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Chapter 3

Systems of Particles

3.1 Work-energy theorem

Consider a system of many particles, with positions 7, and velocities ;. The kinetic energy of this
system is

T=>T,=> im#} . 3.1)

Now let’s consider how the kinetic energy of the system changes in time. Assuming each m; is time-
independent, we have

dT; .
7 =M T, (3.2)
Here, we’ve used the relation
d dA
—(A?) =24 = . 3.3
i (A) i (33)

We now invoke Newton’s 2nd Law, m#; = F}, to write eqn. 3.2 as T, = F,-7;. We integrate this equation
from time ¢, to ¢

d

%

tg tg

ng—ng:/dtdf’:/thi-@;Zm‘HB , (3.4)
tA tA

where WA~B is the total work done on particle i during its motion from state A to state B, Clearly the

total kinetic energy is T = 3. 7; and the total work done on all particles is WA=B = >~ WA=B Eqn. 3.4

is known as the work-energy theorem. It says that In the evolution of a mechanical system, the change in

total kinetic energy is equal to the total work done: T® — TA = WA—E,
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Figure 3.1: Two paths joining points A and B.

3.1.1 Conservative and nonconservative forces

For the sake of simplicity, consider a single particle with kinetic energy 7 = $m#2. The work done on
the particle during its mechanical evolution is

tg

W*$=/ﬁFw , (3.5)

A

where v = 7. This is the most general expression for the work done. If the force F' depends only on the
particle’s position r, we may write dr = v dt, and then

Consider now the force

s

WwA—B :/dr - F(r)

TA

F(r)=K,yz+Kyz9y

(3.6)

: (3.7)

where K| , are constants. Let’s evaluate the work done along each of the two paths in fig. 3.1:

Zg
szm/m%+@

Ta

T

Ys

Ya
Y

/dwa = Kl Ya (xB _‘TA) +K2‘TB (yB - yA)

(3.8)

W(H) = Kl/dwys +K2/dywA = Kl Ys (xB _‘TA) +K2‘TA (yB - yA)

Ta

YA
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Note that in general W® # WD Thus, if we start at point A, the kinetic energy at point B will depend
on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is
WD =W = (K = ) (20 = 2,) (5 = 1) (3.9)

Thus, we see that if K|, = K,, the work is the same for the two paths. In fact, if K; = K,, the work
would be path-independent, and would depend only on the endpoints. This is true for any path, and
not just piecewise linear paths of the type depicted in fig. 3.1. The reason for this is Stokes’ theorem:

j{dﬂ-F:/dS'h-VxF . (3.10)
oc C

Here, C is a connected region in three-dimensional space, C is mathematical notation for the boundary
of C, which is a closed pathl, dS is the scalar differential area element, n is the unit normal to that
differential area element, and V x F'is the curl of F':

T Yy Zz
VxF=det|d, 0, 0,
Fo by I (3.11)
— aFZ_% &+ an_an ] -+ %_%2
~\ 0y 0z 0z ox Y oz oy

For the force under consideration, F'(r) = K, y & + K, x y, the curl is
VxF=(K,—K)% , (3.12)

which is a constant. The RHS of eqn. 3.10 is then simply proportional to the area enclosed by C. When
we compute the work difference in eqn. 3.9, we evaluate the integral § d¢ - F along the path v;* o v,
c

which is to say path I followed by the inverse of path I In this case, n = 2 and the integral of n- V x F
over the rectangle C is given by the RHS of eqn. 3.9.

When V x F = 0 everywhere in space, we can always write F' = —VU, where U(r) is the potential
energy. Such forces are called conservative forces because the total energy of the system, £ = 7'+ U, is then
conserved during its motion. We can see this by evaluating the work done,

4 4

WwA=E :/dr “F(r)=— /dr VU =U(r,) —U(ry) - (3.13)

r r

A A

The work-energy theorem then gives
T8 —TA=U(r,) —U(ry) (3.14)

which says
EB=TB +U(r,)=T*+U(r,) = E* . (3.15)

Thus, the total energy £ = T'+ U is conserved.

'If C is multiply connected, then OC is a set of closed paths. For example, if C is an annulus, dC is two circles, corresponding to
the inner and outer boundaries of the annulus.
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3.1.2 Integrating F = —VU

If V x F =0, we can compute U (r) by integrating, viz.

r

U(r) = U(0) — / ar' - F(r) . (3.16)

0

The integral does not depend on the path chosen connecting 0 and r. For example, we can take

(2,0,0) (,9,0) (z,y,2)
U(z,y,z) =U(0,0,0) — /dx’ F,(2',0,0) — /dy' Fy(z,vy',0) — /dz' F.(z,y,2) . (3.17)
(0,0,0) (2,0,0) (2,,0)

The constant U (0, 0, 0) is arbitrary and impossible to determine from F' alone.

As an example, consider the force

F(r)=—kya —key—4b2 2 | (3.18)

(5 -5)
V><F :< 9% >
vxr).~ (3 8ay>:°’

so V x F = 0 and F must be expressible as F' = —VU. Integrating using eqn. 3.17, we have

where k£ and b are constants. We have

VxF 0

0 (3.19)

(2,0,0) (z,y,0) z,Y,2)
U(z,y,z) =U(0,0,0) /dazk‘ 0 + /dy kxy' + /dz 4bs"3
(0,0,0) (2,0,0) (2,9,0) (3'20)

=U(0,0,0) + kzy + bz*

Another approach is to integrate the partial differential equation VU = —F'. This is in fact three equa-
tions, and we shall need all of them to obtain the correct answer. We start with the -component,

U _ oy (3.21)
Ox

Integrating, we obtain
Ulz,y,2) = kzy + f(y, 2) (3.22)
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where f(y, z) is at this point an arbitrary function of y and z. The important thing is that it has no z-
dependence, so 0f/0x = 0. Next, we have

(??_Z =kxr = Ul(x,y,2)=kry+g(z,z) . (3.23)
Finally, the z-component integrates to yield

ou 3 4

5 = 4bz° = U(z,y,z) =bz" + h(z,y) . (3.24)

We now equate the first two expressions:
kxy + f(y,2) = kzy + g(x,2) . (3.25)

Subtracting kzy from each side, we obtain the equation f(y, z) = g(z, z). Since the LHS is independent
of z and the RHS is independent of y, we must have

fy,2z) = g(z,2) =q(z) , (3.26)
where ¢(z) is some unknown function of z. But now we invoke the final equation, to obtain
b2t 4 hiz,y) = kay + q(z) . (3.27)
The only possible solution is h(z,y) = C + kxy and q(z) = C + bz*, where C is a constant. Therefore,
U(z,y,2) =C + kxy + bzt . (3.28)
Note that it would be very wrong to integrate 90U /0x = ky and obtain U(z, y, z) = kzy+ C’, where C’ is a
constant. As we’ve seen, the ‘constant of integration” we obtain upon integrating this first order PDE is

in fact a function of y and z. The fact that f(y, z) carries no explicit  dependence means that 0f /0x = 0,
so by construction U = kxy + f(y, z) is a solution to the PDE 0U/dz = ky, for any arbitrary function

[y, 2).

3.2 Conservative forces in many-particle systems

3.2.1 Kinetic and potential energies
The kinetic and potential energies are given by
T =Y tm#}
U= V(r)+> v(r—r)

1<j

(3.29)

Here, V() is the external (or one-body) potential, and v(r — r’) is the interparticle potential, which we
assume to be central, depending only on the distance between any pair of particles. The equations of

motion are

(ext) + ﬂ(int)

m, ¥, = F, , (3.30)
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with
(ext) OV(rl)
Fpley - 27V
! 8’)"1'
s (3.31)
(int) _ dv(|r; —rl) _ (int)
p =y 2l 5
j ‘ j
Here, Fi(ji"t) is the force exerted on particle i by particle j:
ity Ov(lri — 7)) Ti —Tj
F. "W =— = — i — . 3.32
) a'l“i |7°i y| (’T TJ’) ( )
Note that ant) = —F j(iint), otherwise known as Newton’s Third Law. It is convenient to abbreviate
r;; = 7; — r;, in which case we may write the interparticle force as
F‘Z-g-mt) = _TA‘Z] v/ (TZ‘]) . (3.33)

3.2.2 Linear and angular momentum

Consider now the total momentum of the system, P = ). p,. Its rate of change is
F(int)+F(int) -0
-3 p, = Z F ¢ Z Fi™ = F59 (3.34)
e i#j
since the sum over all internal forces cancels as a result of Newton’s Third Law. We write

P=> mg,=MR

M = Zml (total mass) (3.35)
R = M (center-of-mass)
D2 mi
Next, consider the total angular momentum,
L= Zri X p;, = Zmiri X7T, . (3.36)

The rate of change of L is then

‘fi—f = Z {m; x 7+ mgr; x i}

—Zr ><F(ext —i—Zr ><F(Int

i#j (3.37)
Ty E.('."t)zo

= Zri X FZ.(eXt 3 Z T, T ) X F (int) _ Néggt)
i i#]
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Finally, it is useful to establish the result
T=3Y"me?= MR+ 1> m(7,—-R)?® | (3.38)

which says that the kinetic energy may be written as a sum of two terms, those being the kinetic energy
of the center-of-mass motion, and the kinetic energy of the particles relative to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

final final final
Oz/dE:/dT+/dU
initial  initial initial (3.39)

:TB—TA—Z/dri~F'i ,
%

which is to say

AT:TB—TA:Z/dri-FZ.:—AU : (3.40)

In other words, the total energy E' = T + U is conserved:

b= Z %mmz + Zv(ri) + Zv(ln - rj|) . (3.41)

i<j
Note that for continuous systems, we replace sums by integrals over a mass distribution, viz.
> omd(r,) — / drp(r) ¢(r) (3.42)
i

where p(r) is the mass density, and ¢(r) is any function.

3.3 Scaling of Solutions for Homogeneous Potentials

3.3.1 Euler’s theorem for homogeneous functions

In certain cases of interest, the potential is a homogeneous function of the coordinates. This means
UAry, .. Ary) =N U (e, ry) (3.43)

Here, k is the degree of homogeneity of U. Familiar examples include gravity,

Ck=-1 (3.44)

U(rl,...,rN) = —GZ
i<j

i =7l

|r
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and the harmonic oscillator,

Uty 10n) =3 Voo Qoo 5 k=42 . (3.45)

The sum of two homogeneous functions is itself homogeneous only if the component functions them-
selves are of the same degree of homogeneity. Homogeneous functions obey a special result known as

Euler’s Theorem, which we now prove. Suppose a multivariable function H(z, ..., z,) is homogeneous:
H\xy, ..., z,) =\ H(xy,. .. z,) (3.46)

Then .
% H(Awl,...,)\xn):Zwig—Z:kH . (3.47)

A=1 =1

3.3.2 Scaled equations of motion

Now suppose the we rescale distances and times, defining

r=ar t=p1t . (3.48)
Then ~ ) -
dri _adri drniadm (3.49)
dt B dt ez p% di?
The force F; is given by
Fi:—gU(rl,...,rN)
”’a ) o (3.50)
= P,y ) =af LR,
a(afi)a U(Fy,...,Ty) = P

where f‘l = OU(7y,...,Ty)/OF;. Thus, Newton’s 2nd Law says

« d277'z k—1 =
2 m; e =a F, (3.51)
If we choose 5 such that
a _ _1
@ = ol = 8= al~3k , (3.52)
then the equation of motion is invariant under the rescaling transformation, i.e.
7~
i — =F; . 3.53
m; = F, (359

This means that if {r,(¢)} is a solution to the equations of motion, then so is {a r;(3t) }. This gives us an

entire one-parameter family of solutions, for all real positive a. with 3 = o~ 2k,
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We see that if r(t) is periodic with period T, then r,(t; @) is periodic with period 7" = o'~ 25 T, Further-
more, if L is a length scale associated with an orbit 7,(¢), such as the distance of closest approach, then
we have the following relation between the ratios of the time and length scales:

/ / 1—%]6
oy (B -

Velocities, energies and angular momenta scale accordingly Thus

L o LT

W=7 = S=7/7=a (3.55)
e ML? E (LY /(TY
[E]="F = F= <Z> /<T> =a* (3.56)
and MI2 || L'\ /T ]
R N Vs 637
As examples, consider:
(i) Harmonic Oscillator : Here k = 2 and therefore
1r(t) — g, (t;0) = g, (1) - (3.58)
Thus, rescaling lengths alone gives another solution.
(ii) Kepler Problem : This is gravity, for which k = —1. Thus,
r(t) — r(t;a) = ar(a_3/2 t) . (3.59)

Thus, r3 « t?, i.e.

N3 I\ 2
9

also known as Kepler’s Third Law.

3.4 Appendix: Curvilinear Orthogonal Coordinates

The standard cartesian coordinates are {z,...,z,}, where d is the dimension of space. Consider a dif-
ferent set of coordinates, {q,, ..., q;}, which are related to the original coordinates z,, via the d equations
AT (3.61)

In general these are nonlinear equations.
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Let € = &, be the Cartesian set of orthonormal unit vectors, and define é, to be the unit vector perpen-
dicular to the surface dg,, = 0. A differential change in position can now be described in both coordinate
systems:

d d
ds =) &) dr; =Y é,h,(q)dg, |, (3.62)

where each h,(g) is an as yet unknown function of all the components ¢,. Finding the coefficient of dg,,
then gives

d
R dzi o &0
h,u(Q) €, = Z 8(]# €; Z pi€i > (3.63)
i=1
where 1 g
L
M (q) = —— 3.64
The dot product of unit vectors in the new coordinate system is then
1 4 Ox; Ox;
é, é,=(MM") =——"— L= (3.65)
. ( )/W hu(Q) hu(Q) Zz_; aqM 8qy
The condition that the new basis be orthonormal is then
Ox; Ox; 2
= O - 3.66
Z aq“ aqy (q) M ( )
This gives us the relation
4/ o\
(@) =D <a ) . (3.67)
im1 N\
Note that
Z n2(q) (dg,)* . (3.68)
For general coordinate systems, which are not necessarlly orthogonal, we have
Z 9y (@) da, dg,, (3.69)

Hv=1

where g,,,(¢) is a real, symmetric, positive definite matrix called the metric tensor.

3.4.1 Example : spherical coordinates

Consider spherical coordinates (p, 8, ¢):

r=psinfcos¢p , y=psinfsing , z=pcosh . (3.70)
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Figure 3.2: Volume element {2 for computing divergences.

It is now a simple matter to derive the results
h%zl ) h§:p2 ) hi:p2SiH29
Thus, K R
ds=pdp+p0df+psintd¢do

3.4.2 Vector calculus : grad, div, curl

Here we restrict our attention to d = 3. The gradient VU of a function U(q) is defined by
ou ou ou

dU = S dg, + <= dgy + < d
oq 4 g2 % dq3 %
=VU-ds
Thus,
i@ e 0 & D

For the divergence, we use the divergence theorem, and we appeal to fig. 3.2:

/dVV-A:/dSﬁ-A ,
2 02

11

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

where (2 is a region of three-dimensional space and 0f2 is its closed two-dimensional boundary. The

LHS of this equation is
LHS =V - A - (hy dq1) (hy dgz) (hy dgs)

(3.76)
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The RHS is
+d +d +dg.
RHS = A, hyhy | dgydgs + Ayhy by | dgydgg + Aghy by | dg, day
o o o (3.77)
= i(141 hyhy) + i(142 hy hy) + i(A?, hy hy) | dg, dgy dgs
oqq 0q2 dq3
We therefore conclude
1 0 0 0
A= —— | — (A hoh —(Ash, h —(Ash, b ) 3.78
v h1h2h3[8q1(1 23)+8q2(2 13)+3q3(3 1 2)} (3.78)
To obtain the curl V x A, we use Stokes’ theorem again,
/dSﬁ-VxA:?{dZ-A , (3.79)
) oy

where Y is a two-dimensional region of space and 90X is its one-dimensional boundary. Now consider a
differential surface element satisfying dg; = 0, i.e. a rectangle of side lengths h, dgq, and h4 dg,;. The LHS
of the above equation is

The RHS is
+d 5 +dg.
RHS = A hy | dgy — Ayhy | dg,
12 s (3.81)
= [i (A3 h3) - i (A2 hz)} dg, dgs,
0q2 0q3
Therefore

(V x A),

1 (8(h3 Az)  O(hy A2)> (3.82)

~ hyhs 92 O3

This is one component of the full result

hl él h2 é2 h3 é3
o) 0 o)
hl Al h2 A2 h3 A3

VxA=

hi ha hs

The Laplacian of a scalar function U is given by

VU=V -VU

SN AN NOUN AT WYY (354
hihahg | Ogpn \ h1 Oq Jga \ ha 0go Oz \ hs Og3 '




3.4. APPENDIX : CURVILINEAR ORTHOGONAL COORDINATES

Rectangular coordinates

In rectangular coordinates (z,y, z), we have

Thus
ds=xdr+gdy+ 2dz

and the velocity squared is

2

8% =i? +y? + 27

The gradient is
ou _ou  oU

VU =z — — —
m8$+y8y+z8z

The divergence is
0A, 04, 0A,
VA= Oz * oy + 0z

Ux A— <8Az B %>§3+ (aAm B aAz>g+ <6Ay B an>2

The curl is

dy 0z 0z ox dr Oy
The Laplacian is
0’U  0°U = 0°U

277 _
VU= Ox? +8y2 +822

Cylindrical coordinates

In cylindrical coordinates (p, ¢, z), we have
p==&cosp+ysing , &=pcos¢—dsing , dp=pdo

and
G=—Fsing+gcosd , §g=psing+adcosd , dp=—pde

The metric is given in terms of

hy=1 , hy=p , h.=1

p z

Thus R
ds=pdp+ppdp+ 2dz

and the velocity squared is .
§2 = (2 4 2%+ 22
The gradient is
U G U

13

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
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The divergence is
d(pA, 104, O0A,
- -

_1op4d,) 1
v A_p ap > 00 9% (3.98)
The curl is
_(10A, 04y . 04, 0A.)\ ., 10(pAs) 104, .,
VXA‘(E a«b‘az)”*(W‘ap)"”(E w0 09) - B
The Laplacian is
19 /( oU 1 0°U  9*U
V2U:;a—p<pa—p>+ﬁw+w (3100)

Spherical coordinates

In spherical coordinates (7,0, ¢), we have

7

& sinf cos ¢ + ysinfsin ¢ + 2 sin 6
6 = & cos 0 cos ¢ + § cos fsin ¢ — 2 cos 0 (3.101)
¢=—&sinp+gcosgp

for which
rx0=¢ , Oxodp=7 , Oopxr=60 . (3.102)
The inverse is
& = rsinfcos ¢ + écos@cosqb— qﬁsingb
g =7sinfsing + 0 cosfsind + ¢ cos (3.103)
%2 =1fcos — Osinf
The differential relations are
di = 0 df + sin 0 ¢ do
df = —7df + cos 0 ¢ do (3.104)
dq’; = —(sin&f‘ + Cos@é) do
The metric is given in terms of
h.=1 , hy=r |, h¢:rsin9 . (3.105)
Thus
ds=7dr+0rdf+ ¢rsinfdo (3.106)

and the velocity squared is . .
82 =72 4+ r20% 4 r¥sin%0 . (3.107)
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The gradient is
OU 00U ¢ U
VU_T‘W—I_;W—'—T‘SiHe%

The divergence is

1 0(r4,) 1 O(sind Ap) 1 04,
V'A_r_2 or +rsin9 00 rsinf O0¢
The curl is
. 1 8(Sin9A¢) 8A9 ~ 1 1 8147« a(TA¢) ~
VXA_TSiIlQ( 00 0p " \Sing (0] or 0
1 (0(rdg) O0A, )\ :
A ( or o0 >¢
The Laplacian is

w10 (00N 1 ooy 1 gU
VU_T‘Z ar\" or +7‘28in9 00 sinf 00 +7‘2Sin29 02

Kinetic energy

Note the form of the kinetic energy of a point particle:

2
T= %m(i—j) = %m(wz + 92+ 2"2) (3D Cartesian)
= %m(p'2 + p2¢32) (2D polar)
= %m(p’2 + 02 + 2"2) (3D cylindrical)

m(i"2 +726% + r?sin0 <;52) (3D polar)

N~

15

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)
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