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Chapter 15

Nonlinear Oscillators

15.1 Weakly Perturbed Linear Oscillators

Consider a nonlinear oscillator described by the equation of motion

ẍ+Ω2
0 x = ǫ h(x) . (15.1)

Here, ǫ is a dimensionless parameter, assumed to be small, and h(x) is a nonlinear function of x. In
general, we might consider equations of the form

ẍ+Ω2
0 x = ǫ h(x, ẋ) , (15.2)

such as the van der Pol oscillator,

ẍ+ µ(x2 − 1)ẋ+Ω2
0 x = 0 . (15.3)

First, we will focus on nondissipative systems, i.e. where we may write mẍ = −∂xV , with V (x) some
potential.

As an example, consider the simple pendulum, which obeys

θ̈ +Ω2
0 sin θ = 0 , (15.4)

where Ω2
0 = g/ℓ, with ℓ the length of the pendulum. We may rewrite his equation as

θ̈ +Ω2
0 θ = Ω2

0 (θ − sin θ)

= 1
6 Ω

2
0 θ

3 − 1
120 Ω

2
0 θ

5 + . . .
(15.5)

The RHS above is a nonlinear function of θ. We can define this to be h(θ), and take ǫ = 1.

15.1.1 Naı̈ve Perturbation theory and its failure

Let’s assume though that ǫ is small, and write a formal power series expansion of the solution x(t) to
equation 15.1 as

x = x0 + ǫ x1 + ǫ2 x2 + . . . . (15.6)

1



2 CHAPTER 15. NONLINEAR OSCILLATORS

We now plug this into 15.1. We need to use Taylor’s theorem,

h(x0 + η) = h(x0) + h′(x0) η +
1
2 h

′′(x0) η
2 + . . . (15.7)

with

η = ǫ x1 + ǫ2 x2 + . . . . (15.8)

Working out the resulting expansion in powers of ǫ is tedious. One finds

h(x) = h(x0) + ǫ h′(x0)x1 + ǫ2
{

h′(x0)x2 +
1
2 h

′′(x0)x
2
1

}

+ . . . . (15.9)

Equating terms of the same order in ǫ, we obtain a hierarchical set of equations,

ẍ0 +Ω2
0 x0 = 0

ẍ1 +Ω2
0 x1 = h(x0)

ẍ2 +Ω2
0 x2 = h′(x0)x1

ẍ3 +Ω2
0 x3 = h′(x0)x2 +

1
2 h

′′(x0)x
2
1

(15.10)

et cetera, where prime denotes differentiation with respect to argument. The first of these is easily solved:

x0(t) = A cos(Ω0t+ ϕ), where A and ϕ are constants. This solution then is plugged in at the next order,

to obtain an inhomogeneous equation for x1(t). Solve for x1(t) and insert into the following equation

for x2(t), etc. It looks straightforward enough.

The problem is that resonant forcing terms generally appear in the RHS of each equation of the hierarchy

past the first. Define θ ≡ Ω0t+ ϕ. Then x0(θ) is an even periodic function of θ with period 2π, hence so

is h(x0). We may then expand h
(
x0(θ)

)
in a Fourier series:

h
(
A cos θ

)
=

∞∑

n=0

hn(A) cos(nθ) . (15.11)

The n = 1 term leads to resonant forcing. Thus, the solution for x1(t) is

x1(t) =
1

Ω2
0

∞∑

n=0
(n6=1)

hn(A)

1− n2
cos(nΩ0t+ nϕ) +

h1(A)

2Ω0

t sin(Ω0t+ ϕ) , (15.12)

which increases linearly with time. As an example, consider a cubic nonlinearity with h(x) = r x3,
where r is a constant. Then using

cos3θ = 3
4 cos θ +

1
4 cos(3θ) , (15.13)

we have h1 =
3
4 rA

3 and h3 =
1
4 rA

3.
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15.1.2 Poincaré-Lindstedt method

The problem here is that the nonlinear oscillator has a different frequency than its linear counterpart.
Indeed, if we assume the frequency Ω is a function of ǫ, with

Ω(ǫ) = Ω0 + ǫΩ1 + ǫ2Ω2 + . . . , (15.14)

then subtracting the unperturbed solution from the perturbed one and expanding in ǫ yields

cos(Ωt)− cos(Ω0t) = − sin(Ω0t) (Ω −Ω0) t− 1
2 cos(Ω0t) (Ω −Ω0)

2 t2 + . . .

= −ǫ sin(Ω0t)Ω1t− ǫ2
{

sin(Ω0t)Ω2t+
1
2 cos(Ω0t)Ω

2
1t

2
}

+O(ǫ3) .
(15.15)

What perturbation theory can do for us is to provide a good solution up to a given time, provided that ǫ
is sufficiently small. It will not give us a solution that is close to the true answer for all time. We see above
that in order to do that, and to recover the shifted frequencyΩ(ǫ), we would have to resum perturbation
theory to all orders, which is a daunting task.

The Poincaré-Lindstedt method obviates this difficulty by assuming Ω = Ω(ǫ) from the outset. Define a
dimensionless time s ≡ Ωt and write 15.1 as

Ω2 d
2x

ds2
+Ω2

0 x = ǫ h(x) , (15.16)

where

x = x0 + ǫ x1 + ǫ2 x2 + . . .

Ω2 = a0 + ǫ a1 + ǫ2 a2 + . . . .
(15.17)

We now plug the above expansions into 15.16:

(
a0 + ǫ a1+ǫ

2 a2 + . . .
)
(
d2x0
ds2

+ ǫ
d2x1
ds2

+ ǫ2
d2x2
ds2

+ . . .

)

+Ω2
0

(
x0 + ǫ x1 + ǫ2 x2 + . . .

)

ǫ h(x0) + ǫ2 h′(x0)x1 + ǫ3
{

h′(x0)x2 +
1
2 h

′′(x0)x
2
1

}

+ . . .

(15.18)

Now let’s write down equalities at each order in ǫ:

a0
d2x0
ds2

+Ω2
0 x0 = 0

a0
d2x1
ds2

+Ω2
0 x1 = h(x0)− a1

d2x0
ds2

a0
d2x2
ds2

+Ω2
0 x2 = h′(x0)x1 − a2

d2x0
ds2

− a1
d2x1
ds2

,

(15.19)

et cetera.
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The first equation of the hierarchy is immediately solved by

a0 = Ω2
0 , x0(s) = A cos(s+ ϕ) . (15.20)

At O(ǫ), then, we have

d2x1
ds2

+ x1 = Ω−2
0 h

(
A cos(s+ ϕ)

)
+Ω−2

0 a1A cos(s+ ϕ) . (15.21)

The LHS of the above equation has a natural frequency of unity (in terms of the dimensionless time s).

We expect h(x0) to contain resonant forcing terms, per 15.11. However, we now have the freedom to

adjust the undetermined coefficient a1 to cancel any such resonant term. Clearly we must choose

a1 = −h1(A)
A

. (15.22)

The solution for x1(s) is then

x1(s) =
1

Ω2
0

∞∑

n=0
(n6=1)

hn(A)

1− n2
cos(ns+ nϕ) , (15.23)

which is periodic and hence does not increase in magnitude without bound, as does 15.12. The per-
turbed frequency is then obtained from

Ω2 = Ω2
0 −

h1(A)

A
ǫ+O(ǫ2) =⇒ Ω(ǫ) = Ω0 −

h1(A)

2AΩ0

ǫ+O(ǫ2) . (15.24)

Note that Ω depends on the amplitude of the oscillations.

As an example, consider an oscillator with a quartic nonlinearity in the potential, i.e. h(x) = r x3. Then

h
(
A cos θ

)
= 3

4rA
3 cos θ + 1

4rA
3 cos(3θ) . (15.25)

We then obtain, setting ǫ = 1 at the end of the calculation,

Ω = Ω0 −
3 rA2

8Ω0

+ . . . (15.26)

where the remainder is higher order in the amplitude A. In the case of the pendulum,

θ̈ +Ω2
0 θ =

1
6Ω

2
0 θ

3 +O
(
θ5
)

, (15.27)

and with r = 1
6 Ω

2
0 and θ0(t) = θ0 sin(Ωt), we find

T (θ0) =
2π

Ω
=

2π

Ω0

·
{

1 + 1
16 θ

2
0 + . . .

}

. (15.28)

One can check that this is correct to lowest nontrivial order in the amplitude, using the exact result for
the period,

T (θ0) =
4

Ω0

K
(
sin2 1

2θ0
)

, (15.29)
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where K(x) is the complete elliptic integral.

The procedure can be continued to the next order, where the free parameter a2 is used to eliminate
resonant forcing terms on the RHS.

A good exercise to test one’s command of the method is to work out the lowest order nontrivial correc-
tions to the frequency of an oscillator with a quadratic nonlinearity, such as h(x) = rx2. One finds that
there are no resonant forcing terms at first order in ǫ, hence one must proceed to second order to find
the first nontrivial corrections to the frequency.

15.2 Multiple Time Scale Method

Another method of eliminating secular terms (i.e. driving terms which oscillate at the resonant frequency
of the unperturbed oscillator), and one which has applicability beyond periodic motion alone, is that of
multiple time scale analysis. Consider the equation

ẍ+ x = ǫ h(x, ẋ) , (15.30)

where ǫ is presumed small, and h(x, ẋ) is a nonlinear function of position and/or velocity. We define
a hierarchy of time scales: Tn ≡ ǫn t. There is a normal time scale T0 = t, slow time scale T1 = ǫt, a
‘superslow’ time scale T2 = ǫ2t, etc. Thus,

d

dt
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ . . .

=

∞∑

n=0

ǫn
∂

∂Tn
.

(15.31)

Next, we expand

x(t) =

∞∑

n=0

ǫn xn(T0 , T1, . . .) . (15.32)

Thus, we have

( ∞∑

n=0

ǫn
∂

∂Tn

)2( ∞∑

k=0

ǫk xk

)

+

∞∑

k=0

ǫk xk = ǫ h

( ∞∑

k=0

ǫk xk ,

∞∑

n=0

ǫn
∂

∂Tn

( ∞∑

k=0

ǫk xk

))

.

We now evaluate this order by order in ǫ:

O(ǫ0) :

(
∂2

∂T 2
0

+ 1

)

x0 = 0

O(ǫ1) :

(
∂2

∂T 2
0

+ 1

)

x1 = −2
∂2x0

∂T0 ∂T1
+ h

(

x0 ,
∂x0
∂T0

)

O(ǫ2) :

(
∂2

∂T 2
0

+ 1

)

x2 = −2
∂2x1

∂T0 ∂T1
− 2

∂2x0
∂T0 ∂T2

− ∂2x0
∂T 2

1

+
∂h

∂x

∣
∣
∣
∣
∣

{x
0
,ẋ

0
}

x1 +
∂h

∂ẋ

∣
∣
∣
∣
∣

{x
0
,ẋ

0
}

(
∂x1
∂T0

+
∂x0
∂T1

)

,

(15.33)
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et cetera. The expansion gets more and more tedious with increasing order in ǫ.

Let’s carry this procedure out to first order in ǫ. To order ǫ0,

x0 = A cos
(
T0 + φ

)
, (15.34)

where A and φ are arbitrary (at this point) functions of
{
T1 , T2 , . . .

}
. Now we solve the next equation

in the hierarchy, for x1. Let θ ≡ T0 + φ. Then ∂
∂T0

= ∂
∂θ and we have

(
∂2

∂θ2
+ 1

)

x1 = 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + h

(
A cos θ,−A sin θ

)
. (15.35)

Since the arguments of h are periodic under θ → θ + 2π, we may expand h in a Fourier series:

h(θ) ≡ h
(
A cos θ,−A sin θ

)
=

∞∑

k=1

αk(A) sin(kθ) +
∞∑

k=0

βk(A) cos(kθ) . (15.36)

The inverse of this relation is

αk(A) =

2π∫

0

dθ

π
h(θ) sin(kθ) , k > 0

β0(A) =

2π∫

0

dθ

2π
h(θ)

βk(A) =

2π∫

0

dθ

π
h(θ) cos(kθ) , k > 0 .

(15.37)

We now demand that the secular terms on the RHS – those terms proportional to cos θ and sin θ – must
vanish. This means

2
∂A

∂T1
+ α1(A) = 0

2A
∂φ

∂T1
+ β1(A) = 0 .

(15.38)

These two first order equations require two initial conditions, which is sensible since our initial equation
ẍ+ x = ǫ h(x, ẋ) is second order in time.

With the secular terms eliminated, we may solve for x1:

x1 =
∞∑

k 6=1

{
αk(A)

1− k2
sin(kθ) +

βk(A)

1− k2
cos(kθ)

}

+ C0 cos θ +D0 sin θ . (15.39)

Note: (i) the k = 1 terms are excluded from the sum, and (ii) an arbitrary solution to the homogeneous
equation, i.e. eqn. 15.35 with the right hand side set to zero, is included. The constants C0 and D0 are

arbitrary functions of T1, T2, etc. .
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The equations forA and φ are both first order in T1. They will therefore involve two constants of integra-

tion – call them A0 and φ0. At second order, these constants are taken as dependent upon the superslow

time scale T2. The method itself may break down at this order. (See if you can find out why.)

Let’s apply this to the nonlinear oscillator ẍ + sinx = 0, also known as the simple pendulum. We’ll
expand the sine function to include only the lowest order nonlinear term, and consider

ẍ+ x = 1
6 ǫ x

3 . (15.40)

We’ll assume ǫ is small and take ǫ = 1 at the end of the calculation. This will work provided the

amplitude of the oscillation is itself small. To zeroth order, we have x0 = A cos(t+φ), as always. At first
order, we must solve

(
∂2

∂θ2
+ 1

)

x1 = 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + 1

6 A
3 cos3 θ

= 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + 1

24 A
3 cos(3θ) + 1

8 A
3 cos θ .

(15.41)

We eliminate the secular terms by demanding

∂A

∂T1
= 0 ,

∂φ

∂T1
= − 1

16 A
2 , (15.42)

hence A = A0 and φ = − 1
16 A

2
0 T1 + φ0, and

x(t) = A0 cos
(
t− 1

16 ǫA
2
0 t+ φ0

)
− 1

192 ǫA
3
0 cos

(
3t− 3

16 ǫA
2
0 t+ 3φ0

)
+ . . . , (15.43)

which reproduces the result obtained from the Poincaré-Lindstedt method.

15.2.1 Duffing oscillator

Consider the equation

ẍ+ 2ǫµẋ+ x+ ǫx3 = 0 . (15.44)

This describes a damped nonlinear oscillator. Here we assume both the damping coefficient µ̃ ≡ ǫµ as
well as the nonlinearity both depend linearly on the small parameter ǫ. We may write this equation in
our standard form ẍ+ x = ǫ h(x, ẋ), with h(x, ẋ) = −2µẋ− x3.

For ǫ > 0, which we henceforth assume, it is easy to see that the only fixed point is (x, ẋ) = (0, 0). The
linearized flow in the vicinity of the fixed point is given by

d

dt

(
x
ẋ

)

=

(
0 1
−1 −2ǫµ

)(
x
ẋ

)

+O(x3) . (15.45)

The determinant is D = 1 and the trace is T = −2ǫµ. Thus, provided ǫµ < 1, the fixed point is a stable
spiral; for ǫµ > 1 the fixed point becomes a stable node.
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We employ the multiple time scale method to order ǫ. We have x0 = A cos(T0 + φ) to zeroth order, as
usual. The nonlinearity is expanded in a Fourier series in θ = T0 + φ:

h
(

x0 ,
∂x0
∂T0

)

= 2µA sin θ −A3 cos3 θ

= 2µA sin θ − 3
4A

3 cos θ − 1
4A

3 cos 3θ .
(15.46)

Thus, α1(A) = 2µA and β1(A) = −3
4A

3. We now solve the first order equations,

∂A

∂T1
= −1

2 α1(A) = −µA =⇒ A(T ) = A0 e
−µT1 (15.47)

as well as

∂φ

∂T1
= −β1(A)

2A
= 3

8A
2
0 e

−2µT1 =⇒ φ(T1) = φ0 +
3A2

0

16µ

(
1− e−2µT1

)
. (15.48)

After elimination of the secular terms, we may read off

x1(T0 , T1) =
1
32A

3(T1) cos
(
3T0 + 3φ(T1)

)
. (15.49)

Finally, we have

x(t) = A0 e
−ǫµt cos

(

t+
3A2

0

16µ

(
1− e−2ǫµt

)
+ φ0

)

+ 1
32ǫA

3
0 e

−3ǫµt cos
(

3t+
9A2

0

16µ

(
1− e−2ǫµt

)
+ 3φ0

)

.

(15.50)

15.2.2 Van der Pol oscillator

Let’s apply this method to another problem, that of the van der Pol oscillator,

ẍ+ ǫ (x2 − 1) ẋ+ x = 0 , (15.51)

with ǫ > 0. The nonlinear term acts as a frictional drag for x > 1, and as a ‘negative friction’ (i.e.
increasing the amplitude) for x < 1. Note that the linearized equation at the fixed point (x = 0, ẋ = 0)
corresponds to an unstable spiral for ǫ < 2.

For the van der Pol oscillator, we have h(x, ẋ) = (1 − x2) ẋ, and plugging in the zeroth order solution

x0 = A cos(t+ φ) gives

h

(

x0 ,
∂x0
∂T0

)

=
(
1−A2 cos2 θ

) (
−A sin θ

)

=
(
−A+ 1

4A
3
)
sin θ + 1

4 A
3 sin(3θ) ,

(15.52)

with θ ≡ t+ φ. Thus, α1 = −A+ 1
4A

3 and β1 = 0, which gives φ = φ0 and

2
∂A

∂T1
= A− 1

4A
3 . (15.53)
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The equation for A is easily integrated:

dT1 = − 8 dA

A (A2 − 4)
=

(
2

A
− 1

A− 2
− 1

A+ 2

)

dA = d log

(
A

A2 − 4

)

=⇒ A(T1) =
2

√

1−
(
1− 4

A2
0

)
exp(−T1)

.
(15.54)

Thus,

x0(t) =
2 cos(t+ φ0)

√

1−
(
1− 4

A2
0

)
exp(−ǫt)

. (15.55)

This behavior describes the approach to the limit cycle 2 cos(t+ φ0). With the elimination of the secular
terms, we have

x1(t) = − 1
32A

3 sin(3θ) = −
1
4 sin

(
3t+ 3φ0

)

[

1−
(
1− 4

A2
0

)
exp(−ǫt)

]3/2
. (15.56)

15.3 Forced Nonlinear Oscillations

The forced, damped linear oscillator,

ẍ+ 2µẋ+ x = f0 cosΩt (15.57)

has the solution

x(t) = xh(t) +C(Ω) cos
(
Ωt+ δ(Ω)

)
, (15.58)

where

xh(t) = A+ e
λ+t +A− e

λ−t , (15.59)

where λ± = −µ±
√

µ2 − 1 are the roots of λ2 + 2µλ+1 = 0. The ‘susceptibility’ C and phase shift δ are
given by

C(Ω) =
1

√

(Ω2 − 1)2 + 4µ2Ω2
, δ(Ω) = tan−1

(
2µΩ

1−Ω2

)

. (15.60)

The homogeneous solution, xh(t), is a transient and decays exponentially with time, since Re(λ±) < 0.
The asymptotic behavior is a phase-shifted oscillation at the driving frequency Ω.

Now let’s add a nonlinearity. We study the equation

ẍ+ x = ǫ h(x, ẋ) + ǫ f0 cos(t+ ǫνt) . (15.61)

Note that amplitude of the driving term, ǫf0 cos(Ωt), is assumed to be small, i.e. proportional to ǫ, and
the driving frequency Ω = 1 + ǫν is assumed to be close to resonance. (The resonance frequency of the

unperturbed oscillator is ωres = 1.) Were the driving frequency far from resonance, it could be dealt
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with in the same manner as the non-secular terms encountered thus far. The situation when Ω is close
to resonance deserves our special attention.

At order ǫ0, we still have x0 = A cos(T0 + φ). We write

Ωt = t+ ǫνt = T0 + νT1 ≡ θ − ψ , (15.62)

where θ = T0 + φ(T1) as before, and ψ(T1) ≡ φ(T1)− νT1. At order ǫ1, we must then solve

(
∂2

∂θ2
+ 1

)

x1 = 2A′ sin θ + 2Aφ′ cos θ + h
(
A cos θ , −A sin θ

)
+ f0 cos(θ − ψ)

=
∑

k 6=1

(

αk sin(kθ) + βk cos(kθ)
)

+
(

2A′ + α1 + f0 sinψ
)

sin θ

+
(

2Aψ′ + 2Aν + β1 + f0 cosψ
)

cos θ ,

(15.63)

where the prime denotes differentiation with respect to T1. We thus have the N = 2 dynamical system

dA

dT1
= −1

2α1(A)− 1
2f0 sinψ

dψ

dT1
= −ν − β1(A)

2A
− f0

2A
cosψ .

(15.64)

If we assume that {A,ψ} approaches a fixed point of these dynamics, then at the fixed point these

equations provide a relation between the amplitude A, the ‘detuning’ parameter ν, and the drive f0:

[

α1(A)
]2

+
[

2νA+ β1(A)
]2

= f20 . (15.65)

In general this is a nonlinear equation for A(f0, ν). The linearized (A,ψ) dynamics in the vicinity of a
fixed point is governed by the matrix

M =





∂Ȧ/∂A ∂Ȧ/∂ψ

∂ψ̇/∂A ∂ψ̇/∂ψ



 =





−1
2α

′
1(A) νA+ 1

2β1(A)

−β′
1(A)
2A − ν

A −α1(A)
2A



 . (15.66)

If the (A,ψ) dynamics exhibits a stable fixed point (A∗, ψ∗), then one has

x0(t) = A∗ cos(T0 + νT1 + ψ∗) = A∗ cos(Ωt+ ψ∗) . (15.67)

The oscillator’s frequency is then the forcing frequency Ω = 1 + ǫν, in which case the oscillator is said
to be entrained, or synchronized, with the forcing. Note that

detM =
F ′(A∗)

8A∗ .



15.3. FORCED NONLINEAR OSCILLATIONS 11

15.3.1 Forced Duffing oscillator

Thus far our approach has been completely general. We now restrict our attention to the Duffing equa-
tion, for which

α1(A) = 2µA , β1(A) = −3
4A

3 , (15.68)

which yields the cubic equation

A6 − 16
3 νA

4 + 64
9 (µ

2 + ν2)A2 − 16
9 f

2
0 = 0 . (15.69)

Analyzing the cubic is a good exercise. Setting y = A2, we define

G(y) ≡ y3 − 16
3 ν y

2 + 64
9 (µ

2 + ν2) y , (15.70)

and we seek a solution to G(y) = 16
9 f

2
0 . Setting G′(y) = 0, we find roots at

y± = 16
9 ν ± 8

9

√

ν2 − 3µ2 . (15.71)

If ν2 < 3µ2 the roots are imaginary, which tells us that G(y) is monotonically increasing for real y. There
is then a unique solution to G(y) = 16

9 f
2
0 .

If ν2 > 3µ2, then the cubic G(y) has a local maximum at y = y− and a local minimum at y = y+. For
ν < −

√
3µ, we have y− < y+ < 0, and since y = A2 must be positive, this means that once more there is

a unique solution to G(y) = 16
9 f

2
0 .

For ν >
√
3µ, we have y+ > y− > 0. There are then three solutions for y(ν) for f0 ∈

[
f−0 , f

+
0

]
, where

f±0 = 3
4

√

G(y∓). If we define κ ≡ ν/µ, then

f±0 = 8
9 µ

3/2

√

κ3 + 9κ±
√

κ2 − 3 . (15.72)

Figure 15.1: Phase diagram for the forced Duffing oscillator.
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Figure 15.2: AmplitudeA versus detuning ν for the forced Duffing oscillator for three values of the drive
f0. The critical drive is f0,c =

16
35/4

µ3/2. For f0 > f0,c , there is hysteresis as a function of the detuning.

The phase diagram is shown in Fig. 15.1. The minimum value for f0 is f0,c =
16
35/4

µ3/2, which occurs at

κ =
√
3.

Thus far we have assumed that the (A,ψ) dynamics evolves to a fixed point. We should check to make
sure that this fixed point is in fact stable. To do so, we evaluate the linearized dynamics at the fixed
point. Writing A = A∗ + δA and ψ = ψ∗ + δψ, we have

d

dT1

(
δA
δψ

)

=M

(
δA
δψ

)

, (15.73)

Figure 15.3: Amplitude versus detuning ν for the forced Duffing oscillator for ten equally spaced values
of f0 between µ3/2 and 10µ3/2. The critical value is f0,c = 4.0525µ3/2 . The red and blue curves are
boundaries for the fixed point classification.
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with

M =






∂Ȧ
∂A

∂Ȧ
∂ψ

∂ψ̇
∂A

∂ψ̇
∂ψ




 =





−µ −1
2f0 cosψ

3
4A+ f0

2A2 cosψ f0
2A sinψ



 =





−µ νA− 3
8A

3

9
8A− ν

A −µ



 . (15.74)

One then has T = −2µ and

D = µ2 +
(
ν − 3

8A
2
)(
ν − 9

8A
2
)

. (15.75)

Setting D = 1
4T

2 = µ2 sets the boundary between stable spiral and stable node. Setting D = 0 sets the
boundary between stable node and saddle. The fixed point structure is as shown in Fig. 15.3. Though
the amplitude exhibits hysteresis, the oscillator frequency is always synchronized with the forcing as
one varies the detuning.

15.3.2 Forced van der Pol oscillator

Consider now a weakly dissipative, weakly forced van der Pol oscillator, governed by the equation

ẍ+ ǫ (x2 − 1) ẋ+ x = ǫ f0 cos(t+ ǫνt) , (15.76)

where the forcing frequency is Ω = 1 + ǫν, which is close to the natural frequency ω0 = 1. We apply

the multiple time scale method, with h(x, ẋ) = (1 − x2) ẋ. As usual, the lowest order solution is x0 =
A(T1) cos

(
T0 + φ(T1)

)
, where T0 = t and T1 = ǫt. Again, we define θ ≡ T0 + φ(T1) and ψ(T1) ≡

φ(T1)− νT1. From

h(A cos θ,−A sin θ) =
(
1
4A

3 −A
)
sin θ + 1

4A
3 sin(3θ) , (15.77)

we arrive at

(
∂2

∂θ2
+ 1

)

x1 = −2
∂2x0

∂T0 ∂T1
+ h

(

x0 ,
∂x0
∂T0

)

=
(
1
4A

3 −A+ 2A′ + f0 sinψ
)
sin θ

+
(
2Aψ′ + 2νA+ f0 cosψ

)
cos θ + 1

4A
3 sin(3θ) .

(15.78)

We eliminate the secular terms, proportional to sin θ and cos θ, by demanding

dA

dT1
= 1

2A− 1
8A

3 − 1
2f0 sinψ

dψ

dT1
= −ν − f0

2A
cosψ .

(15.79)

Stationary solutions have A′ = ψ′ = 0, hence cosψ = −2νA/f0 , and hence

f20 = 4ν2A2 +
(
1− 1

4A
2
)2
A2

= 1
16A

6 − 1
2A

4 + (1 + 4ν2)A2 .
(15.80)
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Figure 15.4: Amplitude versus detuning for the forced van der Pol oscillator. Fixed point classifications
are abbreviated SN (stable node), SS (stable spiral), UN (unstable node), US (unstable spiral), and SP
(saddle point). The dot-dashed red curves mark the boundaries of the region in which hysteresis occurs.

For this solution, we have
x0 = A∗ cos(T0 + νT1 + ψ∗) , (15.81)

and the oscillator’s frequency is the forcing frequency Ω = 1 + εν.

To proceed further, let y = A2, and consider the cubic equation

G(y) = 1
16y

3 − 1
2y

2 + (1 + 4ν2) y = f20 . (15.82)

Setting G′(y) = 0, we find the roots of G′(y) lie at y± = 4
3 (2 ± u), where u = (1 − 12 ν2)1/2. Thus, the

roots are complex for ν2 > 1
12 , in which case G(y) is monotonically increasing, and there is a unique

solution to G(y) = f20 . Since G(0) = 0 < f20 , that solution satisfies y > 0. For ν2 < 1
12 , there are two local

extrema at y = y±. When Gmin = G(y+) < f20 < G(y−) = Gmax, the cubic equation G(y) = f20 has three
real, positive roots. This is equivalent to the condition

− 8
27 u

3 + 8
9 u

2 < 32
27 − f20 <

8
27 u

3 + 8
9 u

2 . (15.83)

We can say even more by exploring the behavior of eqs. (15.80) in the vicinity of the fixed points. Writing
A = A∗ + δA and ψ = ψ∗ + δψ, we have

d

dT1





δA

δψ



 =





1
2

(
1− 3

4A
∗2) νA∗

−ν/A∗ 1
2

(
1− 1

4A
∗2)









δA

δψ



 . (15.84)
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Figure 15.5: Phase diagram for the weakly forced van der Pol oscillator in the (ν2, f20 ) plane. Inset shows
detail. Abbreviations for fixed point classifications are as in Fig. 15.4.

The eigenvalues of the linearized dynamics at the fixed point are given by λ± = 1
2

(
T ±

√
T 2 − 4D

)
,

where T and D are the trace and determinant of the linearized equation. Recall now the classification

scheme for fixed points of two-dimensional phase flows. When D < 0, we have λ− < 0 < λ+ and the
fixed point is a saddle. For 0 < 4D < T 2, both eigenvalues have the same sign, so the fixed point is a
node. For 4D > T 2, the eigenvalues form a complex conjugate pair, and the fixed point is a spiral. A
node/spiral fixed point is stable if T < 0 and unstable if T > 0. For our forced van der Pol oscillator, we
have

T = 1− 1
2A

∗2

D = 1
4

(
1−A∗2 + 3

16A
∗4)+ ν2 .

(15.85)

From these results we can obtain the plot of Fig. 15.4, where amplitude is shown versus detuning.

We now ask: for what values of f20 is there hysteretic behavior over a range ν ∈
[
ν−, ν+

]
? Suppose,

following the curves of constant f20 in Fig. 15.4, we start somewhere in the upper left corner of the
diagram, in the region D > 0 and f20 < 32

27 . Now ramp up ν2 while keeping f20 constant until we
arrive on the upper branch of the D = 0 curve. An infinitesimal further increase in ν2 will cause a
discontinuous drop in y = A2 to a value below the saddle point region. Clearly if f20 = 1, we will wind
up on a branch of this curve for which A2 < 2, which is unstable, and so in order to end up on a stable
branch, we must start with f20 > 1. To find the minimum such value of f20 for which this is possible,
we first demand G(y) = 0 as well as D = 0. The second of these conditions is equivalent to G′(y) = 0.
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Figure 15.6: Forced van der Pol system with ǫ = 0.1, ν = 0.4 for three values of f0. The limit entrained
solution becomes unstable at f0 = 1.334.

Eliminating y, we obtain the equation 8
27 (2 + u)2(1− u) = f20 , where u =

√
1− 12ν2 as above. Next, we

demand that G(y) = 0 at y = 2 (i.e. the blue line in Fig. 15.4) for the same values of f20 and ν2. Thus says
f20 = 1

6(7− 4u2). Eliminating f20 , we obtain the equation

8
27(2 + u)2 (1− u) = 1

6(7− 4u2) , (15.86)

which is equivalent to the factorized cubic (4u−1)(2u+1)2 = 0. The root we seek is u = 1
4 , corresponding

to ν2 = 15
192 and f20 = 9

8 . Thus, hysteretic behavior is possible only in the narrow regime f20 ∈
[
9
8 ,

32
27

]
.

The phase diagram in the (ν2, f20 ) plane is shown in Fig. 15.5. Hysteresis requires two among the three
fixed points be stable, so the system can jump from one stable branch to another as ν is varied. These
regions are so small they are only discernible in the inset.

Finally, we can make the following statement about the global dynamics (i.e. not simply in the vicinity of
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a fixed point). For large A, we have

dA

dT1
= −1

8A
3 + . . . ,

dψ

dT1
= −ν + . . . . (15.87)

This flow is inward, hence if the flow is not to a stable fixed point, it must be attracted to a limit cycle.
The limit cycle necessarily involves several frequencies. This result – the generation of new frequencies
by nonlinearities – is called heterodyning.

We can see heterodyning in action in the van der Pol system. In Fig. 15.5, the blue line which separates
stable and unstable spiral solutions is given by f20 = 8ν2 + 1

2 . For example, if we take ν = 0.40 then

the boundary lies at f0 = 1.334. For f0 < 1.334, we expect heterodyning, as the entrained solution is
unstable. For f > 1.334 the solution is entrained and oscillates at a fixed frequency. This behavior is
exhibited in Fig. 15.6.

15.4 Synchronization

Thus far we have assumed both the nonlinearity as well as the perturbation are weak. In many systems,
we are confronted with a strong nonlinearity which we can perturb weakly. How does an attractive
limit cycle in a strongly nonlinear system respond to weak periodic forcing? Here we shall follow the
nice discussion in the book of Pikovsky et al.

Consider a forced dynamical system,

ϕ̇ = V (ϕ) + εf(ϕ, t) . (15.88)

When ε = 0, we assume that the system has at least one attractive limit cycle γ(t) = γ(t + T0). All
points on the limit cycle are fixed under the T0-advance map gT0

, where gτϕ(t) = ϕ(t + τ). The idea is

now to parameterize the points along the limit cycle by a phase angle φ which runs from 0 to 2π such
that φ(t) increases by 2π with each orbit of the limit cycle, with φ increasing uniformly with time, so that
φ̇ = ω0 = 2π/T0. Now consider the action of the T0-advance map gT0

on points in the vicinity of the limit

cycle. Since each point γ(φ) on the limit cycle is a fixed point, and since the limit cycle is presumed to be
attractive, we can define the φ-isochrone as the set of points {ϕ} in phase space which flow to the fixed
point γ(φ) under repeated application of gT0

. The isochrones are (N − 1)-dimensional hypersurfaces.

Equivalently, consider a point ϕ0 ∈ Ωγ lying within the basin of attraction Ωγ of the limit cycle γ(t). We
say that ϕ0 lies along the φ-isochrone if

lim
t→∞

∣
∣
∣ϕ(t)− γ

(

t+
φ

2π
T0

)∣
∣
∣ = 0 , (15.89)

where ϕ(0) = ϕ0. For each ϕ0 ∈ Ωγ , there exists a unique corresponding value of φ(ϕ0) ∈ [0, 2π]. This
is called the asymptotic (or latent) phase of ϕ0.

To illustrate this, we analyze the example in Pikovsky et al. of the complex amplitude equation (CAE),

dA

dt
= (1 + iα)A − (1 + iβ) |A|2A , (15.90)
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where A ∈ C is a complex number. It is convenient to work in polar coordinates, writing A = ReiΘ, in
which case the real and complex parts of the CAE become

Ṙ = (1−R2)R

Θ̇ = α− βR2 .
(15.91)

These equations can be integrated to yield the solution

R(t) =
R0

√

R2
0 + (1−R2

0) e
−2t

Θ(t) = Θ0 + (α− β)t− 1
2β log

[
R2

0 + (1−R2
0) e

−2t
]

= Θ0 + (α− β) t+ β log(R/R0) .

(15.92)

As t → ∞, we have R(t) → 1 and Θ̇(t) → ω0. Thus the limit cycle is the circle R = 1, and its frequency
is ω0 = α− β.

Since all points on each isochrone share the same phase, we can evaluate φ̇ along the limit cycle, and
thus we have φ̇ = ω0. The functional form of the isochrones is dictated by the rotational symmetry of
the vector field, which requires φ(R,Θ) = Θ − f(R), where f(R) is an as-yet undetermined function.
Taking the derivative, we immediately find f(R) = β logR , i.e.

φ(R,Θ) = Θ − β logR+ c , (15.93)

where c is a constant. We can now check that

φ̇ = Θ̇ − β
Ṙ

R
= α− β = ω0 . (15.94)

Without loss of generality we may take c = 0. Thus the φ-isochrone is given by the curve Θ(R) =
φ+ β logR, which is a logarithmic spiral. These isochrones are depicted in fig. 15.7.

At this point we have defined a phase function φ(ϕ) as the phase of the fixed point along the limit
cycle to which ϕ flows under repeated application of the T0-advance map gT0

. Now let us examine the

dynamics of φ for the weakly perturbed system of eqn. 15.88. We have

dφ

dt
=

N∑

j=1

∂φ

∂ϕj

dϕj
dt

= ω0 + ε

N∑

j=1

∂φ

∂ϕj
fj(ϕ, t) .

(15.95)

We will assume that ϕ is close to the limit cycle, so that ϕ− γ(φ) is small. As an example, consider once
more the complex amplitude equation (15.90), but now adding in a periodic forcing term.

dA

dt
= (1 + iα)A− (1 + iβ) |A|2A+ ε cosωt . (15.96)
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Figure 15.7: Isochrones of the complex amplitude equation Ȧ = (1 + iα)A − (1 + iβ)|A|2A, where
A = X + iY .

Writing A = X + iY , we have

Ẋ = X − αY − (X − βY )(X2 + Y 2) + ε cosωt

Ẏ = Y + αX − (βX + Y )(X2 + Y 2) .
(15.97)

In Cartesian coordinates, the isochrones for the ε = 0 system are

φ = tan−1(Y/X) − 1
2β log(X

2 + Y 2) , (15.98)

hence

dφ

dt
= ω0 + ε

∂φ

∂X
cosωt

= α− β − ε

(
βX + Y

X2 + Y 2

)

cosωt

≈ ω0 − ε (β cosφ+ sinφ) cosωt

= ω0 − ε
√

1 + β2 cos(φ− φβ) cosωt .

(15.99)

where φβ = ctn −1β. Note that in the third line above we have invoked R ≈ 1, i.e. we assume that we
are close to the limit cycle.
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Figure 15.8: Left panel: graphical analysis of the equation ψ̇ = −ν + εG(ψ). Right panel: Synchroniza-
tion region (gray) as a function of detuning ν.

We now define the function

F (φ, t) ≡
N∑

j=1

∂φ

∂ϕj

∣
∣
∣
∣
γ(φ)

fj (γ(φ), t) . (15.100)

The phase dynamics for φ are now written as

φ̇ = ω0 + εF (φ, t) . (15.101)

Now F (φ, t) is periodic in both its arguments, so we may write

F (φ, t) =
∑

k,l

Fkl e
i(kφ+lωt) . (15.102)

For the unperturbed problem, we have φ̇ = ω0 , hence resonant terms in the above sum are those for
which kω0+ lω ≈ 0. This occurs when ω ≈ p

q ω0 , where p and q are relatively prime integers. In this case
the resonance condition is satisfied for k = jp and l = −jq for all j ∈ Z. We now separate the resonant
from the nonresonant terms in the (k, l) sum, writing

φ̇ = ω0 + ε
∑

j

Fjp,−jq e
ij(pφ−qωt) +NRT , (15.103)

where NRT denotes nonresonant terms, i.e. those for which (k, l) 6= (jp,−jq) for some integer j. We
now average over short time scales to eliminate the nonresonant terms, and focus on the dynamics of
this averaged phase 〈φ〉.

We define the angle ψ ≡ p〈φ〉 − qωt, which obeys

ψ̇ = p 〈φ̇〉 − qω

= (pω0 − qω) + εp
∑

j

Fjp,−jq e
ijψ = −ν + εG(ψ) , (15.104)
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where ν ≡ qω − pω0 is the detuning and G(ψ) = p
∑

j Fjp,−jq e
ijψ is the sum over resonant terms. Note

that the nonresonant terms have been eliminated by the aforementioned averaging procedure. This last
equation is a simple N = 1 dynamical system on the circle – a system we have already studied. The
dynamics are depicted in fig. 15.8. If the detuning ν falls within the range [εGmin , εGmax], then ψ
flows to a fixed point, and the nonlinear oscillator is synchronized with the periodic external force, with
〈φ̇〉 → q

p ω. If the detuning is too large and lies outside this region, then there is no synchronization.

Rather, ψ(t) increases on average linearly with time. In this case we have 〈φ(t)〉 = φ0 +
q
pωt +

1
p ψ(t),

where

dt =
dψ

εG(ψ) − ν
=⇒ Tψ =

π∫

−π

dψ

εG(ψ) − ν
. (15.105)

Thus, ψ(t) = Ωψ t + Ψ(t), where Ψ(t) = Ψ(t + T ) is periodic with period Tψ = 2π/Ωψ . This leads to
heterodyning with a beat frequency Ωψ(ν, ε).

Why do we here find the general resonance condition ω = p
q ω0, whereas for weakly forced, weakly

nonlinear oscillators resonance could only occur for ω = ω0? There are two reasons. The main reason is
that in the latter case, the limit cycle is harmonic to zeroth order, with x0(t) = A cos(t+φ). There are only
two frequencies, then, in the Fourier decomposition of the limit cycle: ω0 = ±1. In the strongly nonlinear
case, the limit cycle is decomposed into what is in general a countably infinite set of frequencies which
are all multiples of a fundamental ω0. In addition, if the forcing f(ϕ, t) is periodic in t, its Fourier
decomposition in t will involve all integer multiples of some fundamental ω. Thus, the most general
resonance condition is kω0 + lω = 0.

Our analysis has been limited to the lowest order in ε, and we have averaged out the nonresonant
terms. When one systematically accounts for both these features, there are two main effects. One is that
the boundaries of the synchronous region are no longer straight lines as depicted in the right panel of
fig. 15.8. The boundaries themselves can be curved. Moreover, even if there are no resonant terms in the
(k, l) sum to lowest order, they can be generated by going to higher order in ε. In such a case, the width
of the synchronization region ∆ν will be proportional to a higher power of ε: ∆ν ∝ εn, where n is the
order of ε where resonant forcing terms first appear in the analysis.

15.5 Relaxation Oscillations

We saw how to use multiple time scale analysis to identify the limit cycle of the van der Pol oscillator
when ǫ is small. Consider now the opposite limit, where the coefficient of the damping term is very
large. We generalize the van der Pol equation to

ẍ+ µΦ(x) ẋ+ x = 0 , (15.106)

and suppose µ≫ 1. Define now the variable

y ≡ ẋ

µ
+

x∫

0

dx′Φ(x′) ≡ ẋ

µ
+ F (x) , (15.107)
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Figure 15.9: Relaxation oscillations in the Liènard plane (x, y). The system rapidly flows to a point on
the curve y = F (x), and then crawls slowly along this curve. The slow motion takes x from −b to −a,
after which the system executes a rapid jump to x = +b, then a slow retreat to x = +a, followed by a
rapid drop to x = −b.

where F ′(x) = Φ(x). (y is sometimes called the Liènard variable, and (x, y) the Liènard plane.) Then the
original second order equation may be written as two coupled first order equations:

ẋ = µ
(

y − F (x)
)

ẏ = −x
µ

.
(15.108)

Since µ ≫ 1, the first of these equations is fast and the second one slow. The dynamics rapidly achieves
y ≈ F (x), and then slowly evolves along the curve y = F (x), until it is forced to make a large, fast
excursion.

A concrete example is useful. Consider F (x) of the form sketched in Fig. 15.9. This is what one finds for

the van der Pol oscillator, where Φ(x) = x2 − 1 and F (x) = 1
3x

3 − x. The limit cycle behavior xLC(t) is
sketched in Fig. 15.10. We assume Φ(x) = Φ(−x) for simplicity.

Assuming Φ(x) = Φ(−x) is symmetric, F (x) is antisymmetric. For the van der Pol oscillator and other
similar cases, F (x) resembles the sketch in fig. 15.9. There are two local extrema: a local maximum at
x = −a and a local minimum at x = +a. We define b such that F (b) = F (−a), as shown in the figure;
antisymmetry then entails F (−b) = F (+a). Starting from an arbitrary initial condition, the y dynamics
are slow, since ẏ = −µ−1x (we assume µ ≫ x(0)). So y can be regarded as essentially constant for the
fast dynamics in the second of eqn. 15.108, according to which x(t) flows rapidly to the right if y > F (x)
and rapidly to the left if y < F (x). This fast motion stops when x(t) reaches a point where y = F (x). At
this point, the slow dynamics takes over. Assuming y ≈ F (x), we have

y ≈ F (x) ⇒ ẏ = −x
µ
≈ F ′(x) ẋ , (15.109)
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Figure 15.10: A sketch of the limit cycle for the relaxation oscillation studied in this section.

which says that

ẋ ≈ − x

µF ′(x)
if y ≈ F (x) (15.110)

over the slow segments of the motion, which are the regions x ∈ [−b,−a] and x ∈ [a, b]. The relaxation
oscillation is then as follows. Starting at x = −b, x(t) increases slowly according to eqn. 15.110. At
x = −a, the motion can no longer follow the curve y = F (x), since ẏ = −µ−1x is still positive. The
motion thus proceeds quickly to x = +b, with

ẋ ≈ µ
(

F (b)− F (x)
)

x ∈
[
− a,+b

]
. (15.111)

After reaching x = +b, the motion once again is slow, and again follows eqn. 15.110, according to which
x(t) now decreases slowly until it reaches x = +a, at which point the motion is again fast, with

ẋ ≈ µ
(

F (a)− F (x)
)

x ∈
[
− b,+a

]
. (15.112)

The cycle then repeats.

Thus, the limit cycle is given by the following segments:

x ∈ [−b,−a ] (ẋ > 0) : ẋ ≈ − x

µF ′(x)
(15.113)

x ∈ [−a, b ] (ẋ > 0) : ẋ ≈ µ
[
F (b)− F (x)

]
(15.114)

x ∈ [ a, b ] (ẋ < 0) : ẋ ≈ − x

µF ′(x)
(15.115)

x ∈ [−b, a ] (ẋ < 0) : ẋ ≈ µ
[
F (a)− F (x)

]
. (15.116)
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Figure 15.11: Limit cycle for large µ relaxation oscillations, shown in the phase plane (x, ẋ).

A sketch of the limit cycle is given in fig. 15.11, showing the slow and fast portions.

When µ ≫ 1 we can determine approximately the period of the limit cycle. Clearly the period is twice
the time for either of the slow portions, hence

T ≈ 2µ

b∫

a

dx
Φ(x)

x
, (15.117)

where F ′(±a) = Φ(±a) = 0 and F (±b) = F (∓a). For the van der Pol oscillator, with Φ(x) = x2 − 1, we
have a = 1, b = 2, and T ≃ (3− 2 log 2)µ.

15.5.1 Example problem

Consider the equation

ẍ+ µ
(
|x| − 1

)
ẋ+ x = 0 . (15.118)

Sketch the trajectory in the Liènard plane, and find the approximate period of the limit cycle for µ≫ 1.

Solution : We define

F ′(x) = |x| − 1 ⇒ F (x) =







+1
2x

2 − x if x > 0

−1
2x

2 − x if x < 0 .

(15.119)
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Figure 15.12: Relaxation oscillations for ẍ+ µ
(
|x| − 1

)
ẋ+ x = 0 plotted in the Liénard plane. The solid

black curve is y = F (x) = 1
2x

2 sgn(x)− x. The variable y is defined to be y = µ−1 ẋ+ F (x). Along slow
portions of the limit cycle, y ≃ F (x).

We therefore have

ẋ = µ
{
y − F (x)

}
, ẏ = −x

µ
, (15.120)

with y ≡ µ−1 ẋ+ F (x).

Setting F ′(x) = 0 we find x = ±a, where a = 1 and F (±a) = ∓1
2 . We also find F (±b) = F (∓a), where

b = 1+
√
2. Thus, the limit cycle is as follows: (i) fast motion from x = −a to x = +b, (ii) slow relaxation

from x = +b to x = +a, (iii) fast motion from x = +a to x = −b, and (iv) slow relaxation from x = −b
to x = −a. The period is approximately the time it takes for the slow portions of the cycle. Along these
portions, we have y ≃ F (x), and hence ẏ ≃ F ′(x) ẋ. But ẏ = −x/µ, so

F ′(x) ẋ ≃ −x
µ

⇒ dt = −µ F
′(x)

x
dx , (15.121)

which we integrate to obtain

T ≃ −2µ

a∫

b

dx
F ′(x)

x
= 2µ

1+
√
2∫

1

dx

(

1− 1

x

)

= 2µ
[√

2− log
(
1 +

√
2
)]

≃ 1.066µ .

(15.122)
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Figure 15.13: Liénard plots for systems with one (left) and two (right) relaxation oscillations.

15.5.2 Multiple limit cycles

For the equation
ẍ+ µF ′(x) ẋ+ x = 0 , (15.123)

it is illustrative to consider what sort of F (x) would yield more than one limit cycle. Such an example is
shown in fig. 15.13.

In polar coordinates, it is very easy to construct such examples. Consider, for example, the system

ṙ = sin(πr) + ǫ cos θ

θ̇ = b r ,
(15.124)

with |ǫ| < 1. First consider the case ǫ = 0. Clearly the radial flow is outward for sin(πr) > 0 and inward
for sin(πr) < 0. Thus, we have stable limit cycles at r = 2n + 1 and unstable limit cycles at r = 2n, for
all n ∈ Z. With 0 < |ǫ| < 1, we have

r ∈
[
2n+ 1

π sin
−1 ǫ , 2n+ 1− 1

π sin
−1 ǫ

]
⇒ ṙ > 0

r ∈
[
2n+ 1 + 1

π sin
−1 ǫ , 2n+ 2− 1

π sin
−1 ǫ

]
⇒ ṙ < 0

(15.125)

The Poincaré-Bendixson theorem then guarantees the existence of stable and unstable limit cycles. We
can put bounds on the radial extent of these limit cycles.

r ∈
[
2n+ 1− 1

π sin
−1 ǫ , 2n+ 1 + 1

π sin
−1 ǫ

]
⇒ stable limit cycle

t ∈
[
2n− 1

π sin
−1 ǫ , 2n+ 1

π sin
−1 ǫ

]
⇒ unstable limit cycle .

(15.126)
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Figure 15.14: Three instances of Φ(x).

Note that an unstable limit cycle is a repeller, which is to say that it is stable (an attractor) if we run the
dynamics backwards, sending t→ −t.

15.5.3 Example problem

Consider the nonlinear oscillator,
ẍ+ µΦ(x) ẋ+ x = 0 , (15.127)

with µ≫ 1. For each case in fig. 15.14, sketch the flow in the Liènard plane, starting with a few different
initial conditions. For which case(s) do relaxation oscillations occur?

Solution : Recall the general theory of relaxation oscillations. We define

y ≡ ẋ

µ
+

x∫

0

dx′ Φ(x′) =
ẋ

µ
+ F (x) , (15.128)

in which case the second order ODE for the oscillator may be written as two coupled first order ODEs:

ẏ = −x
µ

, ẋ = µ
(

y − F (x)
)

. (15.129)

Since µ ≫ 1, the first of these equations is slow and the second one fast. The dynamics rapidly achieves
y ≈ F (x), and then slowly evolves along the curve y = F (x), until it is forced to make a large, fast
excursion.

To explore the dynamics in the Liènard plane, we plot F (x) versus x, which means we must integrate
Φ(x). This is done for each of the three cases in fig. 15.14.

Note that a fixed point corresponds to x = 0 and ẋ = 0. In the Liènard plane, this means x = 0 and
y = F (0). Linearizing by setting x = δx and y = F (0) + δy, we have1

d

dt

(
δx
δy

)

=

(
µ δy − µF ′(0) δx

−µ−1 δx

)

=

(
−µF ′(0) µ
−µ−1 0

)(
δx
δy

)

. (15.130)

1We could, of course, linearize about the fixed point in (x, ẋ) space and obtain the same results.
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Figure 15.15: Phase flows in the Liénard plane for the three examples in fig. 15.14.

The linearized map has trace T = −µF ′(0) and determinant D = 1. Since µ≫ 1 we have 0 < D < 1
4T

2,
which means the fixed point is either a stable node, for F ′(0) > 0, or an unstable node, for F ′(0) < 0.
In cases (a) and (b) the fixed point is a stable node, while in case (c) it is unstable. The flow in case (a)
always collapses to the stable node. In case (b) the flow either is unbounded or else it collapses to the
stable node. In case (c), all initial conditions eventually flow to a unique limit cycle exhibiting relaxation
oscillations.

15.6 Appendix I : Multiple Time Scale Analysis to O(ǫ2)

Problem : A particle of mass m moves in one dimension subject to the potential

U(x) = 1
2mω2

0 x
2 + 1

3ǫmω2
0

x3

a
, (15.131)

where ǫ is a dimensionless parameter.

(a) Find the equation of motion for x. Show that by rescaling x and t you can write this equation in
dimensionless form as

d2u

ds2
+ u = −ǫu2 . (15.132)

Solution : The equation of motion is

mẍ = −U ′(x) = −mω2
0x− ǫmω2

0

x2

a
. (15.133)

We now define s ≡ ω0t and u ≡ x/a, yielding

d2u

ds2
+ u = −ǫu2 . (15.134)

(b) You are now asked to perform an O
(
ǫ2
)

multiple time scale analysis of this problem, writing

T0 = s , T1 = ǫs , T2 = ǫ2s , (15.135)



15.6. APPENDIX I : MULTIPLE TIME SCALE ANALYSIS TO O(ǫ2) 29

and
u = u0 + ǫu1 + ǫ2u2 + . . . . (15.136)

This results in a hierarchy of coupled equations for the functions {un}. Derive the first three equations
in the hierarchy.

Solution : We have
d

ds
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ . . . . (15.137)

Therefore
(

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ . . .

)2 (

u0 + ǫ u1 + ǫ2 u2 + . . .
)

+
(

u0 + ǫ u1 + ǫ2 u2 + . . .
)

= −ǫ
(

u0 + ǫ u1 + ǫ2 u2 + . . .
)2

.

(15.138)

Expanding and then collecting terms order by order in ǫ, we derive the hierarchy. The first three levels
are

∂2u0
∂T 2

0

+ u0 = 0

∂2u1
∂T 2

0

+ u1 = −2
∂2u0

∂T0 ∂T1
− u20

∂2u2
∂T 2

0

+ u2 = −2
∂2u0

∂T0 ∂T2
− ∂2u0
∂T 2

1

− 2
∂2u1

∂T0 ∂T1
− 2u0 u1 .

(15.139)

(c) Show that there is no frequency shift to first order in ǫ.

Solution : At the lowest (first) level of the hierarchy, the solution is

u0 = A(T1, T2) cos
(
T0 + φ(T1, T2)

)
. (15.140)

At the second level, then,

∂2u1
∂T 2

0

+ u1 = 2
∂A

∂T1
sin(T0 + φ) + 2A

∂φ

∂T1
cos(T0 + φ)−A2 cos2(T0 + φ) . (15.141)

We eliminate the resonant forcing terms on the RHS by demanding

∂A

∂T1
= 0 and

∂φ

∂T1
= 0 . (15.142)

Thus, we must have A = A(T2) and φ = φ(T2). To O(ǫ), then, φ is a constant, which means there is no
frequency shift at this level of the hierarchy.

(d) Find u0(s) and u1(s).

Solution :The equation for u1 is that of a non-resonantly forced harmonic oscillator. The solution is
easily found to be

u1 = −1
2A

2 + 1
6A

2 cos(2T0 + 2φ) . (15.143)
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We now insert this into the RHS of the third equation in the hierarchy:

∂2u2
∂T 2

0

+ u2 = −2
∂2u0

∂T0 ∂T2
− 2u0 u1 (15.144)

= 2
∂A

∂T2
sin(T0 + φ) + 2A

∂φ

∂T2
cos(T0 + φ)− 2A cos(T0 + φ)

{

− 1
2A

2 + 1
6A

2 cos(2T0 + 2φ)
}

= 2
∂A

∂T2
sin(T0 + φ) +

(

2A
∂φ

∂T2
+ 5

6A
3
)

cos(T0 + φ)− 1
6A

3 cos(3T0 + 3φ) .

Setting the coefficients of the resonant terms on the RHS to zero yields

∂A

∂T2
= 0 ⇒ A = A0

2A
∂φ

∂T2
+ 5

6A
3 = 0 ⇒ φ = − 5

12 A
2
0 T2 .

(15.145)

Therefore,

u(s) =

u0(s)
︷ ︸︸ ︷

A0 cos
(
s− 5

12 ǫ
2A2

0 s
)
+

ǫ u1(s)
︷ ︸︸ ︷
1
6 ǫA

2
0 cos

(
2s− 5

6 ǫ
2A2

0 s
)
− 1

2 ǫA
2
0 +O

(
ǫ2
)

(15.146)

15.7 Appendix II : MSA and Poincaré-Lindstedt Methods

15.7.1 Problem using multiple time scale analysis

Consider the central force law F (r) = −k rβ2−3.

(a) Show that a stable circular orbit exists at radius r0 = (ℓ2/µk)1/β
2
.

Solution : For a circular orbit, the effective radial force must vanish:

Feff(r) =
ℓ2

µr3
+ F (r) =

ℓ2

µr3
− k

r3−β2 = 0 . (15.147)

Solving for r = r0, we have r0 = (ℓ2/µk)1/β
2
. The second derivative of Ueff(r) at this point is

U ′′
eff(r0) = −F ′

eff(r0) =
3ℓ2

µr40
+ (β2 − 3)

k

r4−β
2

0

=
β2ℓ2

µr40
, (15.148)

which is manifestly positive. Thus, the circular orbit at r = r0 is stable.

(b) Show that the geometric equation for the shape of the orbit may be written

d2s

dφ2
+ s = K(s) (15.149)



15.7. APPENDIX II : MSA AND POINCARÉ-LINDSTEDT METHODS 31

where s = 1/r, and

K(s) = s0

(
s

s0

)1−β2

, (15.150)

with s0 = 1/r0.

Solution : We have previously derived (e.g. in the notes) the equation

d2s

dφ2
+ s = − µ

ℓ2s2
F (s−1) . (15.151)

From the given F (r), we then have

d2s

dφ2
+ s =

µk

ℓ2
s1−β

2 ≡ K(s) , (15.152)

where s0 ≡ (µk/ℓ2)1/β
2
= 1/r0, and where

K(s) = s0

(
s

s0

)1−β2

. (15.153)

(c) Writing s ≡ (1 + u) s0, show that u satisfies

1

β2
d2u

dφ2
+ u = a1 u

2 + a2 u
3 + . . . . (15.154)

Find a1 and a2.

Solution : Writing s ≡ s0 (1 + u), we have

d2u

dφ2
+ 1 + u = (1 + u)1−β

2

= 1 + (1− β2)u+ 1
2(−β

2)(1− β2)u2

+ 1
6(−1− β2)(−β2)(1 − β2)u3 + . . . . (15.155)

Thus,
1

β2
d2u

dφ2
+ u = a1 u

2 + a2 u
3 + . . . , (15.156)

where

a1 = −1
2(1− β2) , a2 =

1
6(1− β4) . (15.157)

(d) Now let us associate a power of ε with each power of the deviation u and write

1

β2
d2u

dφ2
+ u = ε a1 u

2 + ε2 a2 u
3 + . . . , (15.158)
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Solve this equation using the method of multiple scale analysis (MSA). You will have to go to second
order in the multiple scale expansion, writing

X ≡ βφ , Y ≡ ε βφ , Z ≡ ε2 βφ (15.159)

and hence
1

β

d

dφ
=

∂

∂X
+ ε

∂

∂Y
+ ε2

∂

∂Z
+ . . . . (15.160)

Further writing

u = u0 + ε u1 + ε2 u2 + . . . , (15.161)

derive the equations for the multiple scale analysis, up to second order in ε.

Solution : We now associate one power of ε with each additional power of u beyond order u1. In this
way, a uniform expansion in terms of ε will turn out to be an expansion in powers of the amplitude of
the oscillations. We’ll see how this works below. We then have

1

β2
d2u

dφ2
+ u = a1 ε u

2 + a2 ε
2 u3 + . . . , (15.162)

with ε = 1. We now perform a multiple scale analysis, writing

X ≡ βφ , Y ≡ ε βφ , Z ≡ ε2 βφ . (15.163)

This entails
1

β

d

dφ
=

∂

∂X
+ ε

∂

∂Y
+ ε2

∂

∂Z
+ . . . . (15.164)

We also expand u in powers of ε, as

u = u0 + ε u1 + ε2 u2 + . . . . (15.165)

Thus, we obtain

(
∂X + ε ∂Y + ε2 ∂Z + . . .

)2
(u0 + εu1 + ε2u2 + . . . ) + (u0 + εu1 + ε2u2 + . . . )

= ε a1 (u0 + εu1 + ε2u2 + . . . )2 + ε2 a2 (u0 + εu1 + ε2u2 + . . . )3 + . . . .
(15.166)

We now extract a hierarchy of equations, order by order in powers of ε.

We find, out to order ε2,

O(ε0) :
∂2u0
∂X2

+ u0 = 0

O(ε1) :
∂2u1
∂X2

+ u1 = −2
∂2u0
∂Y ∂X

+ a1 u
2
0

O(ε2) :
∂2u2
∂X2

+ u2 = −2
∂2u0
∂Z ∂X

− ∂2u0
∂Y 2

− 2
∂2u1
∂Z ∂X

+ 2a1 u0 u1 + a2 u
3
0 .

(15.167)
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(e) Show that there is no shift of the angular period ∆φ = 2π/β if one works only to leading order in ε.

Solution : The O(ε0) equation in the hierarchy is solved by writing

u0 = A cos(X + ψ) , (15.168)

where
A = A(Y,Z) , ψ = ψ(Y,Z) . (15.169)

We define θ ≡ X + ψ(Y,Z), so we may write u0 = A cos θ. At the next order, we obtain

∂2u1
∂θ2

+ u1 = 2
∂A

∂Y
sin θ + 2A

∂ψ

∂Y
cos θ + a1A

2 cos θ

= 2
∂A

∂Y
sin θ + 2A

∂ψ

∂Y
cos θ + 1

2a1A
2 + 1

2a1A
2 cos 2θ .

(15.170)

In order that there be no resonantly forcing terms on the RHS of eqn. 15.170, we demand

∂A

∂Y
= 0 ,

∂ψ

∂Y
= 0 ⇒ A = A(Z) , ψ = ψ(Z) . (15.171)

The solution for u1 is then

u1(θ) =
1
2a1A

2 − 1
6a1A

2 cos 2θ . (15.172)

Were we to stop at this order, we could ignore Z = ε2βφ entirely, since it is of order ε2, and the solution
would be

u(φ) = A0 cos(βφ+ ψ0) +
1
2εa1A

2
0 − 1

6εa1A
2
0 cos(2βφ+ 2ψ0) . (15.173)

The angular period is still ∆φ = 2π/β, and, starting from a small amplitude solution at order ε0 we find
that to order ε we must add a constant shift proportional to A2

0, as well as a second harmonic term, also
proportional to A2

0.

(f) Carrying out the MSA to second order in ε, show that the shift of the angular period vanishes only
if β2 = 1 or β2 = 4.

Solution : Carrying out the MSA to the next order, O(ε2), we obtain

∂2u2
∂θ2

+ u2 = 2
∂A

∂Z
sin θ + 2A

∂ψ

∂Z
cos θ + 2a1A cos θ

(
1
2a1A

2 − 1
6a1A

2 cos 2θ
)
+ a2A

3 cos3θ

= 2
∂A

∂Z
sin θ + 2A

∂ψ

∂Z
cos θ +

(
5
6a

2
1 +

3
4a2
)
A3 cos θ +

(
− 1

6a
2
1 +

1
4a2
)
A3 cos 3θ .

(15.174)

Now in order to make the resonant forcing terms on the RHS vanish, we must choose

∂A

∂Z
= 0 (15.175)

as well as

∂ψ

∂Z
= −

(
5
12a

2
1 +

3
8a2
)
A2

= − 1
24(β

2 − 4)(β2 − 1) .
(15.176)
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The solutions to these equations are trivial:

A(Z) = A0 , ψ(Z) = ψ0 − 1
24(β

2 − 1)(β2 − 4)A2
0 Z . (15.177)

With the resonant forcing terms eliminated, we may write

∂2u2
∂θ2

+ u2 =
(
− 1

6a
2
1 +

1
4a2
)
A3 cos 3θ , (15.178)

with solution

u2 =
1
96(2a

2
1 − 3a2)A

3 cos 3θ

= 1
96 β

2 (β2 − 1)A2
0 cos

(
3X + 3ψ(Z)

)
.

(15.179)

The full solution to second order in this analysis is then

u(φ) = A0 cos(β
′φ+ ψ0) +

1
2εa1A

2
0 − 1

6εa1A
2
0 cos(2β

′φ+ 2ψ0)

+ 1
96ε

2 (2a21 − 3a2)A
3
0 cos(3β′φ+ 3ψ0) .

(15.180)

with
β′ = β ·

{

1− 1
24 ε

2 (β2 − 1)(β2 − 4)A2
0

}

. (15.181)

The angular period shifts:

∆φ =
2π

β′
=

2π

β
·
{

1 + 1
24 ε

2 (β2 − 1)(β2 − 4)A2
0

}

+O(ε3) . (15.182)

Note that there is no shift in the period, for any amplitude, if β2 = 1 (i.e. Kepler potential) or β2 = 4 (i.e.
harmonic oscillator).

15.7.2 Solution using Poincaré-Lindstedt method

Recall that geometric equation for the shape of the (relative coordinate) orbit for the two body central
force problem is

d2s

dφ2
+ s = K(s)

K(s) = s0

(
s

s0

)1−β2 (15.183)

where s = 1/r, s0 = (l2/µk)1/β
2

is the inverse radius of the stable circular orbit, and f(r) = −krβ2−3 is
the central force. Expanding about the stable circular orbit, one has

d2y

dφ2
+ β2 y = 1

2K
′′(s0) y

2 + 1
6K

′′′(s0) y
3 + . . . , (15.184)



15.7. APPENDIX II : MSA AND POINCARÉ-LINDSTEDT METHODS 35

where s = s0(1 + y), with

K ′(s) = (1− β2)

(
s0
s

)β2

K ′′(s) = −β2 (1− β2)

(
s0
s

)1+β2

K ′′′(s) = β2 (1− β2) (1 + β2)

(
s0
s

)2+β2

.

(15.185)

Thus,
d2y

dφ2
+ β2 y = ǫ a1 y

2 + ǫ2 a2 y
3 , (15.186)

with ǫ = 1 and

a1 = −1
2 β

2 (1− β2)

a2 = +1
6 β

2 (1− β2) (1 + β2) .
(15.187)

Note that we assign one factor of ǫ for each order of nonlinearity beyond order y1. Note also that while

y here corresponds to u in eqn. 15.156, the constants a1,2 here are a factor of β2 larger than those defined
in eqn. 15.157.

We now apply the Poincaré-Lindstedt method, by defining θ = Ωφ, with

Ω2 = Ω2
0 + ǫΩ2

1 + ǫ2Ω2
2 + . . . (15.188)

and

y(θ) = y0(θ) + ǫ y1(θ) + ǫ2 y2(θ) + . . . . (15.189)

We therefore have
d

dφ
= Ω

d

dθ
(15.190)

and

(
Ω2
0 + ǫΩ2

1+ǫ
2 Ω2

2 + . . .
)(
y′′0 + ǫ y′′1 + ǫ2 y′′2 + . . .

)
+ β2

(
y0 + ǫ y1 + ǫ2 y2 + . . .

)
(15.191)

= ǫ a1
(
y0 + ǫ y1 + ǫ2 y2 + . . .

)2
+ ǫ2 a2

(
y0 + ǫ y1 + ǫ2 y2 + . . .

)3
.

We now extract equations at successive orders of ǫ. The first three in the hierarchy are

Ω2
0 y

′′
0 + β2 y0 = 0

Ω2
1 y

′′
0 +Ω2

0 y
′′
1 + β2 y1 = a1y

2
0

Ω2
2 y

′′
0 +Ω2

1 y
′′
1 +Ω2

0 y
′′
2 + β2 y2 = 2 a1 y0 y1 + a2 y

3
0 ,

(15.192)

where prime denotes differentiation with respect to θ.
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To order ǫ0, the solution is Ω2
0 = β2 and

y0(θ) = A cos(θ + δ) , (15.193)

where A and δ are constants.

At order ǫ1, we have

β2
(
y′′1 + y1

)
= −Ω2

1 y
′′
0 + a1 y

2
0

= Ω2
1A cos(θ + δ) + a1A

2 cos2(θ + δ)

= Ω2
1A cos(θ + δ) + 1

2 a1A
2 + 1

2 a1A
2 cos(2θ + 2δ) .

(15.194)

The secular forcing terms on the RHS are eliminated by the choice Ω2
1 = 0. The solution is then

y1(θ) =
a1A

2

2β2

{

1− 1
3 cos(2θ + 2δ)

}

. (15.195)

At order ǫ2, then, we have

β2
(
y′′2 + y2

)
= −Ω2

2 y
′′
0 − Ω2

1 y
′′
1 + 2 a1 y1 y1 + a2 y

3
0

= Ω2
2A cos(θ + δ) +

a21A
3

β2

{

1− 1
3 cos(2θ + 2δ)

}

cos(θ + δ) + a2A
3 cos2(θ + δ)

=

{

Ω2
2 +

5 a21A
3

6β2
+ 3

4 a2A
3

}

A cos(θ + δ) +

{

− a21A
3

6β2
+ 1

4 a2A
3

}

cos(3θ + 3δ) .

(15.196)

The resonant forcing terms on the RHS are eliminated by the choice

Ω2
2 = −

(
5
6 β

−2 a21 +
3
4 a2

)

A3

= − 1
24 β

2 (1− β2)
[

5 (1− β2) + 3 (1 + β2)
]

= − 1
12 β

2 (1− β2) (4 − β2) .

(15.197)

Thus, the frequency shift to this order vanishes whenever β2 = 0, β2 = 1, or β2 = 4. Recall the force

law is F (r) = −C rβ2−3, so we see that there is no shift – hence no precession – for inverse cube, inverse
square, or linear forces.

15.8 Appendix III : Modified van der Pol Oscillator

Consider the nonlinear oscillator
ẍ+ ǫ (x4 − 1) ẋ+ x = 0 . (15.198)

Analyze this using the same approach we apply to the van der Pol oscillator.

(a) Sketch the vector field ϕ̇ for this problem. It may prove convenient to first identify the nullclines,
which are the curves along which ẋ = 0 or v̇ = 0 (with v = ẋ). Argue that a limit cycle exists.
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Figure 15.16: Phase flow and nullclines for the oscillator ẍ+ ǫ (x4 − 1) ẋ + x = 0. Red nullclines: v̇ = 0;
blue nullcline: ẋ = 0.

Solution : There is a single fixed point, at the origin (0, 0), for which the linearized dynamics obeys

d

dt

(
x
v

)

=

(
0 1
−1 ǫ

)(
x
v

)

+O(x4 v) . (15.199)

One finds T = ǫ and D = 1 for the trace and determinant, respectively. The origin is an unstable spiral
for 0 < ǫ < 2 and an unstable node for ǫ > 2.

The nullclines are sketched in Fig. 15.16. One has

ẋ = 0 ↔ v = 0 , v̇ = 0 ↔ v =
1

ǫ

x

1− x4
. (15.200)

The flow at large distances from the origin winds once around the origin and spirals in. The flow close
to the origin spirals out (ǫ < 2) or flows radially out (ǫ > 2). Ultimately the flow must collapse to a limit
cycle, as can be seen in the accompanying figures.

(b) In the limit 0 < ε ≪ 1, use multiple time scale analysis to obtain a solution which reveals the
approach to the limit cycle.

Solution : We seek to solve the equation

ẍ+ x = ǫ h(x, ẋ) , (15.201)

with

h(x, ẋ) = (1− x4) ẋ . (15.202)
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Employing the multiple time scale analysis to lowest nontrivial order, we write T0 ≡ t, T1 ≡ ǫt,

x = x0 + ǫx1 + . . . (15.203)

and identify terms order by order in ǫ. At O(ǫ0), this yields

∂2x0
∂T 2

0

+ x0 = 0 ⇒ x0 = A cos(T0 + φ) , (15.204)

where A = A(T1) and φ = φ(T1). At O(ǫ1), we have

∂2x1
∂T 2

0

+ x1 = −2
∂2x0

∂T0 ∂T1
+ h

(

x0 ,
∂x0
∂T0

)

= 2
∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + h

(
A cos θ,−A sin θ

)
(15.205)

with θ = T0 + φ(T1) as usual. We also have

h(A cos θ,−A sin θ
)
= A5 sin θ cos θ −A sin θ

=
(
1
8A

5 −A
)
sin θ + 3

16 A
5 sin 3θ + 1

16 A
5 sin 5θ .

(15.206)

To eliminate the resonant terms in eqn. 15.205, we must choose

∂A

∂T1
= 1

2A− 1
16A

5 ,
∂φ

∂T1
= 0 . (15.207)

The A equation is similar to the logistic equation. Clearly A = 0 is an unstable fixed point, and
A = 81/4 ≈ 1.681793 is a stable fixed point. Thus, the amplitude of the oscillations will asymptotically
approach A∗ = 81/4. (Recall the asymptotic amplitude in the van der Pol case was A∗ = 2.)

To integrate the A equation, substitute y = 1√
8
A2, and obtain

dT1 =
dy

y (1− y2)
= 1

2d log
y2

1− y2
⇒ y2(T1) =

1

1 + (y−2
0 − 1) exp(−2T1)

. (15.208)

We then have

A(T1) = 81/4
√

y(T1) =

(

8

1 + (8A−4
0 − 1) exp(−2T1)

)1/4

. (15.209)

(c) In the limit ǫ ≫ 1, find the period of relaxation oscillations, using Liénard plane analysis. Sketch the
orbit of the relaxation oscillation in the Liénard plane.

Solution : Our nonlinear oscillator may be written in the form

ẍ+ ǫ
dF (x)

dt
+ x = 0 , (15.210)

with
F (x) = 1

5x
5 − x . (15.211)
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Figure 15.17: Vector field and phase curves for the oscillator ẍ + ǫ (x4 − 1) ẋ + x = 0, with ǫ = 1 and
starting from (x0, v0) = (1, 1).

Figure 15.18: Solution to the oscillator equation ẍ+ ǫ (x4 − 1) ẋ+ x = 0 with ǫ = 1 and initial conditions
(x0, v0) = (1, 3). x(t) is shown in red and v(t) in blue. Note that x(t) resembles a relaxation oscillation
for this moderate value of ǫ.
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Note Ḟ = (x4 − 1) ẋ. Now we define the Liénard variable

y ≡ ẋ

ǫ
+ F (x) , (15.212)

and in terms of (x, y) we have

ẋ = ǫ
[

y − F (x)
]

, ẏ = −x
ǫ

. (15.213)

As we have seen in the notes, for large ǫ the motion in the (x, y) plane is easily analyzed. x(t) must move
quickly over to the curve y = F (x), at which point the motion slows down and slowly creeps along this
curve until it can no longer do so, at which point another big fast jump occurs. The jumps take place
between the local extrema of F (x), which occur for F ′(a) = a4 − 1 = 0, i.e. at a = ±1, and points on the
curve with the same values of F (a). Thus, we solve F (−1) = 4

5 = 1
5b

5 − b and find the desired root at
b∗ ≈ 1.650629. The period of the relaxation oscillations, for large ǫ, is

T ≈ 2ǫ

b∫

a

dx
F ′(x)

x
= ǫ ·

[
1
2x

4 − 2 log x
]b

a
≈ 2.20935 ǫ . (15.214)

(d) Numerically integrate the equation (15.198) starting from several different initial conditions.

Solution : The accompanying Mathematica plots show x(t) and v(t) for this system for two representa-
tive values of ǫ.
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Figure 15.19: Vector field and phase curves for the oscillator ẍ+ ǫ (x4 − 1) ẋ + x = 0, with ǫ = 0.25 and
starting from (x0, v0) = (1, 1). As ǫ→ 0, the limit cycle is a circle of radius A∗ = 81/4 ≈ 1.682.

Figure 15.20: Solution to the oscillator equation ẍ+ǫ (x4−1) ẋ+x = 0 with ǫ = 0.25 and initial conditions
(x0, v0) = (1, 3). x(t) is shown in red and v(t) in blue. As ǫ → 0, the amplitude of the oscillations tends
to A∗ = 81/4 ≈ 1.682.
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