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Chapter 8

Noninertial Reference Frames

8.1 Accelerated Coordinate Systems

A reference frame which is fixed with respect to a rotating rigid body is not inertial. The parade example
of this is an observer fixed on the surface of the earth. Due to the rotation of the earth, such an observer
is in a noninertial frame, and there are corresponding corrections to Newton’s laws of motion which
must be accounted for in order to correctly describe mechanical motion in the observer’s frame. As is
well known, these corrections involve fictitious centrifugal and Coriolis forces.

Consider an inertial frame with a fixed set of coordinate axes êµ , where µ runs from 1 to d, the dimension
of space, and a noninertial frame with axes ê′µ. Any vectorA may be written in either basis:

A =
∑

µ

Aµ êµ =
∑

µ

A′
µ ê

′
µ , (8.1)

whereAµ = A · êµ and A′
µ = A · ê′µ are projections onto the different coordinate axes. We may now write

(
dA

dt

)

inertial

=
∑

µ

dAµ

dt
êµ

=
∑

i

dA′
µ

dt
ê
′
µ +

∑

µ

A′
µ

dê′µ
dt

.

(8.2)

The first term on the RHS is (dA/dt)body , the time derivative of A along body-fixed axes, i.e. as seen by

an observer rotating with the body. But what is dê′i/dt? Well, we can always expand it in the {ê′i} basis:

dê′µ =
∑

ν

dΩµν ê
′
ν ⇐⇒ dΩµν ≡ dê′µ · ê′ν . (8.3)

Note that dΩµν = −dΩνµ is antisymmetric, because

0 = d
(
ê
′
µ · ê′ν

)
= dΩνµ + dΩµν , (8.4)

1
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Figure 8.1: Reference frames related by both translation and rotation. Note êµ = ê
0
µ.

because ê
′
µ · ê′ν = δµν is a constant. Now we may define dΩ12 ≡ dΩ3, et cyc., so that

dΩµν =
∑

σ

ǫµνσ dΩσ , ωσ ≡ dΩσ

dt
, (8.5)

which yields
dê′µ
dt

= ω × ê
′
µ . (8.6)

Finally, we obtain the important result

(
dA

dt

)

inertial

=

(
dA

dt

)

body

+ ω ×A , (8.7)

which is valid for any vectorA.

Applying this result to the position vector r, we have
(
dr

dt

)

inertial

=

(
dr

dt

)

body

+ ω × r . (8.8)

Applying it twice,
(
d2r

dt2

)

inertial

=

(
d

dt

∣∣∣∣
body

+ω ×
)(

d

dt

∣∣∣∣
body

+ ω ×
)
r

=

(
d2r

dt2

)

body

+
dω

dt
× r + 2ω ×

(
dr

dt

)

body

+ ω × (ω × r) .

(8.9)

Note that dω/dt appears with no “inertial” or “body” label. This is because, upon invoking eq. 8.7,
(
dω

dt

)

inertial

=

(
dω

dt

)

body

+ω × ω , (8.10)

and since ω × ω = 0, inertial and body-fixed observers will agree on the value of ω̇inertial = ω̇body ≡ ω̇.



8.1. ACCELERATED COORDINATE SYSTEMS 3

8.1.1 Translations

Suppose that frame K moves with respect to an inertial frame K0, such that the origin of K lies at
R(t). Suppose further that frame K ′ rotates with respect to K , but shares the same origin (see fig. 8.1).
Consider the motion of an object lying at position ρ relative to the origin of K0, and r relative to the
origin of K/K ′. Thus,

ρ = R+ r , (8.11)

and
(
dρ

dt

)

inertial

=

(
dR

dt

)

inertial

+

(
dr

dt

)

body

+ ω × r
(
d2ρ

dt2

)

inertial

=

(
d2R

dt2

)

inertial

+

(
d2r

dt2

)

body

+
dω

dt
× r + 2ω ×

(
dr

dt

)

body

+ ω × (ω × r) .

(8.12)

Here, ω is the angular velocity in the frame K or K ′.

8.1.2 Motion on the surface of the earth

The earth both rotates about its axis and orbits the Sun. If we add the infinitesimal effects of the two
rotations,

dr1 = ω1 × r dt
dr2 = ω2 × (r + dr1) dt

dr = dr1 + dr2 = (ω1 + ω2) dt× r +O
(
(dt)2

)
.

(8.13)

Thus, infinitesimal rotations add. Dividing by dt, this means that

ω =
∑

i

ωi , (8.14)

where the sum is over all the rotations. For the earth, ω = ωrot + ωorb.

• The rotation about earth’s axis, ωrot has magnitude ωrot = 2π/(1 day) = 7.29×10−5 s−1. The radius
of the earth is Re = 6.37 × 103 km.

• The orbital rotation about the Sun, ωorb has magnitude ωorb = 2π/(1 yr) = 1.99 × 10−7 s−1. The
radius of the earth’s orbit is ae = 1.50 × 108 km.

Thus, ωrot/ωorb = Torb/Trot = 365.25, which is of course the number of days (i.e. rotational periods) in a
year (i.e. orbital period). There is also a very slow precession of the earth’s axis of rotation, the period of
which is about 25,000 years, which we will ignore. Note ω̇ = 0 for the earth. Thus, applying Newton’s
second law and then invoking eq. 8.12, we arrive at

m

(
d2r

dt2

)

earth

= F (tot) −m

(
d2R

dt2

)

Sun

− 2mω ×
(
dr

dt

)

earth

− mω × (ω × r) , (8.15)
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Figure 8.2: The locally orthonormal triad {r̂, θ̂, φ̂}.

where ω = ωrot + ωorb, and where R̈Sun is the acceleration of the center of the earth around the Sun,
assuming the Sun-fixed frame to be inertial. The force F (tot) is the total force on the object, and arises
from three parts: (i) gravitational pull of the Sun, (ii) gravitational pull of the earth, and (iii) other earthly
forces, such as springs, rods, surfaces, electric fields, etc.

On the earth’s surface, the ratio of the Sun’s gravity to the earth’s is

F⊙

Fe

=
GM⊙m

a2e

/
GMem

R2
e

=
M⊙

Me

(
Re

ae

)2
≈ 6.02 × 10−4 . (8.16)

In fact, it is clear that the Sun’s field precisely cancels with the term m R̈Sun at the earth’s center, leaving
only gradient contributions of even lower order, i.e. multiplied by another factor ofRe/ae ≈ 4.25×10−5.
Thus, to an excellent approximation, we may neglect the Sun entirely and write

d2r

dt2
=
F ′

m
+ g − 2ω × dr

dt
− ω × (ω × r) . (8.17)

Note that we’ve dropped the ‘earth’ label here and henceforth. We define g = −GMe r̂/r
2, the accelera-

tion due to gravity; F ′ is the sum of all earthly forces other than the earth’s gravity. The last two terms
on the RHS are corrections to mr̈ = F due to the noninertial frame of the earth, and are recognized as
the Coriolis and centrifugal acceleration terms, respectively.
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8.2 Spherical Polar Coordinates

The locally orthonormal triad {r̂, θ̂, φ̂} varies with position. In terms of the body-fixed triad {x̂, ŷ, ẑ},
we have

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ

φ̂ = − sinφ x̂+ cosφ ŷ

(8.18)

where θ = π
2
− λ is the colatitude (i.e. λ ∈

[
− π

2
,+π

2

]
is the latitude). Inverting the relation between the

triads {r̂, θ̂, φ̂} and {x̂, ŷ, ẑ}, we obtain

x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sinφ φ̂

ŷ = sin θ sinφ r̂ + cos θ sinφ θ̂ + cosφ φ̂

ẑ = cos θ r̂ − sin θ θ̂ .

(8.19)

The differentials of these unit vectors are

dr̂ = θ̂ dθ + sin θ φ̂ dφ

dθ̂ = −r̂ dθ + cos θ φ̂ dφ

dφ̂ = − sin θ r̂ dφ− cos θ θ̂ dφ .

(8.20)

Thus,

ṙ =
d

dt

(
r r̂
)
= ṙ r̂ + r ˙̂r

= ṙ r̂ + rθ̇ θ̂ + r sin θ φ̇ φ̂ .

(8.21)

If we differentiate a second time, we find, after some tedious accounting,

r̈ =
(
r̈ − r θ̇2 − r sin2θ φ̇2

)
r̂ +

(
2 ṙ θ̇ + r θ̈ − r sin θ cos θ φ̇2

)
θ̂

+
(
2 ṙ φ̇ sin θ + 2 r θ̇ φ̇ cos θ + r sin θ φ̈

)
φ̂ .

(8.22)

8.3 Centrifugal Force

One major distinction between the Coriolis and centrifugal forces is that the Coriolis force acts only on
moving particles, whereas the centrifugal force is present even when ṙ = 0. Thus, the equation for
stationary equilibrium on the earth’s surface is

mg + F ′ −mω × (ω × r) = 0 , (8.23)

involves the centrifugal term. We can write this as F ′ +mg̃ = 0, where

g̃ = −GMe r̂

r2
− ω × (ω × r)

= −
(
g0 − ω2Re sin

2 θ
)
r̂ + ω2 Re sin θ cos θ θ̂ ,

(8.24)
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where g0 = GMe/R
2
e = 980 cm/s2. Thus, on the equator, where θ = π

2
, we have g̃ = −

(
g0−ω2Re

)
r̂, with

ω2Re ≈ 3.39 cm/s2, a small but significant correction. You therefore weigh less on the equator. Note also
that g̃ has a component along θ̂. This means that a plumb bob suspended from a general point above the
earth’s surface won’t point exactly toward the earth’s center. Moreover, if the earth were replaced by an
equivalent mass of fluid, the fluid would rearrange itself so as to make its surface locally perpendicular
to g̃. Indeed, the earth (and Sun) do exhibit quadrupolar distortions in their mass distributions – both
are oblate spheroids. In fact, the observed difference g̃(θ = 0) − g̃(θ = π

2
) ≈ 5.2 cm/s2, which is 53%

greater than the naı̈vely expected value of 3.39 cm/s2. The earth’s oblateness enhances the effect.

8.3.1 Rotating cylinder of fluid

Consider a cylinder filled with a liquid, rotating with angular frequency ω about its symmetry axis ẑ.
In steady state, the fluid is stationary in the rotating frame, and we may write, for any given element of
fluid

0 = f ′ + g − ω2 ẑ × (ẑ × r) , (8.25)

where f ′ is the force per unit mass on the fluid element. Now consider a fluid element on the surface.
Since there is no static friction to the fluid, any component of f ′ parallel to the fluid’s surface will cause
the fluid to flow in that direction. This contradicts the steady state assumption. Therefore, we must
have f ′ = f ′ n̂, where n̂ is the local unit normal to the fluid surface. We write the equation for the fluid’s
surface as z = z(ρ). Thus, with r = ρ ρ̂+ z(ρ) ẑ, Newton’s second law yields

f ′ n̂ = g ẑ − ω2 ρ ρ̂ , (8.26)

where g = −g ẑ is assumed. From this, we conclude that the unit normal to the fluid surface and the
force per unit mass are given by

n̂(ρ) =
g ẑ − ω2 ρ ρ̂√
g2 + ω4 ρ2

, f ′(ρ) =
√
g2 + ω4ρ2 . (8.27)

Figure 8.3: A rotating cylinder of fluid.
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Now suppose r(ρ, φ) = ρ ρ̂+ z(ρ) ẑ is a point on the surface of the fluid. We have that

dr = ρ̂ dρ+ z′(ρ) ẑ dρ+ ρ φ̂ dφ , (8.28)

where z′ = dz/dρ, and where we have used dρ̂ = φ̂ dφ, which follows from the first of eqn. 8.20 after
setting θ = π

2
. Now dr must lie along the surface, therefore n̂ · dr = 0, which says

g
dz

dρ
= ω2 ρ . (8.29)

Integrating this equation, we obtain the shape of the surface:

z(ρ) = z0 +
ω2ρ2

2g
. (8.30)

8.4 The Coriolis Force

8.4.1 Projectile motion

The Coriolis force is given by FCor = −2mω × ṙ. According to (8.17), the acceleration of a free particle
(F ′ = 0) isn’t along g̃ – an orthogonal component is generated by the Coriolis force. To actually solve
the coupled equations of motion is difficult because the unit vectors {r̂, θ̂, φ̂} change with position, and
hence with time. The following standard problem highlights some of the effects of the Coriolis and
centrifugal forces.

PROBLEM: A cannonball is dropped from the top of a tower of height h located at a northerly latitude of
λ. Assuming the cannonball is initially at rest with respect to the tower, and neglecting air resistance,
calculate its deflection (magnitude and direction) due to (a) centrifugal and (b) Coriolis forces by the time
it hits the ground. Evaluate for the case h = 100 m, λ = 45◦. The radius of the earth is Re = 6.4× 106 m.

SOLUTION: The equation of motion for a particle near the earth’s surface is

r̈ = −2ω × ṙ − g0 r̂ − ω × (ω × r) , (8.31)

where ω = ω ẑ, with ω = 2π/(24 hrs) = 7.3 × 10−5 rad/s. Here, g0 = GMe/R
2
e = 980 cm/s2. We use a

locally orthonormal coordinate system {r̂, θ̂, φ̂} and write

r = x θ̂ + y φ̂+ (Re + z) r̂ , (8.32)

whereRe = 6.4×106 m is the radius of the earth. Expressing ẑ in terms of our chosen orthonormal triad,

ẑ = cos θ r̂ − sin θ θ̂ , (8.33)

where θ = π
2
− λ is the polar angle, or ‘colatitude’. Since the height of the tower and the deflections are

all very small on the scale of Re, we may regard the orthonormal triad as fixed and time-independent,
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although, in general, these unit vectors change as a function of r. Thus, we have ṙ ≃ ẋ θ̂+ ẏ φ̂+ ż r̂, and
we find

ẑ × ṙ = (cos θ r̂ − sin θ θ̂)× (ẋ θ̂ + ẏ φ̂+ ż r̂)

= −ẏ cos θ θ̂ + (ẋ cos θ + ż sin θ) φ̂− ẏ sin θ r̂
(8.34)

and

ω × (ω × r) = ω2(cos θ r̂ − sin θ θ̂)×
(
(cos θ r̂ − sin θ θ̂)× (Re r̂+

negligible
︷ ︸︸ ︷
x θ̂ + y φ̂+ z r̂)

)

≈ ω2(cos θ r̂ − sin θ θ̂)×Re sin θ φ̂

= −ω2Re sin θ cos θ θ̂ − ω2Re sin
2θ r̂ .

(8.35)

Note that the distances x, y, and z are all extremely small in magnitude compared with Re.

The equations of motion, written in components, are then

v̇x = g1 sin θ cos θ + 2ω cos θ vy

v̇y = −2ω cos θ vx − 2ω sin θ vz

v̇z = −g0 + g1 sin
2θ + 2ω sin θ vy ,

(8.36)

with g1 ≡ ω2Re . While these (inhomogeneous) equations are linear, they also are coupled, so an exact
analytical solution is not trivial to obtain (but see below). Fortunately, the deflections are small, so we
can solve this perturbatively. To do so, let us write v(t) as a power series in t. For each component, we
write

vα(t) =

∞∑

n=0

vα,n t
n , (8.37)

with vα,0 = vα(t = 0) ≡ v0α . Eqns. 8.36 then may be written as the coupled hierarchy

nvx,n = g1 sin θ cos θ δn,1 + 2ω cos θ vy,n−1

nvy,n = −2ω cos θ vx,n−1 − 2ω sin θ vz,n−1

nvz,n = −(g0 − g1 sin
2θ) δn,1 + 2ω sin θ vy,n−1 .

(8.38)

Integrating v(t), we obtain the displacements,

xα(t) = x0α +
∞∑

n=0

vα,n
n+ 1

tn+1 . (8.39)

Now let’s roll up our sleeves and solve for the coefficients vα,n for n = 0, 1, 2. This will give us the
displacements up to terms of order t3. For n = 0 we already have vα,0 = v0α . For n = 1, we use Eqns.
8.38 with n = 1 to obtain

vx,1 = 2ω cos θ v0y + g1 sin θ cos θ

vy,1 = −2ω cos θ v0x − 2ω sin θ v0z

vz,1 = 2ω sin θ v0y − g0 + g1 sin
2θ .

(8.40)
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Finally, at level n = 2, we have

vx,2 = ω cos θ vy,1 = −2ω2 cos θ (cos θ v0x + sin θ v0z)

vy,2 = −2ω cos θ vx,1 − 2ω sin θ vz,1 = −2ω2v0y + ω sin θ (g0 − g1)

vz,2 = ω sin θ vy,1 = −2ω2 sin θ (cos θ v0x + sin θ v0z) .

(8.41)

Thus, the displacements are given by

x(t) = x(0) + v0x t+
1
2

(
2ω cos θ v0y + g1 sin θ cos θ

)
t2 − 2

3
ω2 cos θ (cos θ v0x + sin θ v0z) t

3 +O(t4)

y(t) = y(0) + v0y t− ω (cos θ v0x + sin θ v0z) t
2 − 2

3
ω2v0y t

3 + 1
3
ω sin θ (g0 − g1) t

3 +O(t4)

z(t) = z(0) + v0z t+
1
2

(
2ω sin θ v0y − g0 + g1 sin

2θ
)
t2 − 2

3
ω2 sin θ (cos θ v0x + sin θ v0z) t

3 +O(t4) .

(8.42)

When dropped from rest, with x(0) = y(0) = 0 and z(0) = h0, we have

x(t) = 1
2
g1 sin θ cos θ t

2 +O(t4)

y(t) = 1
3
ω sin θ (g0 − g1) t

3 +O(t4)

z(t) = h0 − 1
2
(g0 − g1 sin

2θ) t2 +O(t4) .

(8.43)

Recall g1 = ω2Re, so if we neglect the rotation of the earth and set ω = 0, we have ω = g1 = 0, and
z(t) = h0 − 1

2
g0t

2 with x(t) = y(t) = 0. This is the familiar high school physics result. As we see, in

the noninertial reference frame of the rotating earth, there are deflections along θ̂ given by x(t), along
φ̂ given by y(t), and also a correction ∆z(t) = 1

2
g1 sin

2 θ t2 + O(t4) to the motion along r̂. To find the

deflection of an object dropped from a height h0, solve z(t∗) = 0 to obtain t∗ =
√

2h/(g0 − g1 sin
2θ) for

the drop time, and substitute. For h0 = 100m and λ = π
2

, find δx(t∗) = 17 cm south (centrifugal) and
δy(t∗) = 1.6 cm east (Coriolis). Note that the centrifugal term dominates the deflection in this example.
Why is the Coriolis deflection always to the east? The earth rotates eastward, and an object starting
from rest in the earth’s frame has initial angular velocity equal to that of the earth. To conserve angular
momentum, the object must speed up as it falls.

Exact solution for velocities

In fact, an exact solution to (8.36) is readily obtained, via the following analysis. The equations of motion
may be written v̇ = 2iωJ v + b, or



v̇x
v̇y
v̇x


 = 2i ω

J︷ ︸︸ ︷


0 −i cos θ 0
i cos θ 0 i sin θ

0 −i sin θ 0






vx
vy
vx


+

b︷ ︸︸ ︷


g1 sin θ cos θ
0

−g0 + g1 sin
2θ


 . (8.44)

Note that J † = J , i.e. J is a Hermitian matrix. The formal solution is

v(t) = e2iωJ t v(0) +

(
e2iωJ t − 1

2iω

)
J−1 b . (8.45)
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When working with matrices, it is convenient to work in an eigenbasis. The characteristic polynomial

for J is P (λ) = det (λ · 1 − J ) = λ (λ2 − 1), hence the eigenvalues are λ1 = 0, λ2 = +1, and λ3 = −1.
The corresponding eigenvectors are easily found to be

ψ1 =




sin θ
0

− cos θ


 , ψ2 =

1√
2



cos θ
i

sin θ


 , ψ3 =

1√
2



cos θ
−i
sin θ


 . (8.46)

Note that ψ†
a · ψa′ = δaa′ .

Expanding v and b in this eigenbasis, we have u̇a = 2iωλaua + ba , where ua = ψ∗
ia vi and ba = ψ∗

ia bi .
The solution is

ua(t) = ua(0) e
2iλ

a
ωt +

(
e2iλa

ωt − 1

2iλaω

)
ba . (8.47)

Since the eigenvectors of J are orthonormal, ua = ψ∗
ia vi entails vi = ψiaua , hence

vi(t) =
∑

j

(
∑

a

ψia e
2iλ

a
ωt ψ∗

ja

)
vj(0) +

∑

j

(
∑

a

ψia

(
e2iλa

ωt − 1

2iλaω

)
ψ∗
ja

)
bj . (8.48)

Doing the requisite matrix multiplications, and assuming v(0) = 0, we obtain


vx(t)

vy(t)

vz(t)


 =




t sin2θ + sin 2ωt
2ω

cos2θ sin2ωt
ω

cos θ −1
2
t sin 2θ + sin 2ωt

4ω
sin 2θ

− sin2ωt
ω

cos θ sin 2ωt
2ω

− sin2ωt
ω

sin θ

−1
2
t sin 2θ + sin 2ωt

4ω
sin 2θ sin2ωt

ω
sin θ t cos2θ + sin 2ωt

2ω
sin2θ







g1 sin θ cos θ
0

−g0 + g1 sin
2θ


 ,

(8.49)
which says

vx(t) =
(
sin 2ωt
2ωt

− 1
)
g0t sin θ cos θ +

sin 2ωt
2ωt

g1t sin θ cos θ

vy(t) =
sin2ωt
ωt

(g0 − g1) t sin θ

vz(t) = −
(
cos2θ + sin 2ωt

2ωt
sin2θ

)
g0t+

sin2ωt
2ωt

g1t sin
2θ .

(8.50)

One can check that by expanding in a power series in t we recover the results of the previous section.

8.4.2 Foucault’s pendulum

A pendulum swinging over one of the poles moves in a fixed inertial plane while the earth rotates
underneath. Relative to the earth, the plane of motion of the pendulum makes one revolution every
day. What happens at a general latitude? Assume the pendulum is located at colatitude θ and longitude
φ. Assuming the length scale of the pendulum is small compared to Re, we can regard the local triad
{θ̂, φ̂, r̂} as fixed. The situation is depicted in fig. 8.4. We write

r = x θ̂ + y φ̂+ z r̂ , (8.51)

with
x = ℓ sinψ cosα , y = ℓ sinψ sinα , z = ℓ (1− cosψ) . (8.52)



8.4. THE CORIOLIS FORCE 11

In our analysis we will ignore centrifugal effects, which are of higher order in ω, and we take g = −g r̂.
We also idealize the pendulum, and consider the suspension rod to be of negligible mass.

The total force on the mass m is due to gravity and tension:

F = mg + T

=
(
− T sinψ cosα, −T sinψ sinα, T cosψ −mg

)

=
(
− Tx/ℓ, −Ty/ℓ, T −Mg − Tz/ℓ

)
.

(8.53)

The Coriolis term is

FCor = −2mω × ṙ
= −2mω

(
cos θ r̂ − sin θ θ̂

)
×
(
ẋ θ̂ + ẏ φ̂+ ż r̂

)

= 2mω
(
ẏ cos θ, −ẋ cos θ − ż sin θ, ẏ sin θ

)
.

(8.54)

The equations of motion are mr̈ = F + FCor:

mẍ = −Tx/ℓ+ 2mω cos θ ẏ

mÿ = −Ty/ℓ− 2mω cos θ ẋ− 2mω sin θ ż

mz̈ = T −mg − Tz/ℓ+ 2mω sin θ ẏ .

(8.55)

These three equations are to be solved for the three unknowns x, y, and T . Note that

x2 + y2 + (ℓ− z)2 = ℓ2 , (8.56)

so z = z(x, y) is not an independent degree of freedom. This equation may be recast in the form z =
(x2+y2+z2)/2ℓwhich shows that if x and y are both small, then z is at least of second order in smallness.
Therefore, we will approximate z ≃ 0, in which case ż may be neglected from the second equation of
motion. The third equation is used to solve for T :

T ≃ mg − 2mω sin θ ẏ . (8.57)

Adding the first plus i times the second then gives the complexified equation

ξ̈ = − T

mℓ
ξ − 2iω cos θ ξ̇

≈ −ω2
0 ξ − 2iω cos θ ξ̇

(8.58)

where ξ ≡ x + iy, and where ω0 =
√
g/ℓ. Note that we have approximated T ≈ mg in deriving the

second line.

It is now a trivial matter to solve the homogeneous linear ODE of eq. 8.58. Writing

ξ = ξ0 e
−iΩt (8.59)

and plugging in to find Ω, we obtain

Ω2 − 2ω⊥Ω − ω2
0 = 0 , (8.60)
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Figure 8.4: Foucault’s pendulum.

with ω⊥ ≡ ω cos θ. The roots are

Ω± = ω⊥ ±
√
ω2
0 + ω2

⊥ , (8.61)

hence the most general solution is

ξ(t) = A+ e
−iΩ+t +A− e

−iΩ−t . (8.62)

Finally, if we take as initial conditions x(0) = a, y(0) = 0, ẋ(0) = 0, and ẏ(0) = 0, we obtain

x(t) =
(a
ν

)
·
{
ω⊥ sin(ω⊥t) sin(νt) + ν cos(ω⊥t) cos(νt)

}

y(t) =
(a
ν

)
·
{
ω⊥ cos(ω⊥t) sin(νt)− ν sin(ω⊥t) cos(νt)

}
,

(8.63)

with ν =
√
ω2
0 + ω2

⊥. Typically ω0 ≫ ω⊥, since ω = 7.3 × 10−5 s−1. In the limit ω⊥ ≪ ω0, then, we have

ν ≈ ω0 and

x(t) ≃ a cos(ω⊥t) cos(ω0t) , y(t) ≃ −a sin(ω⊥t) cos(ω0t) , (8.64)

and the plane of motion rotates with angular frequency −ω⊥, i.e. the period is | sec θ | days. Viewed from
above, the rotation is clockwise in the northern hemisphere, where cos θ > 0 and counterclockwise in
the southern hemisphere, where cos θ < 0.
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