oy T — COS <()\2 Y aJ> (5.96)
Finally, the time for this portion of the trajectory is
@3 g )
Tes = Te - )\3/ _¢ 7 - (5.97)
21 [1— (A2 — 1) cos ¢|

™

5.5.2 Encounter with Jupiter (Phase II)

We are interested in the final speed v; of the probe after its encounter with Jupiter. We will determine the

speed v; and the angle § which the probe makes with respect to Jupiter after its encounter. According to
the geometry of fig. 5.11,

vf = v} +u? — 2uv, cos(X +7)

2 2 2
cos S — v] +vf —u (5.98)
2vtvy
Note that oM
2= 20 02 (5.99)
’ Qay Gy
But what are u, X, and ~?
To determine u, we invoke
u? = v? +v? — 2uvic08 B . (5.100)

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter’s orbit is given by energy

conservation:
GM@m 1 2 B GM@ m

1 2
sm(\ — = v 5.101
2m( UE) ag 2mv1 a, ) ( )
which yields
2a
2 _ (y2 E\ 2
0?2 = </\ 2+ )UE . (5.102)
As for 3, we invoke conservation of angular momentum:
p(v;cos B)ay; = p(Avg)ag = wvicosfB= A e Vg - (5.103)

ay

The angle v is determined from
v, =v;cosB+ucosy . (5.104)
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Putting all this together, we obtain
vi=v, VA2 -2+ 2z
u=v,V\2 =2+ 3z — 2\23/2

VvV — Ax
VA2 — 24 32 — 2)\23/2

(5.105)

cosy =

where = = ag /a; = 0.1923.

We next consider the scattering of the probe by the planet Jupiter. In the Jovian frame, we may write

KRy (1+¢y)

r(9) = 1+¢5cos0

(5.106)

where perijove occurs at 7(0) = xR, . Here, « is a dimensionless quantity, which is simply perijove in
units of the Jovian radius. Clearly we require ~ > 1 or else the probe crashes into Jupiter! The probe’s
energy in this frame is simply E = mu?, which means the probe enters into a hyperbolic orbit about
Jupiter. Next, from
ke?—1 2
_r Ry 5.107

e, =1+ m<%> <J\A§?> (%)2 . (5.108)

The opening angle of the Keplerian hyperbola is then ¢, = cos™? (5;1), and the angle X is related to ¢
through

we find

1
X=m—2¢, =7 —2cos ! <5—> . (5.109)
J
Therefore, we may finally write
vp = /@ V2 + u? + 2uv Vx cos(2¢c — ) (5.110)

and

2 2 2
U +UF —u

20 vg\/T

cosd = (5.111)

5.5.3 Jupiter to Neptune (Phase III)

Immediately after undergoing gravitational scattering off Jupiter, the energy and angular momentum of
the probe are

GM,
E= %mv? - om

(5.112)

ay
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speed at perihelion A=v,/ v,

Figure 5.12: Total time for Earth-Neptune mission as a function of dimensionless velocity at perihelion,
A\ = vp /vg. Six different values of «, the value of perijove in units of the Jovian radius, are shown: £ = 1.0
(thick blue), x = 5.0 (red), K = 20 (green), x = 50 (blue), k = 100 (magenta), and x = oo (thick black).

and ¢ = pv; a, cos d . We write the geometric equation for the probe’s orbit as

d
= 5.113
r(9) 1+ecos(p— oy —a) ( )
where , )
PR <M> a“ (5.114)
pk Ug Qg

Setting E = (2 — 1)(uk?/2(?), we obtain the eccentricity

72 d
EJH(U;CLE £ (5.115)
vy ay | ag

Note that the orbit is hyperbolic — the probe will escape the Sun — if v; > (2a;/a;)'/? v. The condition
that this orbit intersect Jupiter at ¢ = ¢, yields

cosq = l<i — 1) ) (5.116)

which determines the angle «. Interception of Neptune occurs at

d
1+ ecos(opn — ¢y — )

= ay = bn = ¢y +a +cos™! F <i — 1>] . (5.117)

e\ ay
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We then have
N

A\ [ do 1
e (L) [ . 5.118
T 7 (aE>¢/ 27 [1 +ecos(¢ — ¢y —a)}2 ( )

J

The total time to Neptune is then the sum,
Ten = Tey + Tin - (5.119)

Fig. 5.12 shows the mission time 7,y versus the velocity at perihelion, v, = v, , for various values of x.
The value xk = oo corresponds to the case of no Jovian encounter at all.

5.6 Restricted Three-Body Problem

Problem : Consider the ‘restricted three body problem’ in which a light object of mass m (e.g. a satellite)
moves in the presence of two celestial bodies of masses m; and m, (e.g. the sun and the earth, or the
earth and the moon). Suppose m; and m, execute stable circular motion about their common center of
mass. You may assume m < my < m;.

(a) Show that the angular frequency for the motion of masses 1 and 2 is related to their (constant)
relative separation, by wg = GM/r3 , where M = m, + m, is the total mass.

Solution : For a Kepler potential U = —k/r, the circular orbit lies at 7, = ¢2/uk, where £ = ur?¢ is the
angular momentum and k& = G'm;m,. This gives

2 k M
wh = o — = G—3 : (5.120)
To o

=
o
<
=}
=

(b) The satellite moves in the combined gravitational field of the two large bodies; the satellite itself is
of course much too small to affect their motion. In deriving the motion for the satellilte, it is convenient
to choose a reference frame whose origin is the CM and which rotates with angular velocity w,. In the

rotating frame the masses m, and m, lie, respectively, at x; = —ar, and z, = Br,, with
meo mq
=_= =— 5.121
a=2 . p=T0 (5121)
and withy; =y, =0. Notea + = 1.
Show that the Lagrangian for the satellite in this rotating frame may be written
G G
L=1m(d—wyy)’ +im(y+wyz)’ + MO T (5.122)

Va+ar)? +y2 (/@ — o)+
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Figure 5.13: The Lagrange points for the earth-sun system. Credit: WMAP project.

Solution : Let the original (inertial) coordinates be (x,%,). Then let us define the rotated coordinates
(z,y) as

x = cos(wyt) zg + sin(wgt) yo

5.123
y = —sin(wgt) zg + cos(wot) Yo ( )
Therefore,
j? = cos.(wot) Ty + sin(wyt) Yo + wo ¥ (5.124)
§ = —sin(wyt) zg + cos(wyt) yo — wo @
Therefore
(& —woy)? + (G +wou)? = aF + 95, (5.125)
The Lagrangian is then
Gm;m Gmym
L=1m(@—wyy)’ +im(y+wyz) + L 2 : (5.126)
o) i)t e e T Vet
which, with z; = —ar, and z, = r(, agrees with eqn. 5.122

(c) Lagrange discovered that there are five special points where the satellite remains fixed in the rotating
frame. These are called the Lagrange points {L1, L2, L3, L4, L5}. A sketch of the Lagrange points for the
earth-sun system is provided in fig. 5.13. Observation: In working out the rest of this problem, I found
it convenient to measure all distances in units of r, and times in units of w; ', and to eliminate G by

writing Gm, = Bwiry and Gmy = awi r§.
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Assuming the satellite is stationary in the rotating frame, derive the equations for the positions of the
Lagrange points.

Solution : At this stage it is convenient to measure all distances in units of 7, and times in units of w; ! to
factor out a term m r3 w3 from L, writing the dimensionless Lagrangian L = L/(m 73 w?). Using as well
the definition of w% to eliminate GG, we have

~ . . ﬁ o
L=3(E=—n)*+501+8&*+ + , (5.127)
’ ’ E+aZ+n  VE-BZ+ir
with 1 d 1 d
x Y . X . Y
= =z = — = - . 12
¢ 0 ’ " To ’ ¢ wo Ty dt ’ n wory dt (5.128)
The equations of motion are then
. . + a(§ —
¢ oy Do) o)
! 2 (5.129)
i+ 2€ = — 21 2
i d3
where
dy=v(E+a)P+n?  , dy=(E-B)P+n? . (5.130)

Here, { = x/1y, £ = y/r,, etc. Recall that o + [ = 1. Setting the time derivatives to zero yields the static
equations for the Lagrange points:

Bl +a) all-5) _ﬂn+an

) n=—-3 33 )
d d3 4 d3

¢ = (5.131)

(d) Show that the Lagrange points with y = 0 are determined by a single nonlinear equation. Show
graphically that this equation always has three solutions, one with = < z;, a second with z; < z < x,,
and a third with & > x,. These solutions correspond to the points L3, L1, and L2, respectively.

Solution : If n = 0 the second equation is automatically satisfied. The first equation then gives
Eta €0
€+ € -5l

The RHS of the above equation diverges to +oo for { = —a + 0" and £ = 5 + 07, and diverges to —c
for{ = —a— 0" and £ = 8 — 07, where 07 is a positive infinitesimal. The situation is depicted in fig.
5.14. Clearly there are three solutions, one with { < —¢, one with —a < £ < 3, and one with £ > .

E=8- (5.132)

(e) Show that the remaining two Lagrange points, L4 and L5, lie along equilateral triangles with the
two masses at the other vertices.

Solution : If n # 0, then dividing the second equation by 7 yields

I5} «

1= 4+ =
i dj

(5.133)
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b T4 8

Figure 5.14: Graphical solution for the Lagrange points L1, L2, and L3.

Substituting this into the first equation,

_(B 11
§_<di”+d§’>§+<di” d§>a5 , (5.134)

gives d; = d, . Reinserting this into the previous equation then yields d;, = d, = 1, which says that each
of L4 and L5 lies on an equilateral triangle whose two other vertices are the masses m; and m,. The side
length of this equilateral triangle is r,. Thus, the dimensionless coordinates of L4 and L5 are

(£L47 77L4) = <% —Q, @) ) (fst 77L5) = (% - Q, _§> . (5-135)

It turns out that L1, L2, and L3 are always unstable. Satellites placed in these positions must undergo
periodic course corrections in order to remain approximately fixed. The SOlar and Heliopheric Obser-
vation satellite, SOHO, is located at L1, which affords a continuous unobstructed view of the Sun.

(£) Show that the Lagrange points L4 and L5 are stable (obviously you need only consider one of them)
provided that the mass ratio m,/m, is sufficiently large. Determine this critical ratio. Also find the
frequency of small oscillations for motion in the vicinity of L4 and L5.

Solution : Now we write
§=2¢&., 1+ ; n=mnu+on , (5.136)
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and derive the linearized dynamics. Expanding the equations of motion to lowest order in ¢ and 67,

we have
6—20m=(1-B+3—| —a-3a=2| |0+ (33— —-32a= |
( 2706 1, 2008 L 2oy P On
(5.137)
=356+ 2L oy
and
§ij+ 266 = [ 23 =L 3o 2 |oc+ [ 22 33221 |
! ( SR T 2oy P Onlu !
(5.138)
=3 eoe+ 9oy
where we have defined B
e=f_aq="0"T2 (5.139)
mi + Mo

As defined, ¢ € [0, 1].
Fourier transforming the differential equation, we replace each time derivative by (—ir), and thereby
obtain ) s 5 .
Ve + 1 —2iv + 1 3e (55 o
<2z’1/ +3V3e v+ om) 0 (5.140)
Nontrivial solutions exist only when the determinant D vanishes. One easily finds
D) =v' =+ 3 (1-¢) (5.141)

which yields a quadratic equation in 2, with roots

v P=1+1\/272-23 . (5.142)

These frequencies are dimensionless. To convert to dimensionful units, we simply multiply the solutions
for v by wy, since we have rescaled time by w;*.

Note that the L4 and L5 points are stable only if e > 22. If we define the mass ratio v = m; /m,, the
stability condition is equivalent to

V2T 4+ /2
_m VATEVES o060 (5.143)
ma ~ V27 — /23

which is satisfied for both the Sun-Jupiter system (y = 1047) — and hence for the Sun and any planet —
and also for the Earth-Moon system (y = 81.2).

Objects found at the L4 and L5 points are called Trojans, after the three large asteroids Agamemnon,
Achilles, and Hector found orbiting in the L4 and L5 points of the Sun-Jupiter system. No large asteroids
have been found in the L4 and L5 points of the Sun-Earth system.
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Personal aside : David T. Wilkinson

The image in fig. 5.13 comes from the education and outreach program of the Wilkinson Microwave
Anisotropy Probe (WMAP) project, a NASA mission, launched in 2001, which has produced some of the
most important recent data in cosmology. The project is named in honor of David T. Wilkinson, who was
a leading cosmologist at Princeton, and a founder of the Cosmic Background Explorer (COBE) satellite
(launched in 1989). WMAP was sent to the L2 Lagrange point, on the night side of the earth, where it
can constantly scan the cosmos with an ultra-sensitive microwave detector, shielded by the earth from
interfering solar electromagnetic radiation. The L2 point is of course unstable, with a time scale of about
23 days. Satellites located at such points must undergo regular course and attitude corrections to remain
situated.

During the summer of 1981, as an undergraduate at Princeton, I was a member of Wilkinson’s “gravity
group,” working under Jeff Kuhn and Ken Libbrecht. It was a pretty big group and Dave — everyone
would call him Dave — used to throw wonderful parties at his home, where we’d always play volleyball.
I was very fortunate to get to know David Wilkinson a bit — after working in his group that summer I
took a class from him the following year. He was a wonderful person, a superb teacher, and a world
class physicist.

r‘.

Figure 5.15: David T. Wilkinson (1935 —2002).
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Chapter 6

Linearized Dynamics of Coupled
Oscillations

6.1 Basic Objective

Our basic objective in studying small coupled oscillations is to expand the equations of motion to linear
order in the n generalized coordinates about a stable equilibrium configuration. This yields a set of n
coupled second order differential equations that is both linear and homogeneous. Such a system may then
be solved by elementary linear algebraic means. The general solution may then be written as a sum over
n normal mode oscillations, each of which oscillates at a particular eigenfrequency w;, with j € {1,...,n}.
The set of eigenfrequencies is determined by the form of the linearized equations of motion. The n
normal mode amplitudes and n normal mode phase shifts are determined by the 2n initial conditions
on the generalized coordinates and velocities.

6.2 Euler-Lagrange Equations of Motion

We assume, for a set of n generalized coordinates {qi,...,¢,}, that the kinetic energy is a quadratic
function of the velocities,

T=3T, (4 8) oy ©.1)

where the sum on o and ¢’ from 1 to n is implied. For example, expressed in terms of polar coordinates
(r,0,¢), the matrix T___, is

1 0 0
T _,(r,0,¢0)=m|0 r2 0 = T= %m(f‘2 + 7262 + 1% sin0 ¢2) . (6.2)
0 0 r2sin
The potential U(qy, ..., ¢n) is assumed to be a function of the generalized coordinates alone: U = U(q).

A more general formulation of the problem of small oscillations is given in the appendix, section 6.8.

185
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The generalized momenta are

oL .
Dy = Fri T 4, (6.3)
4o
and the generalized forces are
oL 10T, , oUu
F =—=-"-"99 4,4, — — 6.4
7 9q¢y 2 0Oqs o 4o 0qs (6.4)
The Euler-Lagrange equations are then p, = F,,, or
aT / 1 aT/ 11 8U
T /"/ oo’ - oo ./.U”:__ 65
/B < 90 2 0q >q0 q o0, (6.5)

which is a set of coupled nonlinear second order ODEs. Here we are using the Einstein ‘summation
convention’, where we automatically sum over any and all repeated indices.

6.3 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium {g,, . .., ¢, }, which satisfies
the n nonlinear equations
ou
— =0 . (6.6)
o lg=q

Once an equilibrium is found (note that there may be more than one static equilibrium), we expand
about this equilibrium, writing

Uo =45+ 05 - (6.7)
The coordinates {,,...,n,} represent the displacements relative to equilibrium.

We next expand the Lagrangian to quadratic order in the generalized displacements, yielding

L= %TUUI 770' ”;}o’ - %Voo’ NoNgr (68)
where
O*T 92U
Tcrcr’ = 3. 9. ’ Voo’ = 5. 9. (69)
8(]0 8(10’ _ 8(10 8(]0’ _
q= =
Writing n* for the row-vector (7, ..., 7,), we may suppress indices and write
L=30"Tn—3n'Vn , (6.10)

where T and V are the constant matrices of eqn. 6.9.
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6.4 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate transformation from the gener-
alized displacements 7 to a new set of coordinates &, which render the Lagrangian particularly simple.
All that is required is a linear transformation,

ne=A& (6.11)

where both ¢ and ¢ run from 1 to n. The n x n matrix A_; is known as the modal matrix. With the
substitution n = A€ (hence n* = €' A, where A = A_. is the matrix transpose), we have

L=31¢NTAE-JEAVAE . 6.12)
We now choose the matrix A such that
ATA=I 6.13)
AVA = diag(w?, ..., w?) '
With this choice of A, the Lagrangian decouples:
L=1>(&-u?g) . (6.14)
i=1
with the solution
&(t) = Cicos(w;t) + D;sin(w; t) (6.15)
where {C1,...,Cy} and {D;, ..., D,} are 2n constants of integration, determined by the 2n initial con-
ditions on 1(0) and 717(0), and where there is no implied sum on i. Note that
E=Ap=ATy . (6.16)
In terms of the original generalized displacements, the solution is
N (t) = Z A, {CZ- cos(w;t) + D, sin(wit)} , (6.17)
i=1

and the constants of integration are linearly related to the initial generalized displacements and gener-
alized velocities:

C‘ = Atia Too’ 77(,—/(0)

)

D’i = wl_lAt T / ”;}0-’ (0) )

10 00

(6.18)

again with no implied sum on i on the RHS of the second equation, and where we have used A™! = A' T,
from eqn. 6.13. (The implied sums in eqn. 6.18 are over o and ¢’.)

If all the generalized coordinates have units of length, i.e. [¢,] = L, then

[Too’] =M ’ [Vcrcr’] = MT_2 ) [AO'Z] = M_1/2 ) [éz] = M1/2L . (619)
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Can you really just choose an A so that both of eqns. 6.13 hold?

Yes.

Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special relation between them. In
particular, they need not commute, hence they do not necessarily share any eigenvectors. Nevertheless,
they may be simultaneously diagonalized as per eqns. 6.13. Here’s why:

e Since T is symmetric, it can be diagonalized by an orthogonal transformation. That is, there exists

a matrix O; € O(n) such that
07O, =D , (6.20)

where D is diagonal.
We may safely assume that T is positive definite. Otherwise the kinetic energy can become ar-

bitrarily negative, which is unphysical. Therefore, one may form the matrix D~*/? which is the
diagonal matrix whose entries are the inverse square roots of the corresponding entries of D. Con-

sider the linear transformation O, D~%/2. Tts effect on T is
D
—N—
D-Y20tTO, D2 =1 . (6.21)

Since O, and D are wholly derived from T, the only thing we know about
V=D1"20{v0,D /2 (6.22)

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by some orthogonal
matrix O, € O(n). As T has already been transformed to the identity, the additional orthogonal
transformation has no effect there. Thus, we have shown that there exist orthogonal matrices O,
and O, such that

0iD~Y20TO, DY20, =1

05D~'/20{ V0, D""/20, = diag(w? : (62
2 1 1 o = diag(wy, ..., wy)

All that remains is to identify the modal matrix A = 0,D~Y/20,.

Note that it is not possible to simultaneously diagonalize three symmetric matrices in general.
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6.4.1 Finding the modal matrix

While the above proof allows one to construct A by finding the two orthogonal matrices O, and O,, such
a procedure is extremely cumbersome. It would be much more convenient if A could be determined in
one fell swoop. Fortunately, this is possible.

We start with the equations of motion, T7) + Vn = 0. In component notation, we have

T, iy +Vop 1y =0 . (6.24)

ok

We now assume that n(t) oscillates with a single frequency w, i.e. () = 1, e~**. This results in a set
of linear algebraic equations for the components v,:

(W T — Voo ) 1by =0 . (6.25)

These are n equations in n unknowns: one for each value of ¢ = 1,...,n. Because the equations are
homogeneous and linear, there is always a trivial solution ¢/ = 0. In fact one might think this is the only

solution, since

@PT-V)gp=0 =5  ¢=@wT-V)o=0 . (6.26)

However, this fails when the matrix w? T — V is defective!, i.e. when

det(w?*T—V) =0 . (6.27)

th

Since T and V are of rank n, the above determinant yields an n'" order polynomial in w?, whose n roots

are the desired squared eigenfrequencies {w?, ..., w2}.

Once the n eigenfrequencies are obtained, the modal matrix is constructed as follows. Solve the equa-

tions
n

S (@ Ty = Vo) 8l =0 (6.28)
o'=1
which are a set of (n — 1) linearly independent equations among the n components of the eigenvector
(). That is, there are n equations (¢ = 1,...,n), but one linear dependency since det (w? T — V) = 0.
The eigenvectors may be chosen to satisfy a generalized orthogonality relationship,

VO, 09 =5, . (6.29)
To see this, let us duplicate eqn. 6.28, replacing ¢ with j, and multiply both equations as follows:

¢((7J) X (CUZ2T ;) — VUU/) Qﬁg/) =0

oo

4 ) (6.30)
¢g.l) X (w]2 To_o./ — Vo’o”) T/JUJ, = 0
Using the symmetry of T and V, upon subtracting these equations we obtain
W =) > W T =0 (631)

o,0'=1

!The label defective has a distastefully negative connotation. In modern parlance, we should instead refer to such a matrix as
determinantally challenged.
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where the sums on 7 and j have been made explicit. This establishes that eigenvectors Y@ and )
corresponding to distinct eigenvalues w? # wyz» are orthogonal: (1))t T4)\/) = 0. For degenerate eigen-
values, the eigenvectors are not a priori orthogonal, but they may be orthogonalized via application of
the Gram-Schmidt procedure. The remaining degrees of freedom - one for each eigenvector — are fixed
by imposing the condition of normalization:

P — / %(j ) L zﬁff}) e V8 Tog %(3) =0 - (6.32)
(@)

The modal matrix is just the matrix of eigenvectors: A, = ¢’ .

With the eigenvectors zp((," ) thusly normalized, we have

0= ¢ (W2 Topr — Voor) 7

, . (6.33)
=28, — OV, )
with no sum on j. This establishes the result
A'VA = diag(wi, ..., w2) . (6.34)

Recall the relation 1, = A, £, between the generalized displacements 7, and the normal coordinates ¢;.
We can invert this relation to obtain

& =R 0y =Ny Tog o (6.35)
Here we have used the result A T A = 1 to write
AL=ANT . (6.36)

This is a convenient result, because it means that if we ever need to express the normal coordinates in
terms of the generalized displacements, we don’t have to invert any matrices — we just need to do one
matrix multiplication.

6.4.2 Summary of the method

(i) Obtain the T and V matrices,

or ou
;) = V ;) = 6.37
oo aqaaq-al ) ? oo aqaaq-al ) ? ( )
q q
where the equilibrium conditions are 9U/dq, | = 0. The quadratic form Lagrangian for small oscilla-

q
tions of the generalized displacements from equilibrium 7, and their velocities is then

L= %7;}0 TUO" ";}0" - %770 Vcrcr’ UPY . (638)
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(ii) Solve det(w®T — V) = 0, which is an n*® order polynomial in w?.

(iii) For each root w?, solve the defective linear system (w?T — V) () = 0.

(iv) Eigenvectors corresponding to different eigenfrequencies will necessarily be orthogonal, i.e.

($0199) =00 T o) =0 if W} £u (639)
In the case of degenerate eigenvalues, use the Gram-Schmidt method to find an orthogonal basis for the

degenerate subspace. Then normalize each eigenvector such that () | T |0)) = ¢;; forall7and j.

(v) The modal matrix A,; = ng ) then satisfies

ATA=1 A'VA = diag(wi, ..., w2) . (6.40)

n

Note that A=! = A' T. The relation between the generalized displacements 7, and the normal modes ¢ ;
is n, = A,; §;, which entails {; = Al Tooyr = Ay T, In terms of the normal mode coordinates
and their velocities,

L=) 3(&-wig) | (6.41)

and the equations of motion are those of decoupled oscillators: §;, = —w?¢,; .

(vi) The complete solution for the generalized displacements is then
N, (t) = Z A, {C’i cos(w;t) + D, Sin(wit)} , (6.42)
i=1

with
Ci = Atia Tcrcr’ ng’ (O) ’ Dz = wi_lAtiU Too’ ?:]U/(O) . (643)

6.5 Examples

6.5.1 Masses and springs

Two blocks and three springs are configured as in fig. 6.1. All motion is horizontal. When the blocks are
at rest, all springs are unstretched.

(@) Choose as generalized coordinates the displacement of each block from its equilibrium position,
and write the Lagrangian.

(b) Find the T and V matrices.

(c) Suppose

Find the frequencies of small oscillations.
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SRR N - r....“.w

Ty Mo

Figure 6.1: A system of masses and springs.

(d) Find the normal modes of oscillation.

(e) Attimet = 0, mass #1 is displaced by a distance b relative to its equilibrium position. Le. z,(0) = b.
The other initial conditions are z,(0) = 0, #;(0) = 0, and #,(0) = 0. Find ¢*, the next time at which
x4 vanishes.

Solution :

(a) The Lagrangian is
L=3im, i} + imy a3 — Ik 2t — Sk, (xy — 21)* — Shyad | (6.45)

which is already a quadratic form. Thus, the full equations of motion are already linear.

(b) The T and V matrices are

2T 2 _
T - 8 B 0 7 V. - A A k., . (6.46)
7 O0x; 0% 0 my 7 Ow; Ox; —ky  ky Ak
(c) We have m; = 2m, my = m, k; = 4k, ko, = k, and ky = 2k. Let us write w? = Aw3, where w, = \/k/m.
Then
o vy (225 1
w T V_k< 1 \_3) - (6.47)

The determinant is

det (W?T — V) = (2\% — 11\ + 14) k?

6.48
=2\ =T)(\—2)k? (6.45)
There are two roots: A_ = 2 and A, = 7, corresponding to the eigenfrequencies
2k 7k

m 2m
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(d) The normal modes are determined from (w?T — V)@ = 0. Plugging in A = 2 we have for the
a g81mg

normal mode v~

_ (=)
G )GR) - = e ()

Plugging in A = 7 we have for the normal mode 3

2 1 (+) 1
GG = weme(l)

The standard normalization 1/12.('1) T, 1/}](.1)) =0, gives

(e) The general solution is

(2) =A <1> cos(w_t) + B <_12> cos(w,t) + C G) sin(w_t) + D (_12> sin(w, t)

The initial conditions z,(0) = b, z,(0) = 4,(0) = ,(0) = 0 yield

Thus,

b-(2cos(w_t) + Cos(w+t))

8
N
—~
~
~—
Il
Wi Wl
>
/N TN

cos(w_t) — cos(w+t)>
Setting x,(t*) = 0, we find

2T

cos(w_t*) = cos(w_ t* = T—wit=w,t—-—77 = tf=——"11—7
(w_t*) (wit™) _ + o ton

6.5.2 Double pendulum

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

As a second example, consider the double pendulum, with m; = m, = mand ¢, = ¢, = (. The
Lagrangian and equations of motion for this problem were discussed in §4.4.5 for the general case of

differing masses and lengths. For our simpler version, the kinetic and potential energies are

T = ml2607 + me? cos(6, — 60,) 6,0, + Lme?63

U = —2mgl cos 6, — mgl cos 0,

(6.57)
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Figure 6.2: The double pendulum (again).

Equilibrium is at §; = 6, = 0, and the T and V matrices are given by

2 2 2 2
Then
W T —V = mf? <2w2w—2 25 wzuizw(%) , (6.59)
with w, = /g /(. Setting the determinant to zero gives
20w —wd)?—wl=0 = W=02+V2)w . (6.60)

We find the unnormalized eigenvectors by setting (w? T — V) ¢ = 0. This gives

vt =y <_1/§> L =C <+i/§> , (6.61)

where (1 are constants. One can check T, 1/15,“ wfj,” vanishes for ¢ # j. We then normalize by demand-

ing T,/ 1/1((f) 1/19 = 1 (no sum on 3), which determines the coefficients C. = % (2 4 v/2)/m#2. Thus, the
modal matrix is

(6.62)

(W wl) ] V2+v2 V2-+v2
A= = —
R B Ll /S v, R ey W
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6.6 Zero Modes

6.6.1 Noether’s theorem and zero modes

Recall Noether’s theorem, which says that for every continuous one-parameter family of coordinate
transformations,

v — 45(0,¢) 5  4p(e,(=0)=¢q, , (6.63)

which leaves the Lagrangian invariant, i.e. dL/d¢ = 0, there is an associated conserved quantity,

) d
= 2 96, ¢ C satisfies T 0 . (6.64)

For small oscillations, we write g, = ¢, + 7, hence

A=Y Crpits (6.65)

where £ labels the one-parameter families (in the event there is more than one continuous symmetry),
and where

o 860’
Cko—;wa o, (6.66)

Therefore, we can define the (unnormalized) normal mode

&= Crolls (6.67)

which satisfies €, = 0. Thus, in systems with continuous symmetries, to each such continuous symmetry
there is an associated zero mode of the small oscillations problem, i.e. a mode with w,% =0.

6.6.2 Examples of zero modes

The simplest example of a zero mode would be a pair of masses m, and m, moving frictionlessly along
a line and connected by a spring of force constant k£ and unstretched length a. We know from our study
of central forces that the Lagrangian may be written

1l a2 1 22 1
L =35m, &7 + 5my 5 — 5k (x) — 2y —a)

= IMX?+ Lpi? — Lk(z —a)? |

2
(6.68)

where X = (myx,+myx,)/(mq +m,) is the center of mass position, z = x, —x, is the relative coordinate,
M = m, + m, is the total mass, and 1 = m;m,/(m; + m,) is the reduced mass. The relative coordinate

obeys i = —wf x, where the oscillation frequency is w, = \/k/u. The center of mass coordinate obeys
X =0, i.e. its oscillation frequency is zero. The center of mass motion is a zero mode.
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Figure 6.3: Coupled oscillations of three masses on a frictionless hoop of radius R. All three springs
have the same force constant &, but the masses are all distinct.

Another example is furnished by the system depicted in fig. 6.3, where three distinct masses m,, m,,
and m4 move around a frictionless hoop of radius R. The masses are connected to their neighbors by
identical springs of force constant k. We choose as generalized coordinates the angles ¢, (0 = 1,2, 3),
with the convention that

G3 —2m < P < Py < P <2+ ;. (6.69)
The kinetic energy is

T = R*(my ¢ +my ¢ +my d3) . (6.70)
Let RX be the equilibrium length for each of the springs. Then the potential energy is

U = §hE> {(6y =61 = X+ (65— b =) + (27 + 6, — 05— X)’
= kR’ {(qbg —01)% + (b3 — $9)° + (2m + ¢y — ¢3)* +3X% — 47rx}

Note that the equilibrium angle X enters only in an additive constant to the potential energy. Thus,
for the calculation of the equations of motion, it is irrelevant. It doesn’t matter whether or not the
equilibrium configuration is unstretched (X = 27/3) or not (X # 27/3).

(6.71)

The equilibrium configuration is
(Elzg ) (Zglzg—i_%r ) (51:C+4?7r ) (672)

where ( is an arbitrary real number, corresponding to continuous translational invariance of the entire
system around the ring. The T and V matrices are then

mR2 0 0 <2kR2 —kR? kR2)
; V=

T=— 0  myR2 0 —kR?> 2kR?> —kR?
0 0  myR? —kR? —kR? 2kR?

(6.73)



6.6. ZERO MODES 197

We then have

2

gr-2 1 1
1
wWw?T -V =EkR? 1 &2 1 , (6.74)

2
wo_
23 2

where (2]2 = k/m; . We compute the determinant to find the characteristic polynomial:

P(w) = det(w? T — V) = (kR?)’P(w)

P(w) = CANNY (U S N N DY (L 679
“omae \om et o 2 Y '

The equation P(w) = 0 yields a cubic equation in w?, but clearly w? is a factor, and when we divide this
out we obtain a quadratic equation. One root obviously is w? = 0. The other two roots are solutions to
the quadratic equation:

Why= D 2+ 0 L2 - 3)P + L(03— 23)P 4 L (22 - ) (6.76)

To find the eigenvectors and the modal matrix, we set

2
@2 1 1 )
Ql 2 1.
1 H-2 1 Dl=0, (6.77)
? w? ()
1 1 -2\

Writing down the three coupled equations for the components of /), we find

() _ () _ ()
()= ()= () o
We therefore conclude ) .
(5 -9)
W—c | (1 _3)" 6.79
W =c | (5-3) | - (6.79)
w? -1
J
(% -3)
The normalization condition wc(f) Tyor 1/1((7],') = 0,;; then fixes the constants C;:
w> —2 w? —2 w? —2 2
J J J

The Lagrangian is invariant under the one-parameter family of transformations

b — 05 +C (6.81)
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for all o = 1,2, 3. The associated conserved quantity is

OL ¢y
A= s
20: dpy OC (6.82)

= R? (m1<;51+m2¢2+m3<;53) )

which is, of course, the total angular momentum relative to the center of the ring. We stress that A is a
constant in general, and not only in the limit of small deviations from static equilibrium. From

& =C(myny +myny +mgng) (6.83)

where C is a constant. Recall the relation 7, = A _, {; between the generalized displacements 7, and the
normal coordinates ¢;, which may be inverted to yield ¢, = A; !, = A, . In our case here, the T matrix
is diagonal, so the multiplication is trivial. From eqns. 6.83 and 6.35, we conclude that the matrix A" T
must have a first row which is proportional to (m,,m,, mg). Since these are the very diagonal entries of
T, we conclude that A" itself must have a first row which is proportional to (1, 1,1), which means that
the first column of A is proportional to (1, 1,1). But this is confirmed by eqn. 6.78 when we take j = 1,

since wjz-zl =0 7/)9) = T/Jél) = Tzz’él)'

6.7 Chain of Mass Points

6.7.1 Lagrangian and equations of motion

Next consider an infinite chain of identical masses, connected by identical springs of spring constant &
and equilibrium length a. The Lagrangian is

_ 1 -2 1 2
L—§mg xn—ik‘g (7, — 2, —a)
n n
1 -2 1 2
- §m§ un_ikE (un—l—l_un) )
n n

where u,, = z, — na+ ( is the displacement from equilibrium of the n*" mass. The constant ( is arbitrary
and is cyclic in L, reflecting overall translational invariance with a consequent zero mode according to
Noether’s theorem. The Euler-Lagrange equations are

(6.84)

i (LY _ oL
" 3\ dan ) oun (6.85)
=k (un-‘rl - un) —k (un - un—l) =k (un—i-l + Up—1 — 2un)

Now let us assume that the system is placed on a large ring of circumference Na, where N > 1. Then
u,  y = un and we may shift to Fourier coefficients,

) 1 )
u g, i, = T Ze—“ﬂm u, (6.86)

1
n:\/—ﬁzq:e
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where ¢; = 2mj/Na, and both sums are over the set j,n € {1,..., N}. Expressed in terms of the {i},
the equations of motion become
= 1 —igna k1 —igan
U, = —— e U, = ——— e U +u, . —2u
q \/N zn: n m \/N Zn: ( n+1 n—1 n)
ko1 4k (687)
= i zn: el I LR L R VRE - sin? (%qa) i,

Thus, the {44} are the normal modes of the system (up to a normalization constant), and the eigenfre-

quencies are
w, =2 \/g | sin (%qa)‘ . (6.88)

This means that the modal matrix is

Ay = ———e"" 6.89
== (6.89)
where we’ve included the \/—lm factor for a proper normalization. The normal modes themselves are then
£, = AZnT,m u,, = \/miy. For complex A, we have ATTA = Tand ATVA = diag(w?,...,w%).
Note that
T, =mo,
o ’ (6.90)
Vnn’ =2k 5n,n’ - kén,n’-{—l —k 5n,n’—1
and that
N N
(ATTA),, = Z Z Ara T Ay
et (6.91)
1 N N N vy / 1 N (A4l
" Nm Z Z e ma, , e = N Z el — Ogq
n=1n/=1 n=1
and
N N
T _ *
(ATVA) =D AT A,
n=1n'=1
N N
1 —igan iq'an’
= Z > T (208, = K8y — ROy ) € (6.92)
n=1n'=1
k1 i’— an —iq’'a iq'a 4k-21 2
mNn 1 (@'=q) (2—e T4 _ e ) = sin (§qa)5qq, :wq5qq,

Since #,, ; = %4, where G = 27/a, we may choose any set of ¢ values such that no two are separated
by an integer multiple of G. The set of points {jG} with j € Z is called the reciprocal lattice. For a linear
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chain, the reciprocal lattice is itself a linear chain?. One natural set to choose is ¢ € [ - g] This is
known as the first Brillouin zone of the reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the {u,}. One easily finds

:%mZﬁZ;q kz 1 — cosqa) iy, i, (6.93)
q
where the sum is over ¢ in the first Brillouin zone. Note that
Uy =1U_grc="1Ty - (6.94)
This means that we can restrict the sum to half the Brillouin zone:
L= Z {mu i, — 4k sin (2qa) Zﬂq} . (6.95)
e

Now i, and 4y may be regarded as hnearly independent, as one regards complex variables z and z*.
The Euler-Lagrange equation for 4, gives

d ( OL oL s o
dt<au>_8ﬂ§; = U, =—wg i, . (6.96)

Extremizing with respect to 4, gives the complex conjugate equation.

6.7.2 Continuum limit

Let us take N — o0, a — 0, with L, = Na fixed. We'll write u,,(t) = u(x = na,t), in which case

T—lmzu2 — lm/d—x @2
2 — " 2 a \ Ot

) (6.97)
V= %kzn:(un+1_un)2 N k/dax <U(ZE+&3—U($)> o2
Recognizing the spatial derivative above, we finally obtain
L= /dw L(u, Opu, Opu)
(6.98)

2 2
coin()-1r(2)
where y = m/a is the linear mass density and 7 = ka is the tension®. The quantity £ is the Lagrangian
density; it depends on the field u(z, t) as well as its partial derivatives d;u and d,u*. The action is
t  Tp
Slu(z,t)] = /dt/dm L(u, Opu, Opu) (6.99)

ta Ta

*For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real space (“direct”) lattice. For exam-
ple, the reciprocal lattice of a face-centered cubic structure is a body-centered cubic lattice.

*For a proper limit, we demand p and 7 be neither infinite nor infinitesimal.

*£ may also depend explicitly on x and ¢.
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where {z,,xz,} are the limits on the  coordinate. Setting 6.5 = 0 gives the Euler-Lagrange equations

oL 0 oL 0 oL
a2 s \aa.nN) a\a3a9.7]) T . 1
ou Ot <8 (8tu)> ox (a (axu)> 0 (6.100)
For our system, this yields the Helmholtz equation,
1 0% 0%
22 "o (6.101)

where ¢ = /7 /p is the velocity of wave propagation. This is a linear equation, solutions of which are of
the form ' '
u(z,t) = C e e ™t (6.102)

where w = +cq. Note that in the continuum limit a — 0, the dispersion relation derived for the chain

becomes

4k . ka?
wg = Slnz(%qa) — o @ =72 (6.103)

and so the results agree.

6.8 General Formulation of Small Oscillations

In the development in section 6.2, we assumed that the kinetic energy 7' is a homogeneous function of
degree 2, and the potential energy U a homogeneous function of degree 0, in the generalized velocities
4,. However, we’ve encountered situations where this is not so: problems with time-dependent holo-
nomic constraints, such as the mass point on a rotating hoop, and problems involving charged particles
moving in magnetic fields. The general Lagrangian is of the form

L=1T57(q) dy 4o + T7 (@) dy + To(a) — UT(q) dy — Upla) (6.104)

where the subscript 0, 1, or 2 labels the degree of homogeneity of each term in the generalized velocities.
The generalized momenta are then

oL oo’ o o
Po=5q ~ 12 4o T 17 (q) — Ui (q) (6.105)
and the generalized forces are
oL ATy —U,) oI —Uuy). 109157 . .
F = = = ’ -~ A ’ " 6.106
e o, bg, T2 gy, (6109

o

and the equations of motion are again p, = F,
In equilibrium, we seek a time-independent solution of the form ¢, (t) = g,,. This entails

0 {Uy(q) — Ty(q)}
94,

=0 (6.107)
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which give us n equations in the n unknowns (g, ..., ,). We then write ¢, = ¢, + 71, and expand in
the notionally small quantities 7. It is important to understand that we assume 7 and all of its time
derivatives as well are small. Thus, we can expand L to quadratic order in (7, 17) to obtain

L= %Tcrcr’ 7;}0 770" - % Boo’ No ”;}o’ - %Vcrcr’ Ne Nor s (6108)
where
/ (7' ~17) (U, )
T ,=T77(q B  =2——-—7 V.  =————71-——= 6.109
oo 2 (Q) ’ oo 8q0 — ’ oo aqg aqal ( )

Note that the T and V matrices are symmetric. The B, term is new.

Now we can always write B = £(B® + B®) as a sum over symmetric and antisymmetric parts, with

B* = (B + B") and B* = }(B — B'). Since,

B o Ny Ty = % (% BSo 7y n(,/) : (6.110)

any symmetric part to B contributes a total time derivative to L, and thus has no effect on the equations
of motion. Therefore, we can project V onto its antisymmetric part, writing

U -1y a(Ue —1°
B, =B, = Uy —17) o(U7 ~17) . (6.111)
8qo aqa’ =
q:
We now have
oL ) 1
po_ — a— = To’o” ’I’]o_/ + bl Bo’o" 770./ 5 (6112)
No
and oL
Fg’ =57 = _% Bo-o-’ 770" - Voo’ Nor - (6113)
Mg

The equations of motion, p, = F,, then yield

To’o" 7.7.0./ + Bo’o" 7;]0./ + Va’o” 770./ = 0 . (6114)

Let us write n(t) = n e ™. We then have

(W T+iwB=V)np=0 . (6.115)
To solve eqn. 6.115, we set P(w) = 0, where P(w) = det [Q(w)], with

Qw)=w?TH+iwB -V . (6.116)

Since T, B, and V are real-valued matrices, and since det(M) = det(M*) for any matrix M, we can use
B' = —B to obtain P(—w) = P(w) and P(w*) = [P(w)]". This establishes that if P(w) = 0, ie. if w is
an eigenfrequency, then P(—w) = 0 and P(w*) = 0, i.e. —w and w* and —w* are also eigenfrequencies.

Furthermore, P(w) must again be a polynomial of order n in w?.
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Example

As an example, consider the following Lagrangian, which is a function of four generalized coordinates
{z1,Y;, 29, Ys} and their corresponding velocities:

L="Ym(&}+ 03+ a3 +03) — Sr(ay —29)° — 30(y3 +93) + dmuw (21 9y — vy iy + 29 G — go i) . (6.117)

The last term, which is linear in the generalized velocities, arises if the masses are also equally charged
and in the presence of a magnetic field B = B2. The quantity w. = ¢B/mc, where ¢ is the charge, is
called the cyclotron frequency. We then have

Ppq = My — %mwc Yy , F,1= —/{(:1:1 — :L'2) + %mwc Uy (6.118)
Py1 =my; + $MW, T ) F,1=-by, — $MW,

P = My — Tmw, vy ; Foo=—r(xyg—mp) + Tmw, 1y

Py = My + MW, Ty ; F, = —by, — smw, &,

Defining 12 = k/m and 2? = b/m, we have the equations of motion

L1 —Weln —V2(331 —332)
+tw. ;=12
Y1 .1 i Y1 (6.119)
Tog —WelYg = —V (952 - 951)
Yo + we g = — 127 yy
From these equations, we read off the matrices
m 0 0 O 0 —MWe 0 0
0 m 0 O MWe 0 0 0
T = B = 6.120
0 0O m O ’ 0 0 0 mwe ( )
0 0 0 m 0 0 —mwe O
and
mu? 0 —mu? 0
0 me2? 0 0
V=1l o mu? 0 ’ (6-121)
0 0 0 me2?

where the rows and columns correspond to the coordinates {z,y;, z,, Y5}, respectively. If we define the
CM and relative coordinates

X=g(e+a) , Y=g5nty) » z=0-25 , y=y-¥ , (6.122)
the equations of motion decouple into two 2 x 2 systems, viz.

X—-wY=0, Y4w X=-02%Y | éi-wy=-2% , j+wi=—-02% . (6.123)
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Thus, for the (X,Y) system we have

2 o
det(,“’ 2“‘"""3) =0 =  W?=0, W=+ , (6.124)
wwe w?— {2

while for the (z,y) system we have

2 2 .
w* —2v —IWWe _ 2 1 5 ) ) . \/ 5
det( iwwe w?— _(22) =0 = wiy=35(20° + 2% +wl) £ 51/ (22 + 22+ W) — 81202

(6.125)
When w. = 0, we have the zero mode X with frequency w; = 0, the relative coordinate = with fre-
quency w, = v/2v, and two independent y and Y oscillations with degenerate frequencies w, = w; = {2.

Nonzero w. couples z to y and X to Y, and shifts the eigenfrequencies w; 5 4 according to the above
results.

Note that zero mode frequency is unaffected by a finite w.. If we write the Lagrangian in terms of the

CM and relative coordinates, we obtain L = L~y + L., with

Loy = m(X? +Y?) + muw (XY — YX) - bY?

o o (6.126)
Ly = 3m(#” + 9%) + fmuw (w5 — yir) — ra® — Jby?

At first, it seems that the zero mode should be lifted by finite w. since the coordinate X is no longer
cyclic in L. However, X may be made cyclic by a different choice of gauge for the electromagnetic vector
potential. Our choice had been A(r) = £ B2 x r = 1 B(zy — y&), but had we instead chosen A = — By,

we would have had ZA - 7 = —% y & and only the velocities 4, , would have entered here for each
particle, so X would have been cyclic. Equivalently, in L,; we could write

mw, (XY —YX) = % (mw, XY) — 2mw,YX | (6.127)
and the total time derivative term may be dropped from L,;. The resulting CM Lagrangian is then

cyclic in X, so the zero mode survives!

6.9 Additional Examples

6.9.1 Right triatomic molecule

A molecule consists of three identical atoms located at the vertices of a 45° right triangle. Each pair
of atoms interacts by an effective spring potential, with all spring constants equal to k. Consider only
planar motion of this molecule.

(a) Find three ‘zero modes’ for this system (i.e. normal modes whose associated eigenfrequencies vanish).

(b) Find the remaining three normal modes.
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Solution

It is useful to choose the following coordinates:
(X1, Y1) = (#1, 9)
(Xy,Yy) = (a+25, y5)
(X3,Y3) = (23, a+y3)

The three separations are then

dyy = \/(a +xy —1)% + (Yo — y)?

=a+xy—2;+...

and
doyy = \/(—a + 23— 29)? + (a+ Y5 — yp)?
= 2“_%(%_%) +%(93_92) +.
and
dyg = \/(5'33 — 1)+ (a+ys —y)?
:a+y3—y1+...
The potential is then

Defining the row vector

t

we have that U is a quadratic form:

U = 506 Voorlly = 31V 1,

"75(%71/1,33271/2,3337113),

205

(6.128)

(6.129)

(6.130)

(6.131)

(6.132)

(6.133)

(6.134)
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A
-

Figure 6.4: Normal modes of the 45° right triangle. The yellow circle is the location of the CM of the
triangle. The labels for the vertices are 1 (lower left), 2 (lower right), and 3 (upper left).

with
1 0 -1 0 0 0
0 1 0 0 0 -1
3 1 11
92U -1 0 5 -3 -3 3
o o g 1 1 1 1
1 00 -3 3 3 -3
11 1 1
0 0 -5 5 3 —3
1 1 13
0 -1 5 -3 -3 3
The kinetic energy is simply
T =1im(a] + 97 + 45+ 95 + 45 +93) | (6.136)
hence
Toor =mo,ge - (6.137)

(b) The three zero modes correspond to z-translation, y-translation, and rotation. Their eigenvectors,
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respectively, are

1 0 1
0 1 -1
1 1 1 0 1 1
1 0 -2
0 1 -1

Thus w;, = wy, = wy = 0. To find the unnormalized rotation vector, we find the CM of the triangle,

located at (% , %), and sketch orthogonal displacements 2 x (R, — Rcy) at the position of mass point a.

(c) The remaining modes may be determined by symmetry, and are given by

—1 1 —1
-1 -1 -1
1 0 1 -1 1 2
11b4 2\/m 1 ) 11b5 2\/m 0 ) ,l:bﬁ 2 /—3m _1 9 (6 39)
1 0 —1
0 1 2
with
k 2k 3k
—. =4/ =/ = . 6.140
“i=\ ; Ws m ’ We m ( )

Since T = m - 1 is a multiple of the unit matrix, the orthogonormality relation ng ) T,o wfj,” = ¢ entails
@ qpl) = m~1g, ; » 1.e.the eigenvectors are mutually orthogonal in the conventional dot product sense.
One can check that the eigenvectors listed here satisfy this condition.

The simplest of the set {1, 15,14} to find is the uniform dilation )4, sometimes called the breathing
mode. This must keep the triangle in the same shape, which means that the deviations at each mass
point are proportional to the distance to the CM. Next simplest to find is 4, , in which the long and
short sides of the triangle oscillate out of phase. Finally, the mode 1y must be orthogonal to all the
remaining modes. No heavy lifting (e.g. Mathematica) is required!

6.9.2 Triple pendulum

Consider a triple pendulum consisting of three identical masses m and three identical rigid massless
rods of length /, as depicted in fig. 6.5.

(a) Find the T and V matrices.

(b) Find the equation for the eigenfrequencies.

(c) Numerically solve the eigenvalue equation for ratios wjz /w3, where wy = 1/g/¢. Find the three normal
modes.
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Solution

The Cartesian coordinates for the three masses are

x, ={sinb, y, = —{ cos b, (6.141)
Ty =L sinf; + £ sin b, Yy = —L cos ) — L cos b, (6.142)
xq =L sinf, + ¢ sinf, + ¢ sin 6, ys = —L cost; — € costy — L cosl, . (6.143)

By inspection, we can write down the kinetic energy:

T = im(af + 93 + 23 + 93 + 2% + 43)

N O R T, . . . (6.144)
= lme {391 + 2602 + 62 + dcos(8, — 0,) 6, 6, + 2cos(8, — 05) 0, 65 + 2cos(By — 05) 6, 93}
The potential energy is
U= —mgl {3 cos ] + 2 cos 0, + cos 93} , (6.145)
and the Lagrangianis L =T — U:
L=1im¢? {39% + 202 4603 +4cos(0, — 0,) 0, 0, + 2cos(;, — 63) 6, 0,
. (6.146)
+2cos(f, — 05) 0y 93} + mgl {3 cos 0, + 2 cos @, + cos 93}
The canonical momenta are given by
T = G_L = m (> {391 +2cos(8; — 0,) By + cos(f; — 65) 93}
00,
m = 9L e [og + 2cos(0; — 0,) 8, + cos(, — 0.,)0 (6.147)
2 2 17— %)% 2~ U3)03
00
oL . . .
Ty = —— = m{* {0, 4 cos(0; — 0,) 0, + cos(6, — 03) 0
2= o = 4 {0+ cos(0 = 00, + cos(0, — 0) 0}

The only conserved quantity is the total energy, £ =T + U.

(a) As for the T and V matrices, we have

9 3 21
Too = oT =ml?|2 2 1 (6.148)
890— 890—’ 0=0 1 1 1
and
5 300
Voo = o =mgl {0 2 0 . (6.149)
005 00,1 | g_p 00 1
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Figure 6.5: The triple pendulum.

(b) The eigenfrequencies are roots of the equation det (w? T — V) = 0. Defining w, = 1/g/¢, we have

3(w? —wd) 2 w? w?
WET =V =me? 2w? 2(w? — W) w? (6.150)
w? w? (w? — wd)

and hence
P(w) = det (T — V)/(ml?)? = 3(w? — w?) - [2(w2 —wd)? - wﬂ

—2uw?. [2w2(w2 —wd) — w4] + w?- [2&)4 — 2w (w? — w%)]

(6.151)
=6 (w? —wd)® — 9w (W? — Wd) + 4w°
=W — 9w8w4 + 18w61w2 — 6w8
(c) The equation for the eigenfrequencies is
M _9X2 418X —-6=0 |, (6.152)
where w? = Aw?. This is a cubic equation in A\. Numerically solving for the roots, one finds
wi=04157T74w2 , w3 =229428wi , w3 =6.28995wF . (6.153)
I find the (unnormalized) eigenvectors to be
1 1 1
P, = (12021 , o, = (035286 | , aps=|-1.6450] . (6.154)
1.6312 —2.3981 0.76690

6.9.3 Equilateral linear triatomic molecule

Consider the vibrations of an equilateral triangle of mass points, depicted in figure 6.6 . The system is
confined to the (z, y) plane, and in equilibrium all the strings are unstretched and of length a.
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k

Figure 6.6: An equilateral triangle of identical mass points and springs. We label the sites as 1 (lower
left), 2 (lower right), and 3 (upper).

(a) Choose as generalized coordinates the Cartesian displacements (x,, y,) with respect to equilibrium.
Write down the exact potential energy.

(b) Find the T and V matrices.

(c) There are three normal modes of oscillation for which the corresponding eigenfrequencies all vanish:
wqe = 0. Write down these modes explicitly, and provide a physical interpretation for why w, = 0. Since
this triplet is degenerate, there is no unique answer — any linear combination will also serve as a valid
‘zero mode’. However, if you think physically, a natural set should emerge.

(d) The three remaining modes all have finite oscillation frequencies. They correspond to distortions of
the triangular shape. One such mode is the “breathing mode” in which the triangle uniformly expands
and contracts. Write down the eigenvector associated with this normal mode and compute its associated
oscillation frequency.

(e) The fifth and sixth modes are degenerate. They must be orthogonal (with respect to the inner
product defined by T) to all the other modes. See if you can figure out what these modes are, and
compute their oscillation frequencies. As in (a), any linear combination of these modes will also be an
eigenmode.

(£) Write down the modal matrix A;, and check that it is correct by using Mathematica.

o/

Solution

Choosing as generalized coordinates the Cartesian displacements relative to equilibrium, we have the
following:

#1: (3317111)
#2 (a + w2,y2)
#3: (3a+ x4, @a + ys3)
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Let d;; be the separation of particles i and j. The potential energy of the spring connecting them is then

%k:(dij —a)?.

The full potential energy is

U:%k(dm_“)2+%k(d23_a)2+%k(d13_“)2

This is a cumbersome expression, involving square roots.

(6.155)

(6.156)

To find T and V, we need to write T"and V' as quadratic forms, neglecting higher order terms. Therefore,
we must expand d;; — a to linear order in the generalized coordinates. This results in the following:

Thus,

1
2

d12:a+(x2 )+
dyg = a — %(ws w2) @( 2)+'
dig =a+ 5 (23— ;) + @( ) +-

k(zy — 3:1)2 + %k‘(l’z — 23— V3yy + \/§y3)2
+ 1k(zy — 2+ V3yy — \/§y1)2 + higher order terms

\ rotation

— .
x—translation y—translation

Figure 6.7: Zero modes of the mass-spring triangle.

(6.157)

(6.158)
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-~ dilation N

ANIVAN

/ A mode B mode

Figure 6.8: Finite oscillation frequency modes of the mass-spring triangle.

Defining
(q17q27q37q47q57q6) = (95179179527927953793) ) (6.159)
we may now read off
5/4 V3/4 -1 0 —1/4 —+/3/4
U \/14 3(/)4 5(/)4 —;3/4 _—\f;f ;;;1
Voor = ﬁ . =k 0 0 —V3/4 3/4  \3/4 —3/4 (6.160)

—1/4 —+/3/4 —1/4 V3/4 1/2 0
—V3/4 —3/4 V3/4 —3/4 0 3/2

The T matrix is trivial. From

T = dm(a? + 97 + a3 + 93 + 43 +93) . (6.161)
we obtain
o*T
= —————=mdb_, 6.162
oo aqg (9q0/ m oo ( )

and T = m - [ is a multiple of the unit matrix.
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A AR

Figure 6.9: John Henry, statue by Charles O. Cooper (1972). “Now the man that invented the steam
drill, he thought he was mighty fine. But John Henry drove fifteen feet, and the steam drill only made
nine.” - from The Ballad of John Henry.

The zero modes are depicted graphically in figure 6.7. Explicitly, we have

1 0 1/2
0 1 —3/2
£ = \/% (1) Y= \/% (1’ - \/% ;g/zz . (6.163)
: : o
That these are indeed zero modes may be verified by direct multiplication:
VEW =Vt =0 . (6.164)

The three modes with finite oscillation frequency are depicted graphically in figure 6.8. Explicitly, we
have

—1/2 —/3/2 —/3/2
—/3/2 1/2 —1/2
1 ~1/2 1 V3/2 . 1 V3/2
A: , B: , dll:— 6165
¢ Vam | V3/2 ¢ Vam | 172 Vam | -1/2 (6.165)
1 0 0

0 -1 1
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The oscillation frequencies of these modes are easily checked by multiplying the eigenvectors by the
matrix V. Since T = m - [ is diagonal, we have V § ) = mw]z £U). One finds

| 3k 3k
Wy = W = % s Wy = E . (6166)

Mathematica? I don’t need no stinking Mathematica.

6.10 Aside: Christoffel Symbols

The coupled equations in eqn. 6.5 may be written in the form

G, + 10, 4,4, =W, (6.167)
with
oT, oT, oT

re =it ap av 6.168
pro 27 ( oqy * 0qp  0qq > ( )

and o
W, = =T, — (6.169)

0qa

The components of the rank-three tensor I'y ; are known as Christoffel symbols, in the case where T},,(q)
defines a metric on the space of generalized coordinates.



Chapter 7

Elastic Collisions

7.1 Center of Mass Frame

A collision or ‘scattering event’ is said to be elastic if it results in no change in the internal state of any of
the particles involved. Thus, no internal energy is liberated or captured in an elastic process.

Consider the elastic scattering of two particles. Recall the relation between laboratory coordinates
{r;,r,} and the CM and relative coordinates { R, 7 }:

R =" Mol + MaTy =7 —T (7.1)
mi + mg
r=R+—"2 ry=R- " (7.2)
m1 + ma mi +ma

If external forces are negligible, the CM momentum P = M R is constant, and therefore the frame of
reference whose origin is tied to the CM position is an inertial frame of reference. In this frame,

' Mo U ' mq v
,U(le — 2 ’ ,U2CM - _ 1 7 (7'3)
mq + my mq + my

where v = v; — v, = v{™ — v§™ is the relative velocity, which is the same in both L and CM frames.
Note that the CM momenta satisfy

oM cM
py =m vy = uv
(13M ' ZM ' (7.4)
Dby = Myvy = —HU

where p = mymy,/(m, + m,) is the reduced mass. Thus, pf™ + pS™ = 0 and the total momentum in the
CM frame is zero. We may then write

i | P51
M =5 7 M= _pn = peM=2 4 Y 0 7.5
2 Py ) D3 Dg 9my + 2ms 2 (7.5)
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! CM cCM

P P

CcM | ; CM

P> | Do

Figure 7.1: The scattering of two hard spheres of radii a and b. The scattering angle is x.

The energy is evaluated when the particles are asymptotically far from each other, in which case the
potential energy is assumed to be negligible. After the collision, energy and momentum conservation
require

2
P =pd . P = p s B =B = g—z : (7.6)

The angle between n and n’ is the scattering angle x:
n-n =cosy . (7.7)

The value of x depends on the details of the scattering process, i.e. on the interaction potential U(r). As
an example, consider the scattering of two hard spheres, depicted in fig. 7.1. The potential is

U(r) = (7.8)

oo ifr<a+bd
0 ifr>a+bd

Clearly the scattering angle is x = m —2¢,, where ¢, is the angle between the initial momentum of either
sphere and a line containing their two centers at the moment of contact.

There is a simple geometric interpretation of these results, depicted in fig. 7.2. We have

p, =mV +pyn pi =m,V +pyn/ (7.9)
Py = myV — pyhu ph=myV —pn/ . (7.10)

So draw a circle of radius p, whose center is the origin. The vectors p,n and p,n’ must both lie along
this circle. We define the angle i) between V' and n:

V. -n=cosy . (7.11)

It is now an exercise in geometry, using the law of cosines, to determine everything of interest in terms
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Figure 7.2: Scattering of two particles of masses m; and ms. The scattering angle x is the angle between
nand n'.

of the quantities V, v, ¢, and x. For example, the momenta are

Py = \/m% V2 + 202 4 2mypuVo cos

P = \/ mi V2 + 202 4 2my pV cos(x — 1)

(7.12)

Py = \/m% V2 + 202 — 2myuVo cos

I 2772 1 1202
D2 = \/mz V2 4+ pPv? = 2mopuVocos(x — 1)
and the scattering angles are
0, = tan™! posiny + tan~! posin(x = )
pv cos P +myV po cos(x — ) +mqV

(7.13)

0y = tan ™! ( posing ) + tan ( posin(x — v) )

pv cos P — myV pvcos(x — 1) —myV

If particle 2, say, is initially at rest, the situation is somewhat simpler. In this case, V- = m,V /(m; + m,)
and m,V = pv, which means the point B lies on the circle in fig. 7.3 (m; # m,) and fig. 7.4 (m; = m,).
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(a) my < my (b) my > my

Figure 7.3: Scattering when particle 2 is initially at rest.

Let ¥, , be the angles between the directions of motion after the collision and the direction V' of impact.
The scattering angle  is the angle through which particle 1 turns in the CM frame. Clearly

sin y

tanv, = Yy = %(77 -x) - (7.14)

% + cosx
We can also find the speeds v} and v} in terms of v and , from
2 2
Py =15+ (2 po)” — 2 2L pj cos(m — X) (7.15)
and

p2=2p3(1—cosy) . (7.16)
These equations yield

\V/m? +m3 + 2myma cos x p 2miv
= v , vy = ——— sin(

mi1 + ms m1 + ms

v} X) - (7.17)

D=

The angle ¥1,ax from fig. 7.3(b) is given by sin Jmax = 2—? Note that when m; = m, we have ¥; +9, = 7.
A sketch of the orbits in the cases of both repulsive and attractive scattering, in both the laboratory and
CM frames, in shown in fig. 7.5.

Figure 7.4: Scattering of identical mass particles when particle 2 is initially at rest.
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Figure 7.5: Repulsive (A,C) and attractive (B,D) scattering in the lab (A,B) and CM (C,D) frames, assum-
ing particle 2 starts from rest in the lab frame. (From Barger and Olsson.)

7.2 Central Force Scattering

Consider a single particle of mass y movng in a central potential U(r), or a two body central force
problem in which f is the reduced mass. Recall that

dr d¢ dr £ dr

e 7.1
dt dt do pr? d¢ (7.18)
and therefore
1,2 ?
E = pr + S +U(r)
) (7.19)
— ﬁ ﬁ + ﬂ + U(T)
©2urt \ do e
Solving for g—;, we obtain
dr 2urt
P = :I:\/ 7 (E-U(r)—r2 (7.20)
Consulting fig. 7.6, we have that
i 7 dr
= , 7.21
Y= 75 ) e E ) (721)
Tp
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b+ db

Figure 7.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact
parameter is b, and x is the scattering angle. ¢, is the angle through which the relative coordinate moves
between periapsis and infinity.

where 7, is the radial distance at periapsis, and where

62

Ug(r)
is the effective potential, as before. From fig. 7.6, we conclude that the scattering angle is

X =|m—2¢| - (7.23)

It is convenient to define the impact parameter b as the distance of the asymptotic trajectory from a parallel
line containing the force center. The geometry is shown again in fig. 7.6. Note that the energy and
angular momentum, which are conserved, can be evaluated at infinity using the impact parameter:

E= %,uvgo , {=pu b . (7.24)
Substituting for ¢(b), we have
[ dr b
Eb) = [ = 7.25
(250( ’ ) /7‘2 1_b2_U(r) ’ ( )
Tp r2 “E

In physical applications, we are often interested in the deflection of a beam of incident particles by a
scattering center. We define the differential scattering cross section do by

__ #of particles scattered into solid angle df2 per unit time

do (7.26)

incident flux

Now for particles of a given energy E there is a unique relationship between the scattering angle x and
the impact parameter b, as we have just derived in eqn. 7.25. The differential solid angle is given by
d€) = 27 sin x d, hence

ir_ b || _ae) o)
dx

dQ B siny

dcosx
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b

Figure 7.7: Geometry of hard sphere scattering.

Note that j—g has dimensions of area. The integral of j—g over all solid angle is the total scattering cross
section,

do

0 (7.28)

s
Op = 27T/dx siny
0

7.2.1 Hard sphere scattering

Consider a point particle scattering off a hard sphere of radius a, or two hard spheres of radii a; and
a, scattering off each other, with a = a; + a,. From the geometry of fig. 7.7, we have b = asin ¢, and

¢y = %(W —X), 80

b? = a?sin? (ir—ix) = %a2 (I+cosy) . (7.29)
We therefore have (1)
do d(5b 9
aQ dci)sx - ia (7:30)

and 0., = 7a?. The total scattering cross section is simply the area of a sphere of radius a projected onto
a plane perpendicular to the incident flux.

7.2.2 Rutherford scattering

Consider scattering by the Kepler potential U(r) = —%. We assume that the orbits are unbound, i.e. they
are Keplerian hyperbolae with £ > 0, described by the equation

a(e?—1) 1

T(QS) = m = COS ¢0 =4 g . (731)

Recall that the eccentricity is given by

2E(2 buso
St =1+<“;’ ) . (7.32)
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We then have
2
<ubvoo> 2
k (7.33)
= Sec2qz50 —1= tan2qz50 = ctnz(%x)
Therefore "
b(x) = e ctn(3x) (7.34)
We finally obtain
do d (3b%) 1k 2 detn?(1y)
dQ  dcosy 2\ i dcosy
1/ kY d [1+cos
(£ - X (7.35)
2\ s, ) decosx \ 1 —cosx
k 2
gz ) o' ()
which is the same as
do kN,
0= \15 cse (EX) . (7.36)

Since j—g o x~*as x — 0, the total cross section o diverges! This is a consequence of the long-ranged

nature of the Kepler/Coulomb potential. In electron-atom scattering, the Coulomb potential of the
nucleus is screened by the electrons of the atom, and the 1/r behavior is cut off at large distances.

7.2.3 Transformation to laboratory coordinates

We previously derived the relation
sin y

tan = ————
Y + cos x

(7.37)
where ¢ = ¥, is the scattering angle for particle 1 in the laboratory frame, and v = 7L is the ratio of
the masses. We now derive the differential scattering cross section in the laboratory frame. To do so, we
note that particle conservation requires

do . do .
<E>L 2msind d = <E>CM 2mwsin xdy (7.38)
which says
do do dcosx
<E>L B <E>CM deosy 7:3)
From ) N
cost = TS X (7.40)

V1+tan?d \/1+’y2+2’ycosx
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we derive
dcos? 1+ ~ycosx

dcos x (1+’y2+2’ycosx

)3/2

and, accordingly,

do\ (1442 +2ycosx)* (do
Q) 1+ ycosx dQ ) e

223

(7.41)

(7.42)
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Chapter 8

Noninertial Reference Frames

8.1 Accelerated Coordinate Systems

A reference frame which is fixed with respect to a rotating rigid body is not inertial. The parade example
of this is an observer fixed on the surface of the earth. Due to the rotation of the earth, such an observer
is in a noninertial frame, and there are corresponding corrections to Newton’s laws of motion which
must be accounted for in order to correctly describe mechanical motion in the observer’s frame. As is
well known, these corrections involve fictitious centrifugal and Coriolis forces.

Consider an inertial frame with a fixed set of coordinate axes & o where p runs from 1 to d, the dimension
of space, and a noninertial frame with axes €|,. Any vector A may be written in either basis:

~ /AN
A:ZAueu:ZAueu ; (8.1)

p p
where A, = A-¢,and A), = A&, are projections onto the different coordinate axes. We may now write

dA dAy A
<E> inertial a Z dt H
m

dA,,
_Z dt /+ZA“ dt

(8.2)

The first term on the RHS is (dA/dt), .4, , the time derivative of A along body-fixed axes, i.e. as seen by
an observer rotating with the body. But what is dé;/dt? Well, we can always expand it in the {&]} basis:

dé), = Z aQ,, &, <« dQ,, =dé, ¢, . (8.3)
Note that d©2,,, = —df2,, is antisymmetric, because
0=d(&, &,) =dQ,,+dQ,, (8.4)

225
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because é; &, =0 . 18 @ constant. Now we may define dQ12 = d€23, et cyc., so that
dQ,
dguuzzz;emwdgg  we=—C (8.5)
which yields
de;, B N 86
E = w X e“ ( . )
Finally, we obtain the important result
<%> = <%> +wxA | (8.7)
dt inertial dt body
which is valid for any vector A.
Applying this result to the position vector r, we have
dr > (dr )
— =|— +wxr . (8.8)
( dt inertial dt body
Applying it twice,
()= (2 o) (2 )
daez ). o \at dt
inertial body body (89)

= @ +d—w><r+2w>< dr +wx(wxr)
- \dt? gy dt dt ) pody

Note that dw/dt appears with no “inertial” or “body” label. This is because, upon invoking eq. 8.7,

dw > < dw >
i - (£ Twxw (8.10)
< dt inertial dt body

and since w x w = 0, inertial and body-fixed observers will agree on the value of w, ., = w, Qy = -
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8.1.1 Translations

Suppose that frame K moves with respect to an inertial frame K°, such that the origin of K lies at
R(t). Suppose further that frame K’ rotates with respect to K, but shares the same origin (see fig. 8.1).
Consider the motion of an object lying at position p relative to the origin of K°, and r relative to the
origin of K/K'. Thus,

p=R+7r | (8.11)

() s ™ () ()77
dt inertial dt inertial dt body

@ = d2—R + d2_7° +d—wxr—|—2w>< dr +wx(wxr)
dt? inertial a dt? inertial dt? body dt dt body

Here, w is the angular velocity in the frame K or K.

and

(8.12)

8.1.2 Motion on the surface of the earth
The earth both rotates about its axis and orbits the Sun. If we add the infinitesimal effects of the two
rotations,
dr; =w; xrdt
dr, = wy X (r +dry)dt (8.13)
dr = dry +dry = (w; +w,) dt x 7+ O((dt)?)

Thus, infinitesimal rotations add. Dividing by dt, this means that

w=> w (8.14)
i
where the sum is over all the rotations. For the earth, w = w,; +w_ ;.

e The rotation about earth’s axis, w,, has magnitude w,, = 27/(1day) = 7.29 x 10~° s~1. The radius

of the earth is R, = 6.37 x 10% km.

e The orbital rotation about the Sun, w_, has magnitude w_, = 2r/(1yr) = 1.99 x 107" s~'. The
radius of the earth’s orbit is a, = 1.50 x 108 km.

Thus, w, /w,,, = T4/ Tror = 365.25, which is of course the number of days (i.e. rotational periods) in a
year (i.e. orbital period). There is also a very slow precession of the earth’s axis of rotation, the period of
which is about 25,000 years, which we will ignore. Note w = 0 for the earth. Thus, applying Newton’s
second law and then invoking eq. 8.12, we arrive at

2 2
m d_r = F®" _m ﬁ — 2mw X d_r — mwXx (wxr) (8.15)
dt2 earth dt2 Sun dt earth



228 CHAPTER 8. NONINERTIAL REFERENCE FRAMES

Figure 8.2: The locally orthonormal triad {7, 6, ¢}.

where w = w,; + w_,, and where RSun is the acceleration of the center of the earth around the Sun,
assuming the Sun-fixed frame to be inertial. The force F't) is the total force on the object, and arises
from three parts: (i) gravitational pull of the Sun, (ii) gravitational pull of the earth, and (iii) other earthly
forces, such as springs, rods, surfaces, electric fields, efc.

On the earth’s surface, the ratio of the Sun’s gravity to the earth’s is

Fe ag Rg B Me

2
Fo _ GMom [GMem _ %<&> ~6.02x 107 . (8.16)

Qe

In fact, it is clear that the Sun’s field precisely cancels with the term m Ry, at the earth’s center, leaving
only gradient contributions of even lower order, i.e. multiplied by another factor of R, /ae ~ 4.25 x 1075.
Thus, to an excellent approximation, we may neglect the Sun entirely and write

d? F’ d
%=E+g—2wxd—z—wx(wxr) . (8.17)

Note that we’ve dropped the ‘earth’ label here and henceforth. We define g = —GM, #/r?, the accelera-
tion due to gravity; F” is the sum of all earthly forces other than the earth’s gravity. The last two terms
on the RHS are corrections to m# = F' due to the noninertial frame of the earth, and are recognized as
the Coriolis and centrifugal acceleration terms, respectively.
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8.2 Spherical Polar Coordinates

The locally orthonormal triad {7, 0, } varies with position. In terms of the body-fixed triad {z,y, 2},
we have

7 =sinfcosp & + sinfsinpy + cosh 2

D>

=cosfcosgpx + cosfsingpy —sinf 2 (8.18)
G =—sindE+cosdy

where 0 = 3 — ) is the colatitude (i.e. X € [— 5 —I—g} is the latitude). Inverting the relation between the
triads {7, 0, ¢} and {&, g, 2}, we obtain

& =sinf cos @7 + cosf cos O — sin g @
g =sinf sin¢7 + cosf sin O + cos ¢ (8.19)
2=cosfF —sinfo

The differentials of these unit vectors are

di = 60.df + sin 0 ¢ do
d0 = —7df + cos 0 ¢ do (8.20)
ddp = —sinf 7 dp — cos0 0 do
Thus,
. d, R :
’T‘:E(T"I")ZT"I"—FTT‘ (8.21)
=7r7r+r00+rsinf oo
If we differentiate a second time, we find, after some tedious accounting,
7= (r —ré*—r sin29<;52) T+ (27'”94—7“5 —r sin@cos@éz) 6 6.22)

+ (27 ¢ sin@+2r0¢ cosf+7rsinfdd) ¢

8.3 Centrifugal Force

One major distinction between the Coriolis and centrifugal forces is that the Coriolis force acts only on
moving particles, whereas the centrifugal force is present even when = 0. Thus, the equation for
stationary equilibrium on the earth’s surface is

mg+F —mwx (wxr)=0 (8.23)

involves the centrifugal term. We can write this as F’' + mg = 0, where

_ GM,7
g=-

3 WX (wxmr) (8.24)

_(90 — w?R, sin® 9) P+ w? R sinfcosf O ,
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where gy = GM./R2 = 980 cm/s?. Thus, on the equator, where § = %, we have § = — (g, —w?R.) 7, with
w?R, ~ 3.39 cm /5%, a small but significant correction. You therefore weigh less on the equator. Note also
that § has a component along 6. This means that a plumb bob suspended from a general point above the
earth’s surface won’t point exactly toward the earth’s center. Moreover, if the earth were replaced by an
equivalent mass of fluid, the fluid would rearrange itself so as to make its surface locally perpendicular
to g. Indeed, the earth (and Sun) do exhibit quadrupolar distortions in their mass distributions — both
are oblate spheroids. In fact, the observed difference §(§ = 0) — §(0 = 5) ~ 5.2cm/s?, which is 53%
greater than the naively expected value of 3.39 cm/s2. The earth’s oblateness enhances the effect.

8.3.1 Rotating cylinder of fluid

Consider a cylinder filled with a liquid, rotating with angular frequency w about its symmetry axis 2.
In steady state, the fluid is stationary in the rotating frame, and we may write, for any given element of
fluid

O=f +g—-w?2x(2xr) |, (8.25)

where f’ is the force per unit mass on the fluid element. Now consider a fluid element on the surface.
Since there is no static friction to the fluid, any component of f’ parallel to the fluid’s surface will cause
the fluid to flow in that direction. This contradicts the steady state assumption. Therefore, we must
have f' = f'n, where n is the local unit normal to the fluid surface. We write the equation for the fluid’s
surface as z = z(p). Thus, with r = p p + z(p) 2, Newton’s second law yields

flfa=gz-w?pp | (8.26)
where g = —g 2 is assumed. From this, we conclude that the unit normal to the fluid surface and the
force per unit mass are given by

A~ 2 A~

. Z—w

a(p)=LLE )= VTR (8.27)
2 + Wt p?

€
|
e
N>
pufd
S

-
—
(—

]

|

|
o

N

Figure 8.3: A rotating cylinder of fluid.
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Now suppose 7(p, ¢) = p p + z(p) 2 is a point on the surface of the fluid. We have that
dr=pdp+2(p)2dp+pddd | (8.28)

where 2/ = dz/dp, and where we have used dp = q5 d¢, which follows from the first of eqn. 8.20 after
setting § = 5. Now dr must lie along the surface, therefore 7 - dr = 0, which says

d
g &2 o . (8.29)
dp

Integrating this equation, we obtain the shape of the surface:

W2 p?
8.4 The Coriolis Force
8.4.1 Projectile motion
The Coriolis force is given by Fi,, = —2mw x . According to (8.17), the acceleration of a free particle

(F" = 0) isn’t along g — an orthogonal component is generated by the Coriolis force. To actually solve
the coupled equations of motion is difficult because the unit vectors {7, 0, (13} change with position, and
hence with time. The following standard problem highlights some of the effects of the Coriolis and
centrifugal forces.

PROBLEM: A cannonball is dropped from the top of a tower of height h located at a northerly latitude of
A. Assuming the cannonball is initially at rest with respect to the tower, and neglecting air resistance,
calculate its deflection (magnitude and direction) due to (a) centrifugal and (b) Coriolis forces by the time
it hits the ground. Evaluate for the case h = 100 m, A = 45°. The radius of the earth is R, = 6.4 x 10% m.

SOLUTION: The equation of motion for a particle near the earth’s surface is
FT=-"2wxX?—gT—wx(wxr) , (8.31)

where w = w 2, with w = 27/(24hrs) = 7.3 x 1075 rad/s. Here, g, = GM./R? = 980 cm/s?>. We use a
locally orthonormal coordinate system {7, 8, ¢} and write

r=10+y¢+ (Re+2)7 (8.32)
where R, = 6.4 x 10° m is the radius of the earth. Expressing 2 in terms of our chosen orthonormal triad,
2=cosf#—sinfl | (8.33)

where 6 = § — )\ is the polar angle, or “colatitude’. Since the height of the tower and the deflections are
all very small on the scale of R., we may regard the orthonormal triad as fixed and time-independent,
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although, in general, these unit vectors change as a function of ». Thus, we have » ~ & 0+ Y (Z) + 27, and
we find

2x7 = (cosOF —sinh0) x (&0 +9p+:i7)

= —5 cos00 + (i cosf + % sinf) p — sinf 7 (8.54
and
negligible
w X (wx7T) =w?(cos 7 —sin 6 9) x ((cos@’ﬁ —5inf0) x (Re?+ 60 +yd+ zf)) (335)
~ w?(cosF —sinfO) x R, sinf ¢
= —w? R, sinf cos 0 0 — W2 R, sin%0 7
Note that the distances x, y, and z are all extremely small in magnitude compared with R,.
The equations of motion, written in components, are then
U, = gy sinf cosf + 2w cos O v,
v, = —2wcosfv, —2wsinfu, (8.36)

b, = —go + g1 5in%0 + 2w sinfv,

with g; = w?R.. While these (inhomogeneous) equations are linear, they also are coupled, so an exact
analytical solution is not trivial to obtain (but see below). Fortunately, the deflections are small, so we
can solve this perturbatively. To do so, let us write v(t) as a power series in ¢. For each component, we

write -
= vunt" (8.37)
n=0

with v, o = v, (t = 0) = v} . Eqns. 8.36 then may be written as the coupled hierarchy

nv, , = gy sinflcos o, ; +2wcosbv,,_4

nvy , = —2wcosfv, ,_; —2wsinbv, ,_ 4 (8.38)
n,,, = —(9 — 5 sin?6) Opq +2wsinfuv,,, 4
Integrating v(t), we obtain the displacements,
Cl{ n
= ¢ 8.39
= ot Z n+1 (8.39)

Now let’s roll up our sleeves and solve for the coefficients v, ,, for n = 0, 1,2. This will give us the
displacements up to terms of order ¢3. For n = 0 we already have Voo = = 0. For n = 1, we use Eqns.
8.38 with n = 1 to obtain

Vg1 = 2wcost vg + g, sinf cos 6
y1 = —2wcos B vY — 2wsin 000 (8.40)

Vyq = 2w sin9v2 — go + gy sin%0

v



8.4. THE CORIOLIS FORCE 233

Finally, at level n = 2, we have

Vg9 =wcosfv —2w? cos 0 (cos @12 + sin O 02)

yl =
vy 9= —2wcosfv, ; —2wsinfuv, | = —2w2v2 +wsinb (gy — 91) (8.41)
v, 9 =wsinfuv, ; = —2w?sin @ (cos O vY + sin 6 v?)

Thus, the displacements are given by

2(0) + 00t + 3 (2w cos@vg + gy sinfcosf) t* — %wz cos 6 (cos B v 4 sin O 02) 2 4+ O(tY)
y(t) = y(0) + ’ugt — w(cos O + sin O v2) 2 — %w%g 2+ Ltwsing (gy — g1) t* + O(t") (8.42)
z

(0) 4+ 29t + %(Qw sin 6 vg — g0+ sin29) t2 — % w?sin @ (cos 10 + sin#v°) 13 + O(t)
When dropped from rest, with 2(0) = y(0) = 0 and 2(0) = h,, we have

z(t) = 39 sin @ cos 0% 4+ O(t*)
y(t) = %wsinQ (90 — 91) £+ (’)(t4) (8.43)
2(t) =ho— 5 (90 — 9 sin®6) ¢* + O(t")

Recall g; = w?R,, so if we neglect the rotation of the earth and set w = 0, we have w = g; = 0, and
z(t) = hy — 3got> with z(t) = y(t) = 0. This is the familiar high school physics result. As we see, in
the noninertial reference frame of the rotating earth, there are deflections along 8 given by z(t), along

¢ given by y(t), and also a correction Az(t) = g, sin? 0% + O(t*) to the motion along #. To find the

deflection of an object dropped from a height h,, solve z(t*) = 0 to obtain t* = \/ 2h/(go — g, sin?0) for
the drop time, and substitute. For hy = 100m and A = 7, find §z(t*) = 17 cm south (centrifugal) and
dy(t*) = 1.6 cm east (Coriolis). Note that the centrifugal term dominates the deflection in this example.
Why is the Coriolis deflection always to the east? The earth rotates eastward, and an object starting
from rest in the earth’s frame has initial angular velocity equal to that of the earth. To conserve angular
momentum, the object must speed up as it falls.

Exact solution for velocities

In fact, an exact solution to (8.36) is readily obtained, via the following analysis. The equations of motion
may be written v = 2iwJv + b, or

J b
Vg 0 —icosf 0 (2 gy sin @ cos 0
Uy | =2iw |icost 0 isin 6 vy | + 0 . (8.44)
U 0 —isin 0 Vg —go + g, sin?@

Note that 7T = 7, i.e. J is a Hermitian matrix. The formal solution is

) e2iwJt _ 1
v(t) = 2Tt w(0) + <T>j‘1 b . (8.45)
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When working with matrices, it is convenient to work in an eigenbasis. The characteristic polynomial
for 7 is P(A) = det (A -1 —J) = A(\? — 1), hence the eigenvalues are \; = 0, A, = +1, and A\; = —1.
The corresponding eigenvectors are easily found to be

sin 6 1 f[cos 0 1 fcos 0
'l/)l == 0 ; 1/)2 = —F= Z 5 1/)3 _ —F= —Z . (8.4:6)
—cosf V2 sin @ V2 sin @

Note that @bl “Py = gt

Expanding v and b in this eigenbasis, we have , = 2iw),u, + b,, where u, = 9} v, and b, = ¢}, b,.
The solution is

20X ot e2i)\awt -1
ua(t) = Ua(O) e a + <W> ba . (84:7)
Since the eigenvectors of J are orthonormal, u, = 7, v, entails v; = 9,,u, , hence

J

2wt
vi(t) =) ( Pig €2 w;z) v;(0)+ 3 <Z Yia (%)%) b - (8.48)
a j a a

Doing the requisite matrix multiplications, and assuming v(0) = 0, we obtain

vz (%) tsin?6 + 2L o520 %2‘“ cos) —3tsin20 + S22 gin 20 g, sinf cos o
Uy (t) = _ sinjwt .COS 0 | jiréiwt o sinjw.t sin 6 0 ,
vz(t) —%t sin 20 + % sin 20 %“t sin 6 t cos20 + %Z“t sin26 —9o+ 91 sin26
(8.49)
which says
v, (t) = (% - 1) gotsinf cos 0 + % gytsinf cos
v, (t) = %Qt‘“t (9o —g1) tsinf (8.50)

v, (t) = — ((30529 + sl 2wt sin29> got + Sigfjft g,tsin?0

One can check that by expanding in a power series in ¢t we recover the results of the previous section.

8.4.2 Foucault’s pendulum

A pendulum swinging over one of the poles moves in a fixed inertial plane while the earth rotates
underneath. Relative to the earth, the plane of motion of the pendulum makes one revolution every
day. What happens at a general latitude? Assume the pendulum is located at colatitude § and longitude
¢. Assuming the length scale of the pendulum is small compared to R., we can regard the local triad
{6, ¢, 7} as fixed. The situation is depicted in fig. 8.4. We write

r=z0+yp+z27 |, (8.51)

with
x=/{sinY cosa , y=~Lsinysina , z=4~¢(1—cosy) . (8.52)
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T (up)

¢ (east)

-~

0 (south)

Figure 8.4: Foucault’s pendulum.

In our analysis we will ignore centrifugal effects, which are of higher order in w, and we take g = —g *.
We also idealize the pendulum, and consider the suspension rod to be of negligible mass.

The total force on the mass m is due to gravity and tension:
F=mg+T
= ( — T'sint cosa, —T'sinvy sinca, T cosy — mg) (8.53)
=(—Txz/t, =Ty/t, T — Mg —Tz/?)
The Coriolis term is

Fo, = —2mwXx7r
:—2mw(0089'ﬁ—sin99) X (:té+yq§—|—,é'ﬁ) (8.54)

= 2mw (y cosl, —icosf — zZsinf, ysin 9)
The equations of motion are m+ = F + F,,:

mi = =T/l + 2mwcos by
my = —Ty/l — 2mw cos O & — 2mwsin 2 (8.55)
mzZ=T—mg—Tz/l+2mwsinfy

These three equations are to be solved for the three unknowns z, y, and 7. Note that

P2 (—2)2=07 (8.56)
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so z = z(x,y) is not an independent degree of freedom. This equation may be recast in the form z =
(22 +y% 4 22) /20 which shows that if x and y are both small, then z is at least of second order in smallness.
Therefore, we will approximate z ~ 0, in which case Z may be neglected from the second equation of
motion. The third equation is used to solve for 7™

T ~mg—2mwsinfy . (8.57)
Adding the first plus i times the second then gives the complexified equation

. T . :
€= _Wg — 2iwcos & (8.58)

~ —wgé — 2iwcos b &

where £ = z + iy, and where w, = /g/{. Note that we have approximated 7" ~ myg in deriving the
second line.

It is now a trivial matter to solve the homogeneous linear ODE of eq. 8.58. Writing

£=¢&e (8.59)
and plugging in to find {2, we obtain
22w N-wi=0 |, (8.60)
with w, = wcosf. The roots are
2, =w, £/wd+w? (8.61)
hence the most general solution is
E(t)=A et 4 ATt (8.62)

Finally, if we take as initial conditions z(0) = a, y(0) = 0, ©(0) = 0, and §(0) = 0, we obtain

x(t) = (%) . {wl sin(w, t) sin(vt) + v cos(w t) cos(ut)}
a (8.63)
y(t) = (;) . {wl cos(w, t) sin(vt) — v sin(w | t) cos(ut)} , oo

with v = /w2 +w?. Typically w, > w |, since w = 7.3 x 1079571, In the limit w, < w,, then, we have
v~ w,and

x(t) >~ a cos(w t) cos(wyt) , y(t) =~ —asin(w,t) cos(wyt) (8.64)
and the plane of motion rotates with angular frequency —w , i.e. the period is | sec | days. Viewed from

above, the rotation is clockwise in the northern hemisphere, where cos# > 0 and counterclockwise in
the southern hemisphere, where cos 6 < 0.



Chapter 9

Rigid Body Motion and Rotational
Dynamics

9.1 Rigid Bodies

A rigid body consists of a group of particles whose separations are all fixed in magnitude. Six inde-
pendent coordinates are required to completely specify the position and orientation of a rigid body. For
example, the location of the first particle is specified by three coordinates. A second particle requires
only two coordinates since the distance to the first is fixed. Finally, a third particle requires only one co-
ordinate, since its distance to the first two particles is fixed (think about the intersection of two spheres).
The positions of all the remaining particles are then determined by their distances from the first three.
Usually, one takes these six coordinates to be the center-of-mass position R = (X,Y, Z) and three angles
specifying the orientation of the body (e.g. the Euler angles).

As derived previously, the equations of motion are
P:Zmzrl R P:F<6Xt)
i

: (9.1)
L=> mirixi; , L=N
%

These equations determine the motion of a rigid body.

9.1.1 Examples of rigid bodies

Our first example of a rigid body is of a wheel rolling with constant angular velocity ¢ = w, and without
slipping, This is shown in fig. 9.1. The no-slip condition is dz = Rd¢, so & = Von = Rw. The velocity of
a point within the wheel is

v=Veytwxr | 9.2)

237
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de

—dr—

Figure 9.1: A wheel rolling to the right without slipping.

where 7 is measured from the center of the disk. The velocity of a point on the surface is then given by
v=wR(&+o x P).

As a second example, consider a bicycle wheel of mass M and radius R affixed to a light, firm rod of
length d, as shown in fig. 9.2. Assuming L lies in the (z,y) plane, one computes the gravitational torque
N =r x (Mg) = Mgd ¢. The angular momentum vector then rotates with angular frequency ¢. Thus,

d¢_@ — qB_Mgd 9.3)
But L = M R?w, so the precession frequency is

For R = d = 30cm and w/27 = 200rpm, find w,/2m ~ 15rpm. Note that we have here ignored the
contribution to L from the precession itself, which lies along 2, resulting in the nutation of the wheel.
This is justified if L,,/L = (d?/R?) - (wp/w) < 1.

9.2 The Inertia Tensor

Suppose first that a point within the body itself is fixed. This eliminates the translational degrees of
freedom from consideration. We now have

dr
- - 9.5
< dt > inertial v ( )

since 7,4, = 0. The kinetic energy is then

22 <drl>2 :% m; (w x 7)) (wxmr)

inertial

N.M

9.6)
= %Zmz |:w2 riz_ (w'ri)2] = %Iaﬁ WoWg
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w

(D
d\ﬁ ? @:N
L

A J

Mg

Figure 9.2: Precession of a spinning bicycle wheel.

where w, is the component of w along the body-fixed axis e,. The quantity I, is the inertia tensor,

_ 2
Iaﬁ - Z m; (ri 5046 - Ti,oz Ti,ﬁ)
! (9.7)
= /ddr o(r) (r2 00p — Ta Tﬁ) (continuous media)

The angular momentum is

d .
L= g m, T, X (—TZ>
dt inertial

: (9.8)
= Zmiri X (wxr)=1,ws

The diagonal elements of 1, ; are called the moments of inertia, while the off-diagonal elements are called
the products of inertia.

9.2.1 Coordinate transformations

Consider the basis transformation
e, = R.s€s - (9.9)
We demand &, - & = 6,5 Which means R € O(d) is an orthogonal matrix, i.e. R' = R~L. Thus the

inverse transformation is e, = R, €. Consider next a general vector A = A é4. Expressed in terms of

the new basis {&/ }, we have
s Al
/ /
A=Ay Ry, &, =Ru545 &, (9.10)
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Thus, the components of A transform as Af, = R,,5 A,. This is true for any vector.

Under a rotation, the density p(r) must satisfy p'(r’) = p(r). This is the transformation rule for scalars.
The inertia tensor therefore obeys

o= [ ) [0 = v
= /d?’r p(r) [7'2 J, ('Rauru) (Rﬁlﬂ“,,)] (9.11)

= RQHIWR

Le. I' = RIRY, the transformation rule for tensors. The angular frequency w is a Vector s0 w, = Ry,
The angular momentum L also transforms as a vector. The kinetic energy is T = S w' - I - w, Wthh
transforms as a scalar.

9.2.2 The case of no fixed point

If there is no fixed point, we can let 7’ denote the distance from the center-of-mass (CM), which will
serve as the instantaneous origin in the body-fixed frame. We then adopt the notation where R is the
CM position of the rotating body, as observed in an inertial frame, and is computed from the expression

Z m; Py = d’r p(r)r (9.12)

where the total mass is of course

M = Zmz—/d?’rp r) . (9.13)

The kinetic energy and angular momentum are then

T=L1MR*+ I 5wawg
L MR R —l—Iﬁwﬁ ,

«

(9.14)

where [ ; is given in egs. 9.7, where the origin is the CM.

9.3 Parallel Axis Theorem

Suppose I, is given in a body-fixed frame. If we displace the origin in the body-fixed frame by d,

then let I ;(d) be the inertial tensor with respect to the new origin. If, relative to the origin at 0 a mass
element lies at position 7, then relative to an origin at d it will lie at » — d. We then have

_ Zmi{(rg —2d -+ d2) 85— (ryg —do)(r, 5 dﬁ)} . (9.15)

)
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Figure 9.3: Application of the parallel axis theorem to a cylindrically symmetric mass distribution.

If r; is measured with respect to the CM, then
> mir,=0 (9.16)
and

Lop(d) = I,5(0) + M(d*6, 5 — dody) (9.17)

a result known as the parallel axis theorem.

As an example of the theorem, consider the situation depicted in fig. 9.3, where a cylindrically symmetric
mass distribution is rotated about is symmetry axis, and about an axis tangent to its side. The component
I.. of the inertia tensor is easily computed when the origin lies along the symmetry axis:

a

I, = /dgrp(r) (r? —2?) = pL-27r/drlr?i

J (9.18)

= ZpLa' = $Ma* |

where M = ma?Lp is the total mass. If we compute I, about a vertical axis which is tangent to the
cylinder, the parallel axis theorem tells us that

I,=1_,+Mad*=3Ma* . (9.19)

Doing this calculation by explicit integration of [dm 2 would be tedious!

9.3.1 Example

Problem: Compute the CM and the inertia tensor for the planar right triangle of fig. 9.4, assuming it
to be of uniform two-dimensional mass density p.
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Solution: The total massis M = % p ab. The z-coordinate of the CM is then

a 0(1-%)

1 i P [ .
X:M/daj/dypwzﬁ/dazb(l—a)w
0 0 0

1 (9.20)
2 2
— pa b/duu(l—u):pab:
0

a

Wl

M 6M

Clearly we must then have Y = % b, which may be verified by explicit integration.

We now compute the inertia tensor, with the origin at (0,0, 0). Since the figure is planar, z = 0 every-
where, hence I,, = I,, =0, I, = I,, = 0, and also I, = I, + I,,. We now compute the remaining
independent elements:

a b(1=3)

fmZﬂ/dx/dnyZp/dx%bg(l—ﬁ)g
0

’ 01 (9.21)
— bpat® [du(1—u)? = dgpat® = 012
0
and
b(1-2) "
Iy = —p/dm/dywy: —%pbz/dww(l— z)?
S ’ 9.22)
= —%pasz/duu(l —u)? = —4pa’h? = —LMab
0
Thus,
v —lab 0
M 2
I=-+ —3ab  a? 0 : (9.23)
0 0 a®>+0b°

Suppose we wanted the inertia tensor relative in a coordinate system where the CM lies at the origin.
What we computed in eqn. 9.23 is I(d), with d = —%:ﬁ — % y. Thus,

1 2 —ab 0
d*5,5 — dodg = 5 —ab  a? 0 . (9.24)
0 0 a+0?

Since
2
I(d) = I°™ + M(d 6a6 —d, dﬁ) , (9.25)
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= :’J(l = £

=N 1]
—

b N ymax
/

we have that

oM 2
[ou 1(d)-A4<d 8o dadﬁ)
u [V gab 0 (9.26)
=13 %ab a? 0
0 0 a*+¥?

9.3.2 General planar mass distribution
For a general planar mass distribution,

pla,y,z) = o(z,y)6(2) 9.27)

which is confined to the plane z = 0, we have I, = I,, = 0, and

I,.= /dx/dy o(x,y) y?

sz/m/@d@mﬁ (9.28)

I, = —/dw/dy o(x,y)zy

Furthermore, I, = I, + I, regardless of the two-dimensional mass distribution o (z, y).

9.4 Principal Axes of Inertia

We found that an orthogonal transformation to a new set of axes &/, = R, 5€g entails I’ = RIR" for the
inertia tensor. Since I = I* is manifestly a symmetric matrix, it can be brought to diagonal form by such
an orthogonal transformation. To find R, follow this recipe:
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. Find the diagonal elements of I’ by setting P(\) = 0, where

P =det(A\-1-1) (9.29)

is the characteristic polynomial for 7, and 1 is the unit matrix.

. For each eigenvalue )\, solve the d equations

S L, vl =200 (9.30)

Here, v, is the " component of the a** eigenvector. Since (A-1— ) is degenerate, these equations

are linearly dependent, which means that the first d — 1 components may be determined in terms
of the d™ component.

Because I = I', eigenvectors corresponding to different eigenvalues are orthogonal. In cases of de-
generacy, the eigenvectors may be chosen to be orthogonal, e.g. via the Gram-Schmidt procedure.

Due to the underdetermined aspect to step 2, we may choose an arbitrary normalization for each
eigenvector. It is conventional to choose the eigenvectors to be orthonormal: 3, ¢y, 1/12 = 0%,

The matrix R is explicitly given by R,,, = ¢j;, the matrix whose row vectors are the eigenvectors
¥°. Of course R' is then the corresponding matrix of column vectors.

The eigenvectors form a complete basis. The resolution of unity may be expressed as

> et =6,, . (9.31)

As an example, consider the inertia tensor for a general planar mass distribution, which is of the form

Ly I, 0
I=|1Im I, 0] , 9.32)
0 0 L,

2
B = \/% ([xx - Iyy) + [%y (933)

so that

A+ Bcosd Bsin 0
I= Bsind A—Bcosy 0 , (9.34)
0 0 2A
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The characteristic polynomial is found to be
PO\ = (A — 24) [(A A2 - 32] , (9.35)

which gives \; = A+ B, A\, = A — B, and \3 = 2A. The corresponding normalized eigenvectors are

cos %19 —sin %19 0
' = | sin 30 , YP*=| cos3V ., Y= 10 (9.36)
0 0 1
and therefore
cos %19 sin %19 0
R = —sin %19 cos51U 0 . (9.37)
0 0 1
We then have
A+B 0 0
I' =RIR' = 0 A—B 0 . (9.38)
0 0 24
9.5 Euler’s Equations
9.5.1 Derivation of Euler’s equations
The equations of motion are
]fot:: ﬂ};
dt inertial
(9.39)

dL
:<—> twxL=J]w+wx ([w)
dt body

Let us now choose our coordinate axes to be the principal axes of inertia, with the CM at the origin. We

may then write
w1 11 0 0 11 w1
w = <w2> s I = (O [2 0) — L= (I2 WQ) . (940)
w3 0 0 13 13 w3

From [w + w x (Iw) = N, we arrive at Euler’s equations:

Iuw = (12 — 13) wo w3 + NleXt
Iy = (I3 — 1) wgwy + N5 (9.41)
Iywg = (I} — L) wiws + N§* |

where N7%'; are the components of N*** along the body-fixed principal axes. These equations are cou-
pled and nonlinear. We can however make progress in the case where N®** = (), i.e. when there are no
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. - L 4 / F. -

= e

Figure 9.5: Wobbling of a torque-free symmetric top.

external torques. This is true for a body in free space, or in a uniform gravitational field. In the latter
case,

N — Zri x (m; g) = (Zmlrl) xg (9.42)

where g is the uniform gravitational acceleration. In a body-fixed frame whose origin is the CM, we
have ), m,r, = 0, and the external torque vanishes!

9.5.2 Precession of torque-free symmetric tops

Consider a body which has a symmetry axis €;. This guarantees I; = I, but in general we still have
I, # I3. In the absence of external torques, the last of Euler’s equations says w3 = 0, so w3 is a constant.
The remaining two equations are then

L -1 I3 -1
d)l = ! 3 w3zwy d)g = 3 ! w3 wp . (943)
Il Il
Le. w1 = — 2wy and wy = +12 w1, with
I3 -1
g:<3 1>w3 , (9.44)
I

which are the equations of a harmonic oscillator. The solution is easily obtained:
wi(t) =w, cos (2t+08) , wy(t)=w, sin(2t+35) , wst)=ws |, (9.45)
where w, and § are constants of integration, and where |w| = (w? + w32)'/2. This motion is sketched

in fig. 9.5. Note that the perpendicular components of w oscillate harmonically, and that the angle w
makes with respect to &5 is A = tan™!(w | /w;).
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For the earth, (I3 — 1)/} ~ ng’ and w, < w3, so0 2 = w/305, i.e. a precession period of 305 days,
or roughly 10 months. Astronomical observations reveal such a precession, known as the Chandler
wobble. The precession angle is Acpanaier = 6 X 10~ 7 rad, which means that the North Pole moves by
about 4 meters during the wobble. The Chandler wobble has a period of about 14 months, so the naive
prediction of 305 days is off by a substantial amount. This discrepancy is attributed to the mechanical
properties of the earth: elasticity and fluidity. The earth is not solid!'

9.5.3 Asymmetric tops

Next, consider the torque-free motion of an asymmetric top, where I; # Io # I3 # I;. Unlike the
symmetric case, there is no conserved component of w. True, we can invoke conservation of energy and
angular momentum,

(9.46)
L’=1Fuw+ws+ 1308,
and, in principle, solve for w; and w, in terms of w;, and then invoke Euler’s equations (which must

honor these conservation laws). This results in a nonlinear first order ODE of the form w; = f(w3)
which is fairly awkward.

We can, however, find a particular solution quite easily — one in which the rotation is about a single axis.
Thus, w; = wy = 0 and w3 = wj, is indeed a solution for all time, according to Euler’s equations. Let us
now perturb about this solution, to explore its stability. We write
w=wyez +ow |, (9.47)

and we invoke Euler’s equations, linearizing by dropping terms quadratic in dw. This yield

I, 6wy = (12 — I3) wy dwy + O(dwq dws)

I, 0wy = (I3 — I1) wy dw; + O(0ws dw ) (9.48)

I3 605 = 0+ O(6w; dw,)
Taking the time derivative of the first equation and invoking the second, and vice versa, yields

00, = —2% 6w, , Oy = —2%0w, (9.49)

with
I —I)Is - 1) o

s
o= I I 0

(9.50)
The solution is then dw, (t) = C cos(£2t + 9).

If 22 > 0, then (2 is real, and the deviation results in a harmonic precession. This occurs if I3 is either the
largest or the smallest of the moments of inertia. If, however, I3 is the middle moment, then 2?2 <0,and
(2 is purely imaginary. The perturbation will in general increase exponentially with time, which means
that the initial solution to Euler’s equations is unstable with respect to small perturbations. This result
can be vividly realized using a tennis racket, and sometimes goes by the name of the “tennis racket
theorem.”

'The earth is a layered like a Mozartkugel, with a solid outer shell, an inner fluid shell, and a solid (iron) core.
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9.5.4 Example: The giant asteroid

PROBLEM: A unsuspecting solid spherical planet of mass M rotates with angular velocity w,. Suddenly,
a giant asteroid of mass oM smashes into and sticks to the planet at a location which is at polar angle ¢
relative to the initial rotational axis. The new mass distribution is no longer spherically symmetric, and
the rotational axis will precess. Recall Euler’s equation,

% twx L=N> (9.51)
for rotations in a body-fixed frame.

(a) What is the new inertia tensor /,,; along principal center-of-mass frame axes? Don’t forget that the
CM is no longer at the center of the sphere! Recall I = %M R? for a solid sphere.

(b) What is the period of precession of the rotational axis in terms of the original length of the day
27 fwy?

SOLUTION: Let’s choose body-fixed axes with 2 pointing from the center of the planet to the smoldering
asteroid. The CM lies a distance

aMy- R+ My -0 «

d= = 9.52
(1 + Oé)MQ 1+« ( )
from the center of the sphere. Thus, relative to the center of the sphere, we have
1 00 1 00
I=2MyR*(0 1 O] +aMR*{0 1 0] . (9.53)
001 000
Now we shift to a frame with the CM at the origin, using the parallel axis theorem,
Lg(d) = ISH + M (d*6,5 — dody) (9.54)
Thus, with d = dz,
1 00 1 00 1 00
ISy =2MyR* |0 1 0| +aMyR*|0 1 0] —(14+a)Myd*{0 1 0
001 000 0 00
5w (9.55)
5t s 0 0
= M,R? 0 2415 0
0 0 2
In the absence of external torques, Euler’s equations along principal axes read
dwl
[1—15 = (I = I3) wy wg
dCUQ

I3

dCU3
e (I} = Iy) wy w,y

At
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Since I} = I, wy(t) = w4(0) = wy cos § is a constant. We then obtain w; = 2w,, and w, = —2w,, with
IQ — 13 5%
0= = 9.57
L T Tat2 .57)
The period of precession 7 in units of the pre-cataclysmic day is
T w Ta+2
T 2 b5acosf ©-58)

9.6 Euler’s Angles

9.6.1 Definition of the Euler angles

In d dimensions, an orthogonal matrix R € O(d) has %d(d — 1) independent parameters. To see this,
consider the constraint R'R = 1. The matrix R'R is manifestly symmetric, so it has 1d(d + 1) indepen-
dent entries (e.g. on the diagonal and above the diagonal). This amounts to 3d(d + 1) constraints on the
d* components of R, resulting in 1d(d — 1) freedoms. Thus, in d = 3 rotations are specified by three
parameters. The Euler angles {¢, 8,1} provide one such convenient parameterization.

A general rotation R (¢, 6,1) is built up in three steps. We start with an orthonormal triad éfl of body-
fixed axes. The first step is a rotation by an angle ¢ about &j:

cos¢ sing 0
€5, 0)e), , R(e3,¢)=|—sing cosg 0 . (9.59)
0 0 1

This step is shown in panel (a) of fig. 9.6. The second step is a rotation by # about the new axis &/:

1 0 0
e/ = Rw(éll,Q) é, | R(é'l,H) =10 cosf sinf . (9.60)
0 —sinf cos6

This step is shown in panel (b). The third and final step is a rotation by ¢ about the new axis &j:

cosy siny 0
éZ’ = Rw(ég,zp) &l R(ég,w) = | —siny cosyp 0 . (9.61)
0 0 1
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line of nodes

Figure 9.6: A general rotation, defined in terms of the Euler angles {¢, 6, ¢}. Three successive steps of
the transformation are shown.

This step is shown in panel (c). Putting this all together,

R(¢,0,4) = R(&5,v) R(&],0) R(&3, ) (9.62)
costy siny 0 1 0 0 cos¢p sing 0
= | —siny cosv¥ O 0 cosf sinf —sin¢ cos¢ O
0 0 1 0 —sinf cosf 0 0 1

cos 1 cos ¢ — sin ) cos # sin ¢ cosysing + siny cosfcos¢  sinpsin @
= | —sinycos¢p — cospcosfsing —sinsing + cospcosfcosd cospsinf
sin 6 sin ¢ —sinf cos ¢ cos 6

Note that the order of our rotations was ZXZ. We could have chosen ZYZ instead, or any of XZX,
XYX, YXY, and YZY. Any such rotation protocol is referred to as based on proper Euler angles. An
equivalent system is to adopt one of the following protocols: XYZ, XZY,YZX,YXZ, ZXY,or ZYX,
corresponding to the so-called Tait-Bryan angles. The latter are used, inter alia, in aeronautics, where
they are known respectively as roll, pitch, and yaw (see Fig. 9.7).

Gimbal locking

A gimbal is a ring which rotates about a fixed axis. In a gyroscope, the inner rotor typically rotates at
a very high angular velocity such that its spin axis is fixed in an inertial frame. The orientation of the
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Gyroscope Spin axis

Pitch Axis

Gimbal a Rotor
=

12eoll Axis

Yiw Axis

Figure 9.7: Left: Roll, pitch, and yaw. Right: A gyroscope with two gimbals. If the gyroscope frame is
free to rotate about its axis, this serves as a third gimbal. (Image credits: Wikipedia)

gimbal axes in an inertial measurement unit (IMU) may then be used to determine attitude and angular
velocity. Replacing the rotor with a camera, the gimbals can be rotated to achieve a desired orientation,
say for tracking an object as it moves in three-dimensional space.

A problem arises, though, when the orientation of an object is described using the Euler angles. This is
illustrated in Eqn. 9.62 when the angle 0 is set to zero, in which case

cos(¢ +¢) sin(p+¢) 0
R(p,0 =0,¢) = | —sin(¢p + ) cos(p+1) 0 . (9.63)
0 0 1

We would expect that fixing one of the Euler angles would still allow us to independently rotate about
two remaining axes, but we see above that when § = 0, the space of rotation matrices becomes one-
dimensional! A similar problem occurs when 6 = 7, where

cos(p =) sin(¢—¢) 0
R(p,0 = 7m,¢) = | sin(¢p —¢p) —cos(¢p—v) 0 . (9.64)
0 0 -1

Thus, the two-dimensional space of points (¢, ¢’) maps to a one-dimensional subset of SO(3). You might
wonder whether the problem goes away if we choose Tait-Bryan angles instead. It doesn’t.

What we are encountering here is a coordinate singularity associated with the way we are coordinatizing
the SO(3) manifold’. Something analogous happens when we coordinatize the two-sphere S? using
polar (#) and azimuthal (¢) angles. Precisely at the poles # = 0 and # = =, the all azimuthal angles ¢
map to the same point, and we have a zero-dimensional rather than a one-dimensional space. In the
context of Euler angles, this coordinate singularity is referred to as gimbal lock. Navigational difficulties
associated with gimbal lock can be avoided by adding a redundant fourth gimbal to an IMU?, which
can be cumbersome, or by using different coordinates on SO(3), such as unit quaternions.

2SO(3) is a Lie group, meaning that it is a manifold with a group structure such that the group operations of multiplication and
inverse are smooth.

3 About two hours after the Apollo 11 moon landing on July 20, 1969, NASA Mission Control in Houston contacted Command
Module pilot Michael Collins to inform him that he was “maneuvering very close to gimbal lock” and suggesting he back
away, whereupon Collins replied saying that he was trying to avoid this situation, adding wryly, “How about sending me a
fourth gimbal for Christmas?”
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9.6.2 Precession, nutation, and axial rotation

Next, we’d like to relate the components w, = w - &, (with &, = &) of the rotation in the body-fixed

. . . u M
frame to the derivatives ¢, 6, and . To do this, we write

where

€5 = &, =sinfsiny & +sinf costpé, + cosh é;

€y =cosy e, —siny e, (“line of nodes”) (9.66)

ew:eg

The first of these follows from the relation &, = R, (¢,0,v) &2, whose inverse is ég =R, (0,0,70) e,

since R~! = R'. Thus the coefficients of €93 1IN &) are the elements of the rightmost (v = 3) column of
R(¢,0,1). We may now read off

W, =w-& = ¢sinfsiniy + hcosv
wzzw-ézzésin&;osw—ésinzp (9.67)
wgzw-é3:¢0089+¢

Note that . . .
¢ <> precession , 6 <> nutation , 1 <> axial rotation . (9.68)

The general form of the kinetic energy is then
T = %II(Q'S sin @ siny + 90081,!))2 + 31, (qb sin 6 cos ) — 0 si]m/))2 + 31, (52.50059 + ¢)2

Note that

which may be verified by explicit computation.

9.6.3 Torque-free symmetric top

A body falling in a gravitational field experiences no net torque about its CM:
NOXt:Zrix(—mig):ngmirizo . (9.70)

For a symmetric top with I; = I, we have
T = %Il (92 + ¢? sin29) + %Ig((ﬁcosﬁ—i—lb)z . 9.71)
The potential is cyclic in the Euler angles, hence the equations of motion are

d oT oT
R . 9.72
dt 9(¢,0,v)  0(¢,0,v) 0-72)
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Figure 9.8: A dreidl is a symmetric top. The four-fold symmetry axis guarantees I; = I». The blue
diamond represents the center-of-mass and lies within the object.

Since ¢ and v are cyclic in 7', their conjugate momenta are conserved:

2 | | 9.73)
= % =I5 (¢dcosf + 1)

Note that p,, = I3 w3, hence wy is constant, as we have already seen.

To solve for the motion, we first note that L is conserved in the inertial frame. We are therefore permitted
to define L = &3 = €, Thus, Py = L. Since e, - €, = cos 0, we have that Py = L&, = Lcosf. Finally,
€, - €9 = 0, which means p, = L - €, = 0. From the equations of motion,

pgzllé: (Ilq'ﬁcosé’—pd))q'ﬁsiné’ ) (9.74)
hence we must have i i Py 075)
- ~ Iycosf '
Note that § = 0 follows from conservation of p, = Lcosf. From the equation for p,,, we may now
conclude
() o7

which recapitulates (9.44), with ¢ = 2.



254 CHAPTER 9. RIGID BODY MOTION AND ROTATIONAL DYNAMICS

0 HEL 8(3 6'[:) T

Figure 9.9: The effective potential of eq. 9.85.

9.6.4 Symmetric top with one point fixed

Consider the case of a symmetric top with one point fixed, as depicted in fig. 9.8. The Lagrangian is
I = %Il (92 + <252 sin29) + %13 (qﬁ cos 0 + 1/1)2 — Mglcosf . 9.77)

Here, ¢ is the distance from the fixed point to the CM, and the inertia tensor is defined along principal
axes whose origin lies at the fixed point (not the CM!). Gravity now supplies a torque, but as in the
torque-free case, the Lagrangian is still cyclic in ¢ and 1), so

Py = (L4 sin?0 + I5 cos?6) ¢ + I cos 04

: . (9.78)
py = I3cos60 ¢ + I3 1)
are each conserved. We can invert these relations to obtain qﬁ and ¢ in terms of {pd), Py 0}:
. Pg — Py cosl - Dy (pg — py cosB) cosb
— =¥ _ 9.79
¢ I, sin?60 ¥ I3 I; sin%6 ( )
In addition, since L/0t = 0, the total energy is conserved:
Uest (0)
, - 02
E=T40U=1Lp, 62 Po=Pe OO o oo 9.80
+U =350+ 57, 50 +2[3+ gl cos , ( )
where the term under the brace is the effective potential Ueg(6).
The problem thus reduces to the one-dimensional dynamics of 0(t), i.e.
1,6 = _ e (9.81)

a0
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with
2

(pp — Dy COS 0)2 Dy,
—— + Mgt 0 . 9.82
of, sin?0 | 2f, | r9reos ©82)

Using energy conservation, we may write

UOH(H) =

(9.83)

P
V2 JE-Ug0)

and thus the problem is reduced to quadratures:

7]
_ L N S
t(@)-t(@o)i\/; e/dﬁ T 9.84)

We can gain physical insight into the motion by examining the shape of the effective potential,

2

(py — py cos 0)? Dy
Ust (8) = Mglecosf + ¥ | 9.85
() 21, sin’6 T Mgtooset 213 8
over the interval 6 € [0,7]. Clearly Ueg(0) = Ueg(m) = 00, so the motion must be bounded. What is

not yet clear, but what is nonetheless revealed by some additional analysis, is that Ue.g(¢) has a single
minimum on this interval, at § = 6,. The turning points for the # motion are at 6 = 6, and 6 = 6,,
where Uz (0,) = Ueg(6,,) = E. Clearly if we expand about 6, and write § = 6, + 7, the  motion will be
harmonic, with

UL (60
n(t) =mny cos(2t+9) , N= # . (9.86)
1
To prove that U, (6) has these features, let us define u = cosf. Then & = — @ sin6, and from F =
51 02 + U, (0) we derive
2 2
2F D 2M gt Py =Pyt

"2 (0 2 9 2 ¢ Ty —
— (2= _ 1— - 1-— — = . .87
= (2 P - B gy (2 < pw) 9.87)

The turning points occur at f(u) = 0. The function f(u) is cubic, and the coefficient of the cubic term is
2Mgt/I,, which is positive. Clearly f(u = +1) = —(p, F pw)2 /1? is negative, so there must be at least
one solution to f(u) = 0 on the interval u € (1, c0). Clearly there can be at most three real roots for f(u),
since the function is cubic in u, hence there are at most two turning points on the interval v € [—1,1].
Thus, U4 (#) has the form depicted in fig. 9.9.

To apprehend the full motion of the top in an inertial frame, let us follow the symmetry axis €;:
é; = sinfsin ¢ é] —sinf cos ¢ €5 + cosf &5 . (9.88)

Once we know 6(¢) and ¢(¢) we’re done. The motion () is described above: § oscillates between turning
points at 8, and 6},. As for ¢(t), we have already derived the result

: Dy — Py cosl
= 9.89
¢ I, sin®0 ( )
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Py > Py, COS 0, Py = Py, €08 0, p,, o8 0, <p, < P, cos 0,

Figure 9.10: Precession and nutation of the symmetry axis of a symmetric top.

Thus, if p o > Dy COS 6,, then qﬁ will remain positive throughout the motion. If, on the other hand, we
have
py costh, <py < pycosb, (9.90)

then ¢ changes sign at an angle 6* = cos™* (p,/p,,). The motion is depicted in fig. 9.10. An extensive
discussion of this problem is given in H. Goldstein, Classical Mechanics.

9.7 Rolling and Skidding Motion of Real Tops

The material in this section is based on the corresponding sections from V. Barger and M. Olsson, Clas-
sical Mechanics: A Modern Perspective. This is an excellent book which contains many interesting
applications and examples.

9.7.1 Rolling tops

In most tops, the point of contact rolls or skids along the surface. Consider the peg end top of fig.
9.11, executing a circular rolling motion, as sketched in fig. 9.12. There are three components to the
force acting on the top: gravity, the normal force from the surface, and friction. The frictional force is
perpendicular to the CM velocity, and results in centripetal acceleration of the top:

f=MP*p<puMg (9.91)

where (2 is the frequency of the CM motion and p is the coefficient of friction. If the above inequality is
violated, the top starts to slip.

The frictional and normal forces combine to produce a torque N = Mglsin @ — f{ cos§ about the CM*.
This torque is tangent to the circular path of the CM, and causes L to precess. We assume that the top is
spinning rapidly, so that L very nearly points along the symmetry axis of the top itself. (As we'll see, this

4Gravi’cy of course produces no net torque about the CM.
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--fh]iill

Figure 9.11: A top with a peg end. The frictional forces f and fqiq are shown. When the top rolls
without skidding, feiq = 0.

is true for slow precession but not for fast precession, where the precession frequency is proportional to
ws.) The precession is then governed by the equation

N =Mglsinf — flcos6

. (9.92)
= |L‘ = |Q X L‘ ~ 2 I;wysind
where &, is the instantaneous symmetry axis of the top. Substituting f = M 2?p,
2
Mgt <1— ol ctn9> -0, (9.93)
I3 ws g
which is a quadratic equation for {2. We supplement this with the ‘no slip” condition,
wyd = {2 (p + {sin 9) , (9.94)
resulting in two equations for the two unknowns 2 and p.
Substituting for p(£2) and solving for {2, we obtain
Low Mgl Mgls > AME2 Mgt
N=—2" 11 tnf 4 /(1 tnf ) — : : 9.95
2M€20089{ + I3 o \/( * I3 e > I, Ijw3 5%)
This in order to have a real solution we must have
2 .
" 2M¢*sin 6 g (9.96)

32> T
I3sinf + Mglycosf \ ¢

If the inequality is satisfied, there are two possible solutions for (2, corresponding to fast and slow
precession. Usually one observes slow precession. Note that it is possible that p < 0, in which case the
CM and the peg end lie on opposite sides of a circle from each other.
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Figure 9.12: Circular rolling motion of the peg top.

9.7.2 Skidding tops

A skidding top experiences a frictional force which opposes the skidding velocity, until v,;;, = 0 and a
pure rolling motion sets in. This force provides a torque which makes the top rise:
Neia _ pMgl

b=-—F=-tr (9.97)

Suppose § ~ 0, in which case p+ £sin 6 = 0, from eqn. 9.94, and the point of contact remains fixed. Now
recall the effective potential for a symmetric top with one point fixed:

(py — py cos 6)? pi,
Ug(0) = 2T, sin?0 + o, + Mglcos . (9.98)
We demand U/;(6,)) = 0, which yields
cost, - B% — Py sin290 B+ Mgll, sin490 =0 |, (9.99)
where .
B = Py — Dy, COS 0, =1, sin290 o . (9.100)

Solving the quadratic equation for 53, we find

. I 4Mgll
¢:37w3 1i\/1_M ' (9.101)
214 cos b, I3 w3

This is simply a recapitulation of eqn. 9.95, with § = 0 and with M ¢? replaced by I,. Note I, = M{? by
the parallel axis theorem if IT™ = 0. But to the extent that IT™ # 0, our treatment of the peg top was
incorrect. It turns out to be OK, however, if the precession is slow, i.e. if £2/w; < 1.
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Figure 9.13: The tippie-top behaves in a counterintuitive way. Once started spinning with the peg end
up, the peg axis rotates downward. Eventually the peg scrapes the surface and the top rises to the
vertical in an inverted orientation.

On a level surface, cos 6, > 0, and therefore we must have

2
Wg > A \/ Mgll, cosf, . (9.102)

Thus, if the top spins too slowly, it cannot maintain precession. Eqn. 9.101 says that there are two
possible precession frequencies. When w, is large, we have

Mgl

1 ;
= Lws + O(w3z ) ; Dtast =

Do +OWs®) . (9.103)

Again, one usually observes slow precession.

A top with w; > I%\/M gl1; may “sleep” in the vertical position with 6, = 0. Due to the constant action

of frictional forces, w; will eventually drop below this value, at which time the vertical position is no
longer stable. The top continues to slow down and eventually falls.

9.7.3 Tippie-top

A particularly nice example from the Barger and Olsson book is that of the tippie-top, a truncated sphere
with a peg end, sketched in fig. 9.13 The CM is close to the center of curvature, which means that there
is almost no gravitational torque acting on the top. The frictional force f opposes slipping, but as the
top spins f rotates with it, and hence the time-averaged frictional force (f) ~ 0 has almost no effect on
the motion of the CM. A similar argument shows that the frictional torque, which is nearly horizontal,

also time averages to zero:
dL
~ 0 . (9.104)

dt inertial
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In the body-fixed frame, however, IN is roughly constant, with magnitude N ~ puMgR, where R is the
radius of curvature and y the coefficient of sliding friction. Now we invoke

Nl L ooxL . (9.105)

dt body

The second term on the RHS is very small, because the tippie-top is almost spherical, hence inertia tensor
is very nearly diagonal, and this means

wxXxL~wxIw=0 . (9.106)

Thus, L, g4y ~ IV, and taking the dot product of this equation with the unit vector k, we obtain

o d o
—Nsmezk-N:%(k-Lbody) — _Lsinff . (9.107)
Thus, N MR
pMg
o= 9.108
L Tw ( )

Once the stem scrapes the table, the tippie-top rises to the vertical just like any other rising top.
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Continuum Mechanics

10.1 Continuum Mechanics of the String

10.1.1 Lagrangian formulation

Consider a string of linear mass density x(z) under tension 7(z)." Let the string move in a plane, such
that its shape is described by a smooth function y(x), the vertical displacement of the string at horizontal
position z, as depicted in fig. 10.1. The action is a functional of the height y(z, t), where the coordinate
along the string, =, and time, ¢, are the two independent variables. Consider a differential element of the
string extending from z to = + dz. The change in length relative to the unstretched (y = 0) configuration
is

2
dl = \/da? + dy? — dz = % (%) dz + O(da?) . (10.1)

The differential potential energy is then

2
dU = 1(z)dl = 3 7(z) <@> dr . (10.2)
Ox
The differential kinetic energy is simply
1 oy Y
dl' = S p(z) | = ) dov . (10.3)
ot
We can then write
L :/dx L (10.4)
where the Lagrangian density L is
. oy \2 0y \2
Ll ont) = bute) (50) ~ 4r@ (2] 105)

261
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N -
\__/ T

Figure 10.1: A string is described by the vertical displacement field y(x, t).

The action for the string is now a double integral,

tb b
S= /dt /dway,y,y’;x,t) , (10.6)
ta

where y(x,t) is the vertical displacement field. Typically, we have £ = % p? — %Ty’ 2 The first variation
of S'is

- fa 2 (06) - 5(%)

which simply recapitulates the general result from eqn. 10.181. There are two boundary terms, one of
which is an integral over time and the other an integral over space. The first boundary term vanishes
provided dy(z,t.) = dy(z,t,) = 0. The second boundary term vanishes provided 7(z) y/(x) dy(z) = 0 at
x =z, and = = x, for all t. Assuming 7(x) does not vanish, this can happen in one of two ways: at each
endpoint either y(z) is fixed or y/(z) vanishes.

t

Zy, b
Sy + / dz [% 54 / dt [% 5y] . (107)
8 t=t 8 ! T=Tq

a
Tq a

Assuming that either y(x) is fixed or ¢/(x) = 0 at the endpoints x = z, and = = xz,, the Euler-Lagrange
equations for the string are obtained by setting 6.5 = 0:

y_ 95 _oc 0oLy o (o
~ Sy(z,t) Oy Ot\ 9y oz \ 0y’
0 oy 0%y
| | e G
y

where ' = % and y = a—y When 7(x) = 7 and u(x) = p are both constants, we obtain the Helmholtz
equation,

(10.8)

1 0%y 0%

2 o2 0x?
which is the wave equation for the string, where ¢ = /7 /1 has dimensions of velocity. We will now see
that c is the speed of wave propagation on the string.

=0 (10.9)

'As an example of a string with a position-dependent tension, consider a string of length ¢ freely suspended from one end at
z = 0 in a gravitational field. The tension is then 7(z) = ug (¢ — ).
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10.1.2 d’Alembert’s solution to the wave equation

Let us define two new variables,

u=x—ct ) v=x+ct . (10.10)
We then have
9 _ud w9 90 9
Or  Or Ou Oxr Ov  Ou Ov
(10.11)
10 _1owd 10vd 9 0
cOt cOtOu cotdv  Ou Ov
Thus, ) ) )
10 0 0
ZoE 02 oudv (1012
Thus, the wave equation may be solved:
Py oy (u,0) = f(u) + g(v) (10.13)
au av - y ) - g ) .

where f(u) and g(v) are arbitrary functions. For the moment, we work with an infinite string, so we
have no spatial boundary conditions to satisfy. Note that f(u) describes a right-moving disturbance,
and g(v) describes a left-moving disturbance:

y(x,t) = f(z —ct) + glx +ct) . (10.14)

We do, however, have boundary conditions in time. At ¢ = 0, the configuration of the string is given by
y(x,0), and its instantaneous vertical velocity is y(z, 0). We then have

y(@,0) = f(z) +g(@) . 9,00 =—cf(2)+cg(z) , (10.15)

hence
fll@) =39 (2,0) = 5 9(x,0) ,  ¢(2)=5y(20)+55(0) |, (10.16)
and integrating we obtain the right and left moving components

F(6) = Ly(e.0) - /d&yso

(10.17)
o(€) = Lu(€,0) + %/di TERORY
0
where C is an arbitrary constant. Adding these together, we obtain the full solution
a+ct
y(x,t) = % y(z —ct,0) + y(x + ct,O)] + i /d{ y(&,0) (10.18)
a=ct

valid for all times.
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10.1.3 Energy density and energy current
The Hamiltonian density for a string is

H=py—L |, (10.19)
where p = 9L/0y = 11y is the momentum density transverse to the string. Thus,

2
H="" gy (10.20)
24

Expressed in terms of y rather than g, this is the energy density &,
E=Ltui?+1ry” (10.21)

We now evaluate & for a solution to the equations of motion:

o0& oy 0%y oy 0%y Oy 0 oy oy 0%y
o Mot o T owator ot ox\ ox) " Bu Btow
(10.22)
_ O, %y oyl _ i
oz oz ot| ow
where the energy current density (or energy flux) along the string is
. Oy Oy

We therefore have that solutions of the equation of motion also obey the energy continuity equation

o€ Bje
ot =0 (10.24)

Let us integrate the above equation between points x; and z,. We obtain

T T
0 Oje(x,t . .
E /dxg(x7t) = —/dZ’ % = ]5(1'1,t) —j€($2,t) ) (1025)

xT xT

1 1

which says that the time rate of change of the energy contained in the interval [z, ,| is equal to the
difference between the entering and exiting energy flux.

When 7(z) = 7 and p(z) = u, we have
y(x,t) = f(z —ct) + g(x + ct) (10.26)
and we find

E(x,t) =7[f (2 — ct)]2 +7[g (= + ct)]2
(10.27)

Je(z,t) =cr [f/(m — ct)]2 —cT [g/(:n + ct)]2 ,
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which are each sums over right-moving and left-moving contributions.
Another example is the Klein-Gordon system, for which the Lagrangian density is

L=3dui?—Lry? — 12 . (10.28)
One obtains the equation of motion uij = 7y” — Sy and the energy density

E=Yu? + Lry? +18y° . (10.29)

It is left as an exercise to the student to check that the energy current, j,, is the same as in the Helmholtz
case: jo = —7yy'. Energy continuity is again given by 9,€ + 0, jo = 0. Note that solutions to the
Klein-Gordon equation of motion are not of the D’Alembert form.

Momentum flux density and stress energy tensor

Let’s now examine the spatial derivative £’. For the Helmholtz equation, £ = % iy + %Ty, 2. We assume
w(x) = pand 7(z) = 7 are constant. Then

ag ../ /1 a ol
— = = — 10.30
5~ Py Ty = S gy (10.30)
where we have invoked the equation of motion 7y” = p §j. Thus, we may write
orn  9dj;
o e 0 (10.31)
where 50 8 ,
yoy J .
H:_“E%:c_g . jg=E& . (10.32)

II is the momentum flux density along the string. Eqn. 10.31 is thus a continuity equation for momentum,
with the energy density playing the role of the momentum current. Note that II and p = ugy have the same
dimensions, but the former is the momentum density along the string while the latter is the momentum
density transverse to the string. We may now write

T,
——

& -1

(& 2) <j . >=0 : (10.33)
e I

where IT = j./c? and j; = & for the Helmholtz model. In component notation this is neatly expressed

as 9, T", = 0, where T", is the stress-energy tensor and 9, = (9,,0,).

Below in eqn. 10.184, we will see how the general result for the stress-energy tensor is

oL
T = ——=_9,y—6"L 10.34
50 9) y ( )

i

where u, v € {0,1}. For £ = % pi? — %Ty’ ? we recover the stress-energy tensor for the Helmholtz model

in eqn. 10.33. For the Klein-Gordon model, £ = % i — %Ty’ 2 % By?, we find once again 7% = —IT but
. 2

T = _%#yz — %Ty’ + %5@/2 soTY # —&.
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Energy and momentum continuity in electrodynamics

A similar energy continuity equation pertains in electrodynamics. Recall £ = 8%( (E? + B?) is the energy
density. We then have

o€ 1 oFE 0B
ot :E<E'E+B'E>
1 1
= E (cVxB-4nJ)+ ~B:(-cV x E) (10.35)

Poynting vector S
—N—

:—E~J—V'<£E><B>

Thus,

g—f+V-S:—J-E , (10.36)

which resembles a continuity equation, but with a “sink” term on the RHS to account for the local power
dissipated. If J = o E, where o is the conductivity, then J-E = o E?, which accounts for Ohmic dissipation.

The stress-energy tensor for Maxwell theory is given by

&  =S,/ec =S,/c =8,/c

Sa
Sy/c Oy Tyy Ty
S./c o, Ty 0,,
where £ = 8%T(E2 + B?) is the energy density, S = .= E x B is the Poynting vector, and
~ L BB BB+ 15,(E+ B 10.38
Uz’j—g{— i Ej = Bi By + 30, (E° + )} (10.38)

is the Maxwell stress tensor. One again has 8, T", = 0, this time with 9, = (£9,,9,,9,,0,).

tr Yy Yy » Yz

10.1.4 Reflection at an interface

Consider a semi-infinite string on the interval [0, oo, with y(0,¢) = 0. We can still invoke d’Alembert’s
solution, y(z,t) = f(x — ct) + g(x + ct), but we must demand

y(0.t) = f(—ct) +g(ct) =0 = (&) = —g(~€) . (10.39)

Thus,
y(x,t) = g(ct +x) — glct —z) . (10.40)

Now suppose g(§) describes a pulse, and is nonzero only within a neighborhood of (£ = 0. For large
negative values of ¢, the right-moving part, —g(ct — x), is negligible everywhere, since z > 0 means that
the argument ¢t — x is always large and negative. On the other hand, the left moving part g(ct + ) is
nonzero for z ~ —ct > 0. Thus, for ¢t < 0 we have a left-moving pulse incident from the right. For ¢t > 0,
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= reflected wave
t=0

incident wave

t<0
—

Figure 10.2: Reflection of a pulse at an interface at z = 0, with y(0,t) = 0.

the situation is reversed, and the left-moving component is negligible, and we have a right moving
reflected wave. However, the minus sign in eqn. 10.39 means that the reflected wave is inverted.

If instead of fixing the endpoint at + = 0 we attach this end of the string to a massless ring which
frictionlessly slides up and down a vertical post, then we must have '(0,¢) = 0, else there is a finite
vertical force on the massless ring, resulting in infinite acceleration. We again write y(x,t) = f(z — ct) +
g(x + ct), and we invoke

y(0,8) = fl(=ct) + g'(ct) = [ =-g(= , (10.41)
which, upon integration, yields f(§) = g(—¢), and therefore
y(z,t) = glct + ) + g(ct —x) . (10.42)

The reflected pulse is now ‘right-side up’, in contrast to the situation with a fixed endpoint.

- - _—
incident wave reflected wave
t<0 t>0

Figure 10.3: Reflection of a pulse at an interface at = = 0, with y'(0,¢) = 0.

10.1.5 Mass point on a string

Next, consider the case depicted in fig. 10.4, where a point mass m is affixed to an infinite string at x = 0.
Let us suppose that at large negative values of ¢, a right moving wave f(ct — z) is incident from the left.
The full solution may then be written as a sum of incident, reflected, and transmitted waves:

r<0 : ylx,t)=f(ct —z)+glct+x)
(10.43)

x>0 : vy(x,t)=h(ct—uz)
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incident transmitted
f(ct-x) h(ct-x)
_— _
—/\T/_\
‘—
. =0
g(ct+x)
reflected

Figure 10.4: Reflection and transmission at an impurity. A point mass m is affixed to an infinite string
atz = 0.

Atz = 0, we invoke Newton’s second Law, F' = ma:

mij(0,t) =7y (07,t) — 794/ (0",¢) . (10.44)

Any discontinuity in the derivative y/(z,t) at x = 0 results in an acceleration of the point mass. Note
that

Y07 t)=—fct) +g'(ct) ,  yO07,1)=-H(ct) . (10.45)

Further invoking continuity at z = 0, i.e. y(0~,t) = y(0™",¢), we have

h(&) = f(&) +9(&) (10.46)
and eqn. 10.44 becomes
1/ 2 / "
9+ —5d O =1 (10.47)
We solve this equation by Fourier analysis:
Q= [oriwet . fwm= [areete (10.49
™
Defining Q = 27/mc? = 2u/m, we have
[~ k> +iQk] g(k) = K> f(k) . (10.49)

We may now write §(k) = #(k) f(k) and h(k) = i(k) f(k), where
k .
t

im0 (10.50)

(k) = —

are the reflection and transmission amplitudes, respectively.
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Energy conservation

Note that ¢ (k) = 1+7(k). This relation follows from continuity at z = 0, which entails 2(§) = f(£) +9(¢),
hence h(k) = f(k) + (k). What is also true — if there is no dissipation — is

k) +ER)P =1 (10.51)

which is a statement of energy conservation. Integrating the energy density of the string itself, one finds

. 2
Estring(t) = /d[L’ (%ﬂyz + %Ty, )

. ) (10.52)
=+ [ae (£ + 7 [ ae (g€ + I¥(6)?)

What is missing from this expression is the kinetic energy of the mass point. However, as ¢ — +o0, the
kinetic energy of the mass point vanishes; it starts from rest, and as t — oo it shakes off all its energy
into waves on the string. Therefore

Ens(—0) =7 [de [ =7 [ 5512 |
- o (10.53)
Fusug(+o0) = 7 [ ([4©) + [W(©)])%) =7 / w2 (I + i) | Feml

and since the profile f(k) is arbitrary we conclude that eqn. 10.51 must hold for every possible value of
the wavevector k. It must be stressed energy conservation holds only if there is no dissipation. Dissipation
could be modeled by adding a friction term —v (0, ¢) to the RHS of eqn. 10.44. In this case, dE,;,,(t)/dt
would be negative, corresponding to the energy loss due to friction.

Real space form of the solution

Getting back to our solution, in real space we have

he) = / I k) Fi) e

2T
- . . (10.54)
-/ df’{ / iﬁi(k)eik<€f’>] 1) = fae-€)1€)
where -
te-)= [Grimeree (10.55)

—00
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cl=-2a cl=-2a

Figure 10.5: Reflection and transmission of a square wave pulse by a point mass at x = 0. The configu-
ration of the string is shown for six different times, for Qa = 0.5 (left panel; note x = )) and Qa = 5.0
(right panel). Note that the Qa = 0.5 case, which corresponds to a large mass m = 2/Q, results in
strong reflection with inversion, and weak transmission. For large (), corresponding to small mass m,
the reflection is weak and the transmission is strong.

is the transmission kernel in real space. For our example with (k) = —iQ/(k — iQ), the integral is done
easily using the method of contour integration:

(e}

te-€)= [ 5 T M — Qe e -¢) . (1056)
Therefore,
£
he) = Q / de' Q) fely (10.57)

and of course g(&) = h(&) — f(£). Note that m = oo means @ = 0, in which case 7(k) = —1 and #(k) = 0.
Thus we recover the inversion of the pulse shape under reflection found earlier.

For example, let the incident pulse shape be f(£) = b©(a — [¢]). Then
&
h(e) =Q [de' e b0 (a—¢) O +¢)

—00

=be @ [eQ min(a.£) _ e_Q“} O +a)

(10.58)
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Taking cases,
0 ifé& < —a
h(g) = b (1 - e—Q<a+f>> if —a<¢<a (10.59)
20 e~ Q¢ sinh(Qa) if € > a

In fig. 10.5 we show the reflection and transmission of this square pulse for two different values of Qa.

10.1.6 Interface between strings of different mass density

Consider the situation in fig. 10.6, where the string for « < 0 is of density p, and for « > 0 is of density
g The d”Alembert solution in the two regions, with an incoming wave from the left, is

x<0: yx,t)= flert — ) + glent + 2)
(10.60)
x>0: y(x,t) = h(cgt — x)
Atz = 0 we have
f(CLt) + g(ewt) = h(cxt) (10.61)
_f,(CLt) + gl(CLt) = _h/(CRt) )

where the second equation follows from 7y/(0",¢) = 74/(07,t), so there is no finite vertical force on

the infinitesimal interval bounding = = 0, which contains infinitesimal mass. Defining o = ¢y /c,, we
integrate the second of these equations and have

FEO+g&)=nhlag) ,  fO-g)=ahaf . (10.62)

Note that y(+00,0) = 0 fixes the constant of integration. The solution is then

a—1 2c

perAC IR Ol f(&/a) . (10.63)

9(§) = o

Thus,

a—1

r<0: y(zt)=flet—z)+ <

) flevt+ )

a—+1

10.64
90, (10.64)

+1

x> 0: y(:p,t):a f((cxt —2)/c)

It is instrutive to compute the total energy in the string. For large negative values of the time ¢, the entire
disturbance is confined to the region « < 0. The energy is

B(-o00) =7 / a&[re] . (10.65)
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Figure 10.6: A string formed from two semi-infinite regions of different densities.

For large positive times, the wave consists of the left-moving reflected g({) component in the region
z < 0 and the right-moving transmitted component (&) in the region = > 0. The energy in the reflected
wave is

By (+00) = T<Z - 1)2 7d§ TG (10.66)
For the transmitted portion, we use h
y'(x>0,t) = O%l [ (et — 2) /) (10.67)
to obtain . N
Bu(o0) = e [ e/ = s faelre)® (1068

Thus, E, (c0) + Ex(0c0) = E(—00), and energy is conserved.

10.1.7 Finite Strings: Bernoulli’s solution

Suppose z, = 0 and z, = L are the boundaries of the string, where (0,t) = y(L,t) = 0. Again we write
y(x,t) = f(z —ct) + glx +ct) . (10.69)
Applying the boundary condition at =, = 0 gives, as earlier,
y(z,t) =g(ct + ) — g(ct —x) . (10.70)
Next, we apply the boundary condition at x;, = L, which results in
glct+L)—g(ct—L)=0 = g(§) =g9g(+2L) . (10.71)

Thus, g(&) is periodic, with period 2L. Any such function may be written as a Fourier sum,

9(&) = f: {An cos <n%§> + B, sin <"T7T5> } : (10.72)
n=1
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The full solution for y(z,t) is then

y(z,t) = g(ct +z) — g(ct — )

(2 1/2 & N SLEAY N nmwct . [ nmct
= ,u_L ;Sln 7 n€os | — + B, sin 7 ,

n

where A, = \/2uL B,, and B,, = —/2uL A,,. This is known as Bernoulli’s solution.

We define the functions
2 1/2 nmwx
w= () (7))

k,=— , w,=— , n=123,...,0

We also write

3
3
3
o

Thus, ©,,(x) = \/2/pL sin(k,z) has (n + 1) nodes at x = jL/n, for j € {0,

L
(|0 = [0 (2) 6, 0) = 0,0,
0
Furthermore, this basis is complete:

1> (@) 6, (@) = (x — 2)
n=1

Our general solution is thus equivalent to

...,n}. Note that

y(@,0) =D A, U(x) , §(@,0) =Y w, B, th,(x)
n=1 n=1

273

(10.73)

(10.74)

(10.75)

(10.76)

(10.77)

(10.78)

The Fourier coefficients {A,,, B, } may be extracted from the initial data using the orthonormality of the

basis functions and their associated resolution of unity:

I L
1 .

As an example, suppose our initial configuration is a triangle, with

. 1
2bx/L ifo<z<35L

(10.79)

(10.80)
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t=0 t=1L/2c

t=1L/c

Figure 10.7: Evolution of a string with fixed ends starting from an isosceles triangle shape.

and y(z,0) = 0. Then B,, = 0 for all n, while

2u\% 2 “e T
An:<fu> -f{/dmxsin<n—zx>+/daz(L—x) sin<?>}
0 (10.81)

L/2

4b
1/2
= (2uL)'/?. — 3

sin (%mr) ,

after changing variables to z = Lf/nm and using 0 sinf df = d(sin6 — 6 cos). Another way to write
this is to separately give the results for even and odd coefficients:

Ay =0 g = uryrr. LU 10.82
2% = ) 2k+1—p(ﬂ) W (10.82)
Note that each 1y, (z) = —t,, (L — z) is antisymmetric about the midpoint = %L, for all k. Since

our initial conditions are that y(z,0) is symmetric about z = 1 L, none of the even order eigenfunctions
can enter into the expansion, precisely as we have found. The d’Alembert solution to this problem is
particularly simple and is shown in fig. 10.7. Note that g(z) = 1y(z,0) must be extended to the entire
real line. We know that g(x) = g(x + 2L) is periodic with spatial period 2L, but how do we extend g(x)
from the interval [0, L] to the interval [—L,0]? To do this, we use y(z,0) = g(z) — g(—=z), which says
that g(x) must be antisymmetric, i.e. g(x) = —g(—=z). Equivalently, y(z,0) = c¢'(z) — c¢¢’(—x) = 0, which
integrates to g(z) = —g(—x).

10.2 Sturm-Liouville Theory

10.2.1 Mathematical formalism

Consider the Lagrangian density

L=1p@)?—Fr@)y* —Fo@)y* . (10.83)
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The last term is new and has the physical interpretation of a harmonic potential which attracts the string
to the line y = 0. The Euler-Lagrange equations are then

- @ 3 oy = -n 5 (10.8)

This equation is invariant under time translation. Thus, if y(z,t) is a solution, then so is y(xz,t + t;),
for any t,. This means that the solutions can be chosen to be eigenstates of the operator 9,, which is to
say y(z,t) = (x) e~™!. Because the coefficients are real, both y and y* are solutions, and taking linear
combinations we have

y(x,t) = (x) cos(wt + @) . (10.85)

Plugging this into eqn. 10.84, we obtain

d

B % |:7_($) T,Z)/(;p)] + ’U(ZL’) ¢(l’) = w2 ,u(:n) ¢(3}) . (1086)

This is the Sturm-Liouville equation. There are four types of boundary conditions that we shall consider:

1. Fixed endpoint: ¢(z) = 0, wherez =z, .
2. Natural: 7(z) ¢'(z) = 0, wherex =z, , .
3. Periodic: ¢(z) = ¢(x + L), where L = x, — x,, with 7(z) = 7(x + L) as well.

4. Mixed homogeneous: ay(z) + 84'(z) =0, wherez =z, .

The Sturm-Liouville equation is an eigenvalue equation. The eigenfunctions {1,,(x)} satisfy

d

dx [T(””) 1/’51(95)} + (), () = wp () () (10.87)

Now suppose we have a second solution ,,(z), satisfying

= [T@) U (@)] + 0(@) U (2) = W (@) Y (@) (10.88)

Now multiply (10.87)* by ,,,(z) and (10.88) by v} (z) and subtract, yielding
* d / d 1% *2 2 *
n 7. Tq/}m _wm_ Tq/}n = \WwWp — Wy Mwml/}n

dx [ } dx [ ] (d ) (10.89)

= —[ren vl — Ty

We integrate this equation over the length of the string, to get

Ty

(w2 = ) [ (o) b5 0) (o) = [r(0) 030) U1 () = 7(0) i @) 05 (0)] " =0 . (1090)

Za
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The term in square brackets vanishes for any of the four types of boundary conditions articulated above.
Thus, we have

(wi® = wd) (W | ) =0 (10.91)

where the inner product is defined as
Tp
(6]0) = [dou@) v (@) o) - (1092

The distribution z(z) is non-negative definite. Setting m = n, we have (4, | ¥, ) > 0, and hence
wi? = w2, which says that w? € R. When w?, # w2, the eigenfunctions are orthogonal with respect
to the above inner product. In the case of degeneracies, we may invoke the Gram-Schmidt procedure,
which orthogonalizes the eigenfunctions within a given degenerate subspace. Since the Sturm-Liouville
equation is linear, we may normalize the eigenfunctions, taking

(Vm | ¥n) = G- (10.93)

Finally, since the coefficients in the Sturm-Liouville equation are all real, we can and henceforth do
choose the eigenfunctions themselves to be real.

Another important result, which we will not prove here, is the completeness of the eigenfunction basis.
Completeness means

@) D (@) (a) =z — o) (10.94)
Thus, any function can be expanded in the eigenbasis, viz.

dx)=> Cot(x) ,  C,={(v,|o) . (10.95)

10.2.2 Variational method

Consider the functional

b o {r@) v + o) 020}

N
w? [1h(z)] = - =3 (10.96)
5 J dx p(x) ¥ (x)
The variation is NN A )
0. 0D 6N —w?dD
2 _ _ — =
st =0 = (10.97)
Thus, dw? = 0 requires 6N = w? §D, which says

- 2|2 ] ) v =@ vio) 1099




10.2. STURM-LIOUVILLE THEORY 277

which is the Sturm-Lioiuville equation. In obtaining this equation, we have dropped a boundary term
from 6V, given by

Z':SCb

N |ygey = [ 7@ ¥ (@) () | (10.99)

One can check that this expression vanishes for any of the first three classes of boundary conditions:
(fixed endpoint, natural, and periodic). For the fourth class of boundary conditions, at) + ¢’ =
(mixed homogeneous), the Sturm-Liouville equation may still be derived, provided one uses a slightly
different functional,

with N =N+ % () ¥ () = 7(20) ¥ (2a) | (10.100)

since then

SN — N oD = /daz { _ 4 [T(x) dy(z) } (@) b(@) — (@) ¢(3:)} Sub()

dzx dx
a SC:Z'b
) (v + G o)) w(:c)] , (10.101)
and the last term vanishes as a result of the boundary conditions.
For all four classes of boundary conditions we may write
K
b d d
Jdav(a) | = (@) = +v(@)] ()
) b o T
w?[Y(z)] = - (10.102)
[ da p(z) % ()

Ta

If we expand ¢ (x) in the basis of eigenfunctions of the Sturm-Liouville operator X,

U(x) =Y Cothy(a) (10.103)
n=1

we obtain - 5 o
Zj:l |Cj| wy
>t G2
If w} < w3 < ..., then we see that w? > w?, so an arbitrary function v (z) will always yield an upper

bound to the lowest eigenvalue.

w? [(2)] = w?(Cy,...,Co0) = (10.104)

As an example, consider a violin string (v = 0) with a mass m affixed in the center. We write y(z) =
p+md(z — L), hence

o ()
Wp(z)] = 0 - (10.105)
my2(5L) + ubfdw P2 (x)
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Figure 10.8: One-parameter variational solution for a string with a point mass m at z = 1 L.

Now consider a trial function
Az® if 0<z< %L
P(x) = (10.106)
A(L—2)* if sL<z<L

N~

The functional w?[¢(z)] now becomes an ordinary function of the trial parameter o, with

W2 (a) = , (10.107)

QTfoL/2d$ a? p2a=2 - <2c>2 a?(2a+ 1)
L/2 “\L) @a-D[1+@a+1)2
m(%L)2a+2,u0fdx:E2o‘ ( L+ )it

where M = L is the mass of the string alone. We minimize w?(«) to obtain the optimal solution of this
form:

%uﬂ(a):o — 4a2—2a—1+(2a+1)2(a—1)%:0 . (10.108)
For m/M — 0, we obtain o = 1 (1 + v/5) ~ 0.809. The variational estimate for the eigenvalue is then
6.00% larger than the exact answer w{ = 7c/L. In the opposite limit, m/M — oo, the inertia of the
string may be neglected. The normal mode is then piecewise linear, in the shape of an isosceles triangle
with base L and height y. The equation of motion is then mjj = —27 - (y/4L), assuming |y/L| < 1.
Thus, w;, = (2¢/L)y/M/m. This is reproduced exactly by the variational solution, for which & — 1 as
m/M — oo.
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10.3 Continua in Higher Dimensions

10.3.1 General formalism

In higher dimensions, we generalize the operator K as follows:

0 0
“oze 0 ®) g7

+o(z) (10.109)

The eigenvalue equation is again
Kip(x) = w? p(z) (z) | (10.110)
and the Green’s function (see §10.7) satisfies

K — w? M(m)} G (x,z) =0z —a) , (10.111)

and has the eigenfunction expansion,

Z w2—w2 Ynl@) ¥n(@) (10.112)

The eigenfunctions form a complete and orthonormal basis:

(10.113)
/da: H(E) () V(@) = Dy
(9}

where (2 is the region of space in which the continuous medium exists. For purposes of simplicity, we
consider here fixed boundary conditions u(x,t)| ) = 0, where 912 is the boundary of (2. The general
solution to the wave equation

0? 0 0
is
Zc Y, () cos(w, t+0,) . (10.115)

The variational approach generalizes as well. We define

x)] :/d [aﬁ 8% gﬂ; +mp2} (10.116)
2
D[y(z)] = /dwuz/z2 , (10.117)
2
and N
W) = S [[Zf((;)]] (10.118)

Setting the variation dw? = 0 recovers the eigenvalue equation Kv) = w?j11).
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10.3.2 Membranes
Consider a surface where the height z is a function of the lateral coordinates x and y:
z=u(z,y) . (10.119)
The equation of the surface is then
F(z,y,z) =z —u(z,y) =0 . (10.120)

Let the differential element of surface area be dS. The projection of this element onto the (x,y) plane is

dA=drdy=n-2dS . (10.121)
The unit normal n is given by
F >
ho Y& __2-Vu (10.122)
[VE] 1+ (Vu)?

Thus,

_ dad
ds =LY — AT (Va)Zdedy (10.123)

The potential energy for a deformed surface can take many forms. In the case we shall consider here,
we consider only the effect of surface tension o, and we write the potential energy functional as

Ulu(z,y,t)] = /dS =Uy+ 50 [dA(Vu)* +... . (10.124)

The kinetic energy functional is

Tlu(z,y,t)] = 3 /dA u(x) (O,u)® . (10.125)
Thus, the action is

Slu(z,t)] = /d%c L(u, Vu,du,x) (10.126)
where the Lagrangian density is

L=1in(x) (0u)®—Lto(x)(Vu)? | (10.127)

where here we have allowed both u(x) and o(x) to depend on the spatial coordinates. The equations of
motion are

g0 oL o oL oL
EEICE)) OVu  du

10.128

P ( )

= pu(x) e V. {a(as) Vu}
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10.3.3 Helmholtz equation

When p and o are each constant, we obtain the Helmholtz equation:
1 02
2 _
<V 2 _8752) u(z,t) =0 (10.129)

with ¢ = y/o/p. The d’Alembert solution still works — waves of arbitrary shape can propagate in a fixed

A~

direction k:

u(x,t) = f(k-x—ct) . (10.130)
This is called a plane wave because the three dimensional generalization of this wave has wavefronts
which are planes. In our case, it might better be called a line wave, but people will look at you funny if
you say that, so we’ll stick with plane wave. Note that the locus of points of constant f satisfies

¢(x,t) = k- x — ct = constant (10.131)
and setting d¢ = 0 gives
- dx
k-— = 10.132

which means that the velocity along k is c. The component of z perpendicular to k is arbitrary, hence
the regions of constant ¢ correspond to lines which are orthogonal to k.

Owing to the linearity of the wave equation, we can construct arbitrary superpositions of plane waves.
The most general solution is written

dzk i(k-x—c i(k-z+c
u(x,t) = /W [A(k:)el(kw M) 4 B(k) elk@tekt)| (10.133)

The first term in the bracket on the RHS corresponds to a plane wave moving in the +k direction, and
the second term to a plane wave moving in the —k direction.

10.3.4 Rectangles

Consider a rectangular membrane where x € [0,a| and y € [0, b], and subject to the boundary conditions
u(0,y) = u(a,y) = u(x,0) = u(z,b) = 0. We try a solution of the form

u(z,y,t) = X(x)Y(y)T(t) . (10.134)
This technique is known as separation of variables. Dividing the Helmholtz equation by u then gives

19%X 10% 1107
X0 ' Yog 2T o (10135

The first term on the LHS depends only on z. The second term on the LHS depends only on y. The RHS
depends only on t. Therefore, each of these terms must individually be constant. We write

1 9°X 12 1 0% 12 Lo

Xa2~ Mo voaps Mo TaE Y (10.136)
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with
2

k=2 (10.137)
c
Thus, w = +c|k|. The most general solution is then

X(z) = A cos(k,z) + Bsin(k,z)
Y (y) = C cos(k,y) + Dsin(k,y) (10.138)
T(t) = E cos(wt) + Bsin(wt)

The boundary conditions now demand
A=0 , C=0 , sin(ka)=0 , sin(kb)=0 . (10.139)

Thus, the most general solution subject to the boundary conditions is

u(z,y,t) = Z ZAmn sin(?) sin<nf:y> oS (Wnt + 6n) (10.140)

m=1n=1

\/ mmre nme )
W = <—> + <—> . (10.141)
a b

where

10.3.5 Circles

For a circular membrane, such as a drumhead, it is convenient to work in two-dimensional polar coor-
dinates (7, ¢). The Laplacian is then

19 9 1

2 [ _ _
Ve Tt s (10.142)

We seek a solution to the Helmholtz equation which satisfies the boundary conditions u(r = a, ¢, t) = 0.
Once again, we invoke the separation of variables method, writing

u(r,o,t) = R(r) ®(o)T(t) (10.143)

resulting in

110 ( 0R 110 110°T
oA \"T 30 ST A3 = 37 Aan 144
Rr@r(r 8r> r2 ® 9?2 2T 0t? (10.144)
The azimuthal and temporal functions are
d(p) =e™? | T(t) =cos(wt+0) (10.145)

where m is an integer in order that the function u(r, ¢, t) be single-valued. The radial equation is then

9’R  10R w2 m?
W+;E+<C—2—T—2>R:O . (10.146)
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This is Bessel’s equation, with solution

wr wr
R(r) = 47, (Z) + BN, (Z) (10.147)
where J,,(2) and N,,(z) are the Bessel and Neumann functions of order m, respectively. Since the

Neumann functions diverge at » = 0, we must exclude them, setting B = 0 for each m.

We now invoke the boundary condition u(r = a, ¢, t) = 0. This requires

wa c
Jm(7> =0 = w=wn =Ty (10.148)
where J,,(z,,,) =0, ie. x_, is the (™ zero of J,,(x). The mose general solution is therefore
u(r, @, t) = Z Z Ao I (xmg r/a) cos (mgo + ,Bme) cos(w,,p t + 5m5) ) (10.149)
m=0 (=1

10.3.6 Sound in fluids

Let o(z,t) and v(x, t) be the density and velocity fields in a fluid. Mass conservation requires

% +V.(ov)=0 . (10.150)

This is the continuity equation for mass.

Focus now on a small packet of fluid of infinitesimal volume dV'. The total force on this fluid element is
dF = (— Vp+o g) dV. By Newton’s Second Law,

dv
dF = (pdV) o (10.151)
Note that the chain rule gives
dv  Ov
oo (v-V)v . (10.152)
Thus, dividing eqn, 10.151 by dV/, we obtain
ov
0 E—F(U-V)v =—-Vp+og . (10.153)

This is the inviscid (i.e. zero viscosity) form of the Navier-Stokes equation.

Locally the fluid can also be described in terms of thermodynamic variables p(x, t) (pressure) and T'(x, t)
(temperature). For a one-component fluid there is necessarily an equation of state of the form p =
p(o,T). Thus, we may write

dp

dp = -2

0
dg—l——p

dTl . 10.154
o+ g (10.154)

e
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We now make the following approximations. First, we assume that the fluid is close to equilibrium at
v = 0, meaning we write p = p + ép and ¢ = ¢ + dp, and assume that dp, o, and v are small. The
smallness of v means we can neglect the nonlinear term (v - V)v in eqn. 10.153. Second, we neglect
gravity (more on this later). The continuity equation then takes the form

000, v w=0 | (10.155)
ot
and the Navier-Stokes equation becomes
ov
0 — =-Vip . 10.156
25 P ( )

Taking the time derivative of the former, and then invoking the latter of these equations yields

2
% =V = <g—z>v2 So=c2V3%%0 . (10.157)

The speed of wave propagation, i.e. the speed of sound, is given by

9
do

C =

(10.158)

Finally, we must make an assumption regarding the conditions under which the derivative dp/0p is
computed. If the fluid is an excellent conductor of heat, then the temperature will equilibrate quickly
and it is a good approximation to take the derivative at fixed temperature. The resulting value of ¢ is

called the isothermal sound speed c;.. If, on the other hand, the fluid is a poor conductor of heat, as is the
case for air, then it is more appropriate to take the derivative at constant entropy, yielding the adiabatic

sound speed. Thus,
C = —_ s C = —_— . 10159
T <80 T s 90 /g ( )

In an ideal gas, cg/c = /7, where v = ¢, /c,, is the ratio of the specific heat at constant pressure to that
at constant volume. For a (mostly) diatomic gas like air (comprised of N2 and O, and just a little Ar),
v = % Note that one can write ¢? = 1/gx, where

K = 1<@> (10.160)
0o\ Op

is the compressibility, which is the inverse of the bulk modulus. Again, one must specify whether one is
talking about x. or kg. For reference in air at 7' = 293K, using M = 28.8g/mol, one obtains ¢, =
290.8m/s and cg = 344.0m/s. In HyO at 293K, ¢ = 1482m/s. In Al at 273K, ¢ = 6420m/s.

If we retain gravity, the wave equation becomes

—— 2 =cV2%p—g-Vio . (10.161)

The dispersion relation is then

wk) =k +ig-k . (10.162)



10.4. DISPERSION 285

We are permitted to ignore the effects of gravity so long as c¢?k? > gk. In terms of the wavelength
A = 27 /k, this requires
2mc?

A< = 75.9km (at T = 293K) . (10.163)

10.4 Dispersion

10.4.1 Helmbholtz versus Klein-Gordon equations

The one-dimensional Helmholtz equation §j = ¢ 3" is solved by a plane wave
y(x,t) = Al =it (10.164)

provided w = Fck. We say that there are two branches to the dispersion relation w(k) for this equation.
In general, we may add solutions, due to the linearity of the Helmholtz equation. The most general
solution is then

Oodk n ik(x—c ~ ik(z+c
) = [ 5 [F) ey gy e

— 00

= fle—ct)+glz+ct) ,

(10.165)

which is consistent with d’Alembert’s solution.

The Klein-Gordon equation, d=c2¢" —~42¢,alsohas a plane wave solution as in eqn. 10.164, but with
dispersion branches w = +W (k) with W (k) = 4(7% 4 ¢?k?)'/2. The general solution is then

oo

oz, 1) = / ;l—k [A(k)eikxe—im’f)t+B(k)e“meiw<’“>t] , (10.166)
T

— 00

which is not of the D’ Alembert form.

10.4.2 Schrédinger’s equation

Consider now the free particle Schrodinger equation in one space dimension,

o, )
ma—f = a—i‘ﬁ . (10.167)

The function ¢ (z,t) is the quantum mechanical wavefunction for a particle of mass m moving freely
along a one-dimensional line. The probability density for finding the particle at position x at time ¢ is

? (10.168)

P(l', t) = \7/)(337 t)
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Conservation of probability therefore requires
/d:c [z, )P =1 . (10.169)

This condition must hold at all times ¢.

As is the case with the Helmholtz and Klein-Gordon equations, the Schrédinger equation is solved by a
plane wave of the form 4 '
P(x,t) = AethT gt (10.170)

where the dispersion relation now only has one branch, and is given by

2
w(k) = % (10.171)
The most general solution is then
W(x,t) = ;l—k D(k) ethr g=imk?t/2m (10.172)
T
Let’s suppose we start at time ¢t = 0 with a Gaussian wavepacket,
P(x,0) = (we2) e 2 cikor (10.173)
To find the amplitude ¢(k), we perform the Fourier transform:
(k) = / dx 1 (x,0) e = /2 (me2) T e (k)G (10.174)
We now compute ¢(x, t) valid for all times ¢:
v [k .
W(z,t) = NG (Mg) 1/4/3_ ikt o= (k—kg)*(3/2 Sike ,—ihk>t/2m (10.175)
™

2 .
= o) g S o O

202 (1 +12/72) 202 (1+2/72) ’
where where 7 = m/3/h. The probability density is then the normalized Gaussian

1 2 /92
z,t) = ———— e~ @) /M) 10.176
plet) = ——=5 D ( )

where v, = hk,/m and

ot) = o1+ 272 . (10.177)
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Figure 10.9: Wavepacket spreading for ko £y = 2 witht/7 =0, 2,4, 6, and 8.

Note that /(t) gives the width of the wavepacket, and that this width increases as a function of time,
with 0(t > 1) >~ {,t/7.

Unlike the case of the Helmholtz equation, the solution to the Schrodinger equation does not retain its
shape as it moves. This phenomenon is known as the spreading of the wavepacket. In fig. 10.9, we show
the motion and spreading of the wavepacket.

For a given plane wave ¢*** ¢~ () the wavefronts move at the phase velocity

vy (k) = - (10.178)
The center of the wavepacket, however, travels at the group velocity
dw
v, (k) = — , (10.179)
& dk |},

D).

where k = k is the maximum of

10.5 General Field Theoretic Formulation

Continuous systems possess an infinite number of degrees of freedom. They are described by a set of
fields ¢, (x,t) which depend on space and time. These fields may represent local displacement, pressure,
velocity, etc. The equations of motion of the fields are again determined by extremizing the action,
which, in turn, is an integral of the Lagrangian density over all space and time. Extremization yields a set
of (generally coupled) partial differential equations.
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10.5.1 Euler-Lagrange equations for classical field theories

Suppose ¢, () depends on n independent variables, {z!, 22, ... 2"}. Consider the functional

S[{¢u() / 0w L(6y b @) (10.180)

i.e. the Lagrangian density L is a function of the fields ¢, and their partial derivatives 0¢,/0z*. Here (2 is
aregion in R™. Then the first variation of .S is

0L 06¢q
35S = /d-’r {a¢a (0pa) Ozt }

oL oL 0 oL
—ddynt ——= 5 d . 5ba
825 " 90u0) %*! ””{a% axu<a<ama>>} ’

where 042 is the (n — 1)-dimensional boundary of (2, dX is the differential surface area, and n* is the
unit normal. If we demand either 9L/0(0,,¢4) ‘ 9 = 0or d¢q = 0, the surface term vanishes, and we

(10.181)

o0

conclude
) oL 0 oL
0¢a(x) [&zﬁa  Qut <a(au¢a)>L ’ (10.182)

where the subscript means we are to evaluate the term in brackets at . In a mechanical system, one
of the n independent variables (usually z0), is the time t. However, we may be interested in a time-
independent context in which we wish to extremize the energy functional, for example. In any case,
setting the first variation of S to zero yields the Euler-Lagrange equations,

oL 9 oL
_ _ _ 10.1
55=0 = % 5o (a(au%)) 0 (10.183)

The stress-energy tensor is defined as

T, = — oF . 10.184
Za u% 0,0, — Ol L (10.184)

When £ = L(¢,, auqaa) is independent of the independent varlables x, one has that the stress-energy
tensor is conserved: 9, 7", = 0. (Students should check this result.)

Maxwell theory

The Lagrangian density for an electromagnetic field with sources is

L=—1F, F* - J,A" . (10.185)
The equations of motion are then
oL 0 oL
— = FH = ArnJ” 10.186
DA, ~ Oar <8(8MAV)> 0= e (10.186)

which are Maxwell’s equations.
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10.5.2 Conserved currents in field theory

Recall the result of Noether’s theorem for mechanical systems:
d ( OL 0qs
—N | = 10.187
dt((‘?q'a 8()(_00 ’ ( )

where ¢, = G¢-(q,¢) is a one-parameter ({) family of transformations of the generalized coordinates
which leaves L invariant. We generalize to field theory by replacing

0y (t) — Qo(x,t) (10.188)

where {¢,(x,t)} are a set of fields, which are functions of the independent variables {x,y, z,t}. We will
adopt covariant relativistic notation and write for four-vector z# = (ct,x,y, z). The generalization of

dQ/dt = 0is
0 oL  O¢g
Azt \ 3 (9u¢a) OC

where there is an implied sum on both ¢ and a. We can write this as 9, J# = 0, where

=0 (10.189)
¢=0

L D,
b 10.190
5@,00) C | _ (10150
Letz# = {20, 2, ..., 2%}, withn = d+ 1 the number of independent variables and 1° = ct with ¢ having

dimensions of velocity. Here we are privileging one of the independent variables (z°) to be the time
variable. We call Q, = ¢! [ d3x J° the total charge in a spatial region (2. If we assume 7. - J = 0 along the
2

spatial boundary 02, where 7 is the local unit normal to the surface, then integrating the conservation
law 0,, J* over the spatial region {2 yields

d
%:/d3anJ°:—/d?’xv-J:—jfdzﬁ-J:o . (10.191)
(0] 02 92

This tells us that the rate of change of the charge Q, in spatial region (2 is the negative of the integral
over the surface 912 of n-J, i.e. Q(, is minus the total integrated flux leaving the region f2.

As an example, consider the case of a complex scalar field, with Lagrangian density”

LW, 9", 0, ") = 5K (0,0°)(0") = U (V™9) . (10.192)
This is invariant under the transformation ¢ — €% ¢, ¥* — e~ ¢*. Thus,

a_qz_zc (91;*__ —iC /%
8<—ze P , ac re St (10.193)

*We raise and lower indices using the Minkowski metric g, = diag (+, —, —, —).
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and, summing over both ¢ and ¢* fields, we have

oL : oL K, .
560 " T agen TV o (PO —poryT) (10.194)

The potential, which depends on [¢|?, is independent of (. Hence, this form of conserved 4-current is
valid for an entire class of potentials.

JH =

10.5.3 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

2
L =ihy* a—w—h—vw VY —g ([ —ng)® . (10.195)

This describes a Bose fluid with repulsive short-ranged interactions. Here ¢ (x,t) is again a complex
scalar field, and +* is its complex conjugate. Using the Leibniz rule, we have

SS[*, ] = S[P* + 6¢, 9 + 5y
2
/dt/dd {hw 85—¢+ ih&y* a—w—h—vw -V

2
—~ h— — Vo Vi = 2g ([0 = np) (¥700 +¢6w*>}

:/dt/ddx{[ aa‘i*+2—v2 2 ([%[2 = ng) ¥ ]w

+ [ ha—erh—V% (|w|2—n0)¢} cw*} ,

(10.196)

ot

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing
S[*, 9] therefore results in the nonlinear Schrodinger equation (NLSE),

9 _ R s 2
A T (10197)
as well as its complex conjugate,
oY* hz
—ih gt =—— V V* +2g ([Y° —ng) v* . (10.198)

Note that these equations are indeed the Euler-Lagrange equations:

05 _ oL 9 (9L
50 Y 0zk \ 90

08 oL 8<8£>

S O0F Oak \ DO,

(10.199)
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with ## = (¢, x) the space-time four-vector®. Plugging in

oL oL oL h?

— _ 2 * o * ve *
i O L S LRI L il 4 (10.200)
d
" oL = ihi) — 2 2 oL =0 o __F v 10.201
aw*—l (U 9(|7/)| —n0)¢ ) W_ ) 8V¢*__% (LR (10.201)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under
Yl t) = (@, t) = Pm,t) , Pr(@,t) = PF(x,t) = e YT (a,t) (10.202)

Thus, the conserved Noether current is then

oL oY oL  a*
H= | + - (10.203)
00,¥ 0¢ —o 00,4* 9¢ o
so that 2
JO=—nll? L T =g (V- VYY) (10.204)
Dividing out by 4, taking J° = —hp and J = —hj, we obtain the continuity equation,
dp .
§+V-J =0 , (10.205)
where N
p=P? |, j=-—('Ve—yVyT) . (10.206)

2tm
are the particle density and the particle current, respectively.

10.6 Appendix: Three Strings

Problem: Three identical strings are connected to a ring of mass m as shown in fig. 10.10. The linear
mass density of each string is o and each string is under identical tension 7. In equilibrium, all strings
are coplanar. All motion on the string is in the 2-direction, which is perpendicular to the equilibrium
plane. The ring slides frictionlessly along a vertical pole.

It is convenient to describe each string as a half line [—oco, 0]. We can choose coordinates x,, z,, and x4
for the three strings, respectively. For each string, the ring lies at z, = 0.

A pulse is sent down the first string. After a time, the pulse arrives at the ring. Transmitted waves are
sent down the other two strings, and a reflected wave down the first string. The solution to the wave
equation in the strings can be written as follows. In string #1, we have

z=f(ct —zy)+glct+zy) . (10.207)
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.'53:—!}3

Figure 10.10: Three identical strings arranged symmetrically in a plane, attached to a common end. All
motion is in the direction perpendicular to this plane. The red ring, whose mass is m, slides frictionlessly
in this direction along a pole.

In the other two strings, we may write z = h,(ct + z,) and z = hg(ct + x4), as indicated in the figure.
(a) Write the wave equation in string #1. Define all constants.
(b) Write the equation of motion for the ring.

(c) Solve for the reflected wave g(é ) in terms of the incident wave f({). You may write this relation in
terms of the Fourier transforms f(k) and §(k).

(d) Suppose a very long wavelength pulse of maximum amplitude A is incident on the ring. What is the
maximum amplitude of the reflected pulse? What do we mean by “very long wavelength”?

Solution:
(a) The wave equation is
0%z 1 0%z

where z is the coordinate along the string, and ¢ = /7 /0 is the speed of wave propagation.

(b) Let Z be the vertical coordinate of the ring. Newton’s second law says mZ = F, where the force on

%In the nonrelativistic case, there is no utility in defining z° = ¢t, so we simply define 20 =t
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the ring is the sum of the vertical components of the tension in the three strings at 2 = 0:
F=—1 [ — f'(ct) + g (ct) + R (ct) + hg(ct)] , (10.209)

where prime denotes differentiation with respect to argument.

(c) To solve for the reflected wave, we must eliminate the unknown functions %,  and then obtain g in
terms of f. This is much easier than it might at first seem. We start by demanding continuity at the ring.

This means
Z(t) = f(ct) + g(ct) = hy(ct) = hg(ct) (10.210)

for all t. We can immediately eliminate h, g:

ha(§) = hs(8) = f(€) +9(8) (10.211)
for all £. Newton’s second law from part (b) may now be written as
mc® [f"(€) + 4" ()] = —7[f'(€) +34'(©)] (10.212)
This linear ODE becomes a simple linear algebraic equation for the Fourier transforms,
[e) E .
76 = [2 fyete (10.213)
27
etc. We readily obtain
o (k—iQ)
g(k) = < - 3Z.Q> fk) (10.214)
where Q = 7/mc? has dimensions of inverse length. Since h ap = f + g, wehave
. . 2iQ .
ha(k) = hg(k) = —<m> flk) . (10.215)

(d) For a very long wavelength pulse, composed of plane waves for which [k| < @, we have g(k) ~
—1 f(k). Thus, the reflected pulse is inverted, and is reduced by a factor 1 in amplitude. Note that
for a very short wavelength pulse, for which £ > @), we have perfect reflection with inversion, and no

transmission. This is due to the inertia of the ring.

It is straightforward to generalize this problem to one with n strings. The transmission into each of the
(n — 1) channels is of course identical (by symmetry). One then finds the reflection and transmission

amplitudes
N kE—iln—2)Q o 2iQ
F(k) = — <W> , t(k) = — <l<; — z‘nQ) : (10.216)

Conservation of energy means that the sum of the squares of the reflection amplitude and all the (n — 1)
transmission amplitudes must be unity:

PR+ (=D iR =1 . (10.217)
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10.7 Appendix: Green’s Functions for Strings

10.7.1 Inhomogeneous Sturm-Liouville problem

Suppose we add a forcing term,

?y 0 dy _ it
p(x) 2 " B2 [T(x) %} +v(x)y = Re [,u(m) f(z)e . (10.218)
We write the solution as 4
y(z,t) = Re [y(:z:) e_’“t] , (10.219)
where J dy ()
- 7@ |+ v(@) y(@) P p(@) y(a) = ple) f@) (10.220)
dz dz
or
K = w?u(@)] yl@) = pl@) f@) (10.221)
where K is a differential operator,
d d
=-—— 7(x) i v(z) . (10.222)
Note that the eigenfunctions of K are the {¢,(z)}:
K, (z) = w2 p(x)y,(x) . (10.223)
The formal solution to equation 10.221 is then
-1 i
) = [K =] ule) 1) = [ao' ua!) Gulan) £(a'), (10.224)

Ta
What do we mean by the term in brackets? If we define the Green'’s function

-1

G (z,7) = [K _ w%} o (10.225)
what this means is
K — w2u(ac)} G, (v, 2")=6(x—12) . (10.226)
Note that the Green’s function may be expanded in terms of the (real) eigenfunctions, as
G,(z,2) = Zn: gl (10.227)

which follows from completeness of the eigenfunctions:

@)Y (@) P, (a)) = 6z —a') . (10.228)
n=1
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The expansion in eqn. 10.227 is formally exact, but difficult to implement, since it requires summing over
an infinite set of eigenfunctions. It is more practical to construct the Green’s function from solutions to
the homogeneous Sturm Liouville equation, as follows. When z # /, we have that (K —w?u) Gy, (z,2') =
0, which is a homogeneous ODE of degree two. Consider first the interval z € [z,,2']. A second order

homogeneous ODE has two solutions, and further invoking the boundary condition at z = z,, there is
a unique solution, up to a multiplicative constant. Call this solution y, (z). Next, consider the interval
x € [2/,x,]. Once again, there is a unique solution to the homogeneous Sturm-Liouville equation, up to

a multiplicative constant, which satisfies the boundary condition at x = z,. Call this solution y,(z). We
then can write
A )y, (z) ifazg <ax<a
G, (v,2) = (10.229)
B(x')yy(z) ifa' <z <y

Here, A(z') and B(a') are undetermined functions. We now invoke the inhomogeneous Sturm-Liouville
equation,

,) / 2 AN /
o |:T(1‘) T} +o(z) Gy (z,2") —wu(z) G, (x,2") = 6(x — ') . (10.230)
We integrate this from = = 2’ — € to z = 2’ + ¢, where ¢ is a positive infinitesimal. This yields
7(z") [A(ac’) yi(@') = B(@)ys(a)| =1 . (10.231)

Continuity of G, (x, 2’) itself demands
A(a")yy(2) = B(a') yy(2') . (10.232)

Solving these two equations for A(z’) and B(z’), we obtain

2 = — y2(z') 2 = — y1(z')
A(z') Wy @) B(z') , (10.233)

where W, . () is the Wronskian

vi(z) ya() (10.234)

= 1 () ya(2) — yo(2) y1(2)
Now it is easy to show that W, , (x) 7(z) = W is a constant. This follows from

0=y, Ky; —ys Ky

= %{T(:f«") [yl Yy — Yo y’l}} : (10.235)
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Thus, we have
Y1 (@) yo ()W if za <z <2
Glera') = (10.236)
=y (@) yo(z)/W ifa’ <ax <z,
or, in compact form,

G, (z,2") = —% , (10.237)

where z_ = min(z,2’) and . = max(z,2’).

As an example, consider a uniform string (i.e. 4 and 7 constant, v = 0) with fixed endpoints at z, = 0
and z, = L. The normalized eigenfunctions are

2 . nmwT
V() =4/ oL (T) , (10.238)

and the eigenvalues are w,, = nwc/L. The Green’s function is

2 X sin me/L sin(nma’/L)
(2, ') —Lg e D — . (10.239)

Now construct the homogeneous solutions:

. wx
(K-w’m)y =0 , 35(0)=0 = y(z)=sn <7> (10.240)
. (w(ll—x
(K —w?m)yy =0 , (L) =0 = Yo(z) = sin <¥> . (10.241)
The Wronskian is I
W=y, v — yotfs = —% sin <”7> . (10.242)

Therefore, the Green’s function is

sin (wz_/c) sin (w(L — x)/c)

G (z,a') = (wr/e) sin(wL/c)

(10.243)

10.7.2 Perturbation theory

Suppose we have solved for the Green’s function for the linear operator K, and mass density (). Le.
we have
(Ko — w2,u0(x)) GO (z,2)=6(x —2) . (10.244)

We now imagine perturbing 7, — 75 + ATy, vg = vy + Avy, fg — g + Apy. What is the new Green'’s
function G ,(z, 2’)? We must solve

(Lo + ALy) G (z,2') = 6(z —2') (10.245)
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Figure 10.11: Diagrammatic representation of the perturbation expansion in eqn. 10.247.

where
=K, —w?py , LL=K —u’pu . (10.246)

Dropping the w subscript for simplicity, the full Green’s function is then given by

Go= [0 o] = @) k] = iAo nt] T 6

(10.247)
=G —AGYLLG) + NG LLGYLLGY + ...
The ‘matrix multiplication’ is of course a convolution, i.e.
Tp
G, (z,2") =G (z,2") — )\/dacl GO (z,21) L} (2, dd—xl) GO (xy,2) +... . (10.248)

Each term in the perturbation expansion of eqn. 10.247 may be represented by a diagram, as depicted in
tig. 10.11.

As an example, consider a string with z, = 0 and z;, = L with a mass point m affixed at the point z = d.
Thus, p11(z) = md(z — d), and L}, = —mw? §(z — d), with A = 1. The perturbation expansion gives

Go(z,2") = GO (2,2") + mw? G2 (x,d) G2 (d, ') + m?*w* G2 (x,d) G2 (d,d) G° (d,2") + ...
mw? GO (z,d) G (d,z")

=G (z,2' 10.24
Gl a) + === 70 () (10249)
Note that the eigenfunction expansion,
Go(z,a') =) e pr el (10.250)

says that the exact eigenfrequencies are poles of G, (z, z'), and furthermore the residue at each pole is

Res G, (@,2') = 5 — Yu(a) ule') (10.251)
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According to eqn. 10.249, the poles of G, (z, 2’) are located at solutions to*
mw? GO(d,d) =1 . (10.252)

For simplicity let us set d = 3L, so the mass point is in the middle of the string. Then according to eqn.

10.243,
in?(wL/2c) c wlL
GO(AL, L) = S — " tan (=) . 10.253
o(zL:3L) (wt/e) sin(wL/c) 2wt M\ 2 ( )

The eigenvalue equation is therefore

tan <%> _ T (10.254)
2c mwe
which can be manipulated to yield
% A= ctn) (10.255)

where A\ = wL/2c and M = pL is the total mass of the string. When m = 0, the LHS vanishes, and
the roots lie at A = (n + 3)m, which gives w = w,, ;. Why don’t we see the poles at the even mode
eigenfrequencies w,,? The answer is that these poles are present in the Green’s function. They do
not cancel for d = ;L because the perturbation does not couple to the even modes, which all have
¥y, (3L) = 0. The case of general d may be instructive in this regard. One finds the eigenvalue equation

sin(2\) ~m
2\ sin (2e\) sin (2(1 —€)A) M’ (10.256)

where ¢ = d/L. Now setting m = 0 we recover 2\ = nm, which says w = w,,, and all the modes are
recovered.

10.7.3 Perturbation theory for eigenvalues and eigenfunctions

We wish to solve
(Ko + AKq) = w? (o + M) ¥ (10.257)

which is equivalent to
Lo =—-A\LLvy . (10.258)

Multiplying by (L2) ~' = GY on the left, we have
Ty
vlz) = =\ [dr' Gy a2') L 0l
o o (10.259)
- wg _ wg m w
m=1 m Ta

*Note in particular that there is no longer any divergence at the location of the original poles of G, (x,z"). These poles are
cancelled.
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We are free to choose any normalization we like for )(z). We choose

(¢]%n) = 761:6 po () Y, () () =1, (10.260)
which entails “ )
w—w? =X\ / dz 1, (x) L () (10.261)
as well as : .
W(@) = b, (z) + Azk: wzék—(i)jg / da’ (') LL () . (10.262)

(k#n) Ta

By expanding ¢ and w? in powers of \, we can develop an order by order perturbation series.

To lowest order, we have
Tp

w? = w2+ A / dx 1), (x) LY, ¥,(x) . (10.263)
For the case L}, = —mw? §(x — d), we have
%o (@) = - sin2(@) (10.264)
w, 2" M L '
For d = %L, only the odd n modes are affected, as the even n modes have a node at x = %L.
Carried out to second order, one obtains for the eigenvalues,
2
: St da (@) L, ()
2 2 1 2 Ta “n
= Ad L A
W = wp + /x%(z) o Pal) +0° 3 e
o (k#n) (10.265)
xy Ty

X / 02 (z) LY () - / da' iy (2!) [ (a)]? + O(N?)

Zaq Za
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Chapter 11

Special Relativity

For an extraordinarily lucid, if characteristically brief, discussion, see chs. 1 and 2 of L. D. Landau and
E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics, vol. 2).

11.1 Introduction

All distances are relative in physics. They are measured with respect to a fixed frame of reference. Frames
of reference in which free particles move with constant velocity are called inertial frames. The principle of
relativity states that the laws of Nature are identical in all inertial frames.

11.1.1 Michelson-Morley experiment

We learned how sound waves in a fluid, such as air, obey the Helmholtz equation. Let us restrict our
attention for the moment to solutions of the form ¢(x,¢t) which do not depend on y or z. We then have a
one-dimensional wave equation,
% 1 0%
0x2 2 o2

The fluid in which the sound propagates is assumed to be at rest. But suppose the fluid is not at rest.
We can investigate this by shifting to a moving frame, defining 2/ = x — ut, with ¢/ = y, 2/ = z and of
course t' = ¢t. This is a Galilean transformation. In terms of the new variables, we have

(11.1)

0 0 0 0 0
The wave equation is then
u?\ 0% 1 0% 2u 0%
(1 - c_2> 0x2 o2 & orar (113)

301
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Clearly the wave equation acquires a different form when expressed in the new variables (2/,t'), i.e. in a
frame in which the fluid is not at rest. The general solution is then of the modified d’Alembert form,

P’ t") = f(a' —cxt’) + g2’ +ert’) (11.4)

where ¢y = ¢ — v and ¢, = ¢ + u are the speeds of rightward and leftward propagating disturbances,
respectively. Thus, there is a preferred frame of reference — the frame in which the fluid is at rest. In the rest
frame of the fluid, sound waves travel with velocity c in either direction.

Light, as we know, is a wave phenomenon in classical physics. The propagation of light is described by
Maxwell’s equations,

V. E = 4mp vexE-_19B (11.5)
c Ot

V. .B=0 vexpo i 1B (11.6)
c c Ot

where p and j are the local charge and current density, respectively. Taking the curl of Faraday’s law,
and restricting to free space where p = j = 0, we once again have (using a Cartesian system for the
tields) the wave equation,

1 O°E

VE==— . 11.7

c? ot? (11.7)
(We shall discuss below, in section 11.8, the beautiful properties of Maxwell’s equations under general
coordinate transformations.)

In analogy with the theory of sound, it was assumed prior to Einstein that there was in fact a preferred
reference frame for electromagnetic radiation — one in which the medium which was excited during the
EM wave propagation was at rest. This notional medium was called the lumineferous ether. Indeed, it was
generally assumed during the 19*" century that light, electricity, magnetism, and heat (which was not
understood until Boltzmann’s work in the late 19" century) all had separate ethers. It was Maxwell who
realized that light, electricity, and magnetism were all unified phenomena, and accordingly he proposed
a single ether for electromagnetism. It was believed at the time that the earth’s motion through the ether
would result in a drag on the earth.

In 1887, Michelson and Morley set out to measure the changes in the speed of light on earth due to
the earth’s movement through the ether (which was generally assumed to be at rest in the frame of the
Sun). The Michelson interferometer is shown in fig. 11.1, and works as follows. Suppose the apparatus
is moving with velocity u @ through the ether. Then the time it takes a light ray to travel from the
half-silvered mirror to the mirror on the right and back again is

14 ¢ 20c
t = = . 11.8
v c+u+c—u 2 — 2 (11.8)

For motion along the other arm of the interferometer, the geometry in the inset of fig. 11.1 shows ¢/ =

(/02 + %u%i, hence
20 2 20
— i 2 4 1,242 _
==\ s = (11.9)
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Figure 11.1: The Michelson-Morley experiment (1887) used an interferometer to effectively measure the
time difference for light to travel along two different paths. Inset: analysis for the y-directed path.

Thus, the difference in times along these two paths is

20c 20 0 u?
Thus, the difference in phase between the two paths is
AN ¢ u?

where )\ is the wavelength of the light. We take « ~ 30km/s, which is the earth’s orbital velocity, and
A = 5000 A. From this we find that A¢ ~ 0.02 x 27 if £ = 1m. Michelson and Morley found that
the observed fringe shift A¢/2m was approximately 0.02 times the expected value. The inescapable
conclusion was that the speed of light did not depend on the motion of the source. This was very
counterintuitive!

The history of the development of special relativity is quite interesting, but we shall not have time to
dwell here on the many streams of scientific thought during those exciting times. Suffice it to say that
the Michelson-Morley experiment, while a landmark result, was not the last word. It had been proposed
that the ether could be dragged, either entirely or partially, by moving bodies. If the earth dragged the
ether along with it, then there would be no ground-level ‘ether wind” for the MM experiment to detect.
Other experiments, however, such as stellar aberration, in which the apparent position of a distant star



304 CHAPTER 11. SPECIAL RELATIVITY

CERN
Proton
Synchrotron

) — yy

vo = 0.99975 ¢

detectors detectors

Ll Ll

m ) < I

BB AA Be target
(produces %)

Figure 11.2: Experimental setup of Alvager et al. (1964), who used the decay of high energy neutral
pions to test the source velocity dependence of the speed of light.

varies due to the earth’s orbital velocity, rendered the “ether drag” theory untenable — the notional ‘ether
bubble” dragged by the earth could not reasonably be expected to extend to the distant stars.

A more recent test of the effect of a moving source on the speed of light was performed by T. Alviger
et al., Phys. Lett. 12, 260 (1964), who measured the velocity of y-rays (photons) emitted from the decay
of highly energetic neutral pions (7°). The pion energies were in excess of 6 GeV, which translates to a
velocity of v = 0.99975 ¢, according to special relativity. Thus, photons emitted in the direction of the
pions should be traveling at close to 2c, if the source and photon velocities were to add. Instead, the
velocity of the photons was found to be ¢ = 2.9977 & 0.0004 x 10'° cm/s, which is within experimental
error of the best accepted value.

11.1.2 Einsteinian and Galilean relativity

The Principle of Relativity states that the laws of nature are the same when expressed in any inertial
frame. This principle can further be refined into two classes, depending on whether one takes the veloc-
ity of the propagation of interactions to be finite or infinite.

The interaction of matter in classical mechanics is described by a potential function U(ry, ..., 7, ). Typi-

cally, one has two-body interactions in which case one writes U = >, _, U(r;, r;). These interactions are
thus assumed to be instantaneous, which is unphysical. The interaction of particles is mediated by the
exchange of gauge bosons, such as the photon (for electromagnetic interactions), gluons (for the strong
interaction, at least on scales much smaller than the ‘confinement length’), or the graviton (