
Intro to Intermittency (Lectures 9-11)
Lectures by Pat Diamond
Notes by Kenneth Gage

What Is Intermittency?

Intermittency in either space or time is described by a probability distri-
bution with widely spaced patches of high probability concentration. In
other words, intermittent events have local probabilities much higher than
the mean P (xi)� P̄ .

Intermittency is what Mandelbrot refers to as “wild” randomness as op-
posed to the “mild” randomness of Gaussian statistics[1] — the realm of the
Central Limit Theorem and Law of Large Numbers.

Intermittency is related to multiplicative noise processes, growth in high
order moments, and fractal geometries, each of which is explained in these
notes.

Additive vs Multiplicative Processes

In order to compare to what we know already, let’s take a look back at
the Central Limit Theorem: Suppose you have a sequence of independent,
identically distributed random variables, each with a mean µ and variance
σ2 (x̄i = µ, 〈(xi − x̄i)2〉 = σ2). Then the sum

1

n

n∑
i=1

xi − µ

is normally distributed according to a Gaussian of width (standard devia-
tion)

√
nσ. This is proved by showing using the Fourier transform of the

distribution function and the I.I.D. property of xi[2].
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This theorem is the basis for the Langevin equation[3] and additive noise

dv

dt
= −µv +

f̃

m
,

the Fluctuation-Dissipation Theorem

T ∼=
〈f̃ 2〉τac
µ

,

and the Fokker-Planck Equation. The important takeaways from this method
are

� the process is additive,

� steps are uncorrelated,

� steps are identically distributed (none are special),

� and the variance exists (no “fat tails”).

On the other hand, we have multiplicative processes. Consider this time a
productX ≡

∏N
i=1 xi where each xi can take a value of either 0 or 2 with equal

probability. Now the value of X must be zero unless all xi = 2, in which case,
X = 2N . The probability of getting this large result is P (X = 2N) = 2−N .
Note that N can be thought of as a stand-in for time or a number of steps.

While the spikiness of this toy model is contrived, it is still useful to look
at moments of the distribution for some insights. The ensemble average over
possible outcomes is fairly simple:

〈X〉 =

∑
j Xj

2N

=
0 + 0 + ...+ 0 + 2N

2N

= 1.

The second moment is

〈X2〉 =

∑
j X

2
j

2N

=
02 + 02 + ...+ 02 + (2N)2

2N

= 2N ,
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Figure 1: The PDF of a Gaussian distribution (µ = 0, σ = 1/
√

2) and the
log PDF of our toy intermittency model (N = 5).

and the pattern for higher moments (made clear by the lack of nonzero terms)
must be 〈Xp〉 = 2(p−1)N , showing higher moments grow exponentially:

γp =
log2〈Xp〉

N
= p− 1.

The structure of this distribution (Fig ) is very different from the smooth
Gaussian. It is spiky, and the spike at 2N can be seen as a fat tail, where the
Gaussian’s is thin. These tails are important for driving the larger moments
of intermittent processes to grow (for Gaussians, they ensure the convergence
of higher moments).

General takeaways should be:

� intermittent quantities come from products of random numbers (not
sums),

� higher moments are important (growth or a lack of convergence),

� and PDFs are concentrated, with heavy tails.
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Figure 2: 1000 random samples taken from three distributions. Each of
these has a different “level” of randomness or spikiness based on the tail of
the underlying distribution generating the data.

Multiplicative Processes and the Log-normal

Distribution

These multiplicative processes, or “slow” randomness[1], are related to the
log-normal distribution. As a more general version of the previous example,
suppose you have a series of positive xi randomly distributed variable and
X =

∏
i xi. The Central Limit Theorem does not apply to X, but it does

apply to lnX =
∑

i lnxi, which is additive. If lnxi is distributed about
zero — xi approximately distributed about one — then the same process as
above will find that the probability of getting a value of lnX is normally
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distributed:

P (lnX) ∼ exp

[
−(lnX)2

2Nσ2

]
,

with the more general case being

P (lnX) ∼ exp

[
−(lnX − µ)2

2Nσ2

]
.

This makes X log-normally distributed

P (X) ∼ 1

X
exp

[
−(lnX − µ)2

2Nσ2

]
.

Since the width of P (lnX) scales with N1/2, we can approximate lnX by
N1/2η with η being a normally distributed number with µ and σ2 as mean
and variance respectively. The relationship for the variable itself, however,
is X ∼ exp

(
N1/2η

)
. For large values of N , the value of X is expected to be

either very large or very small depending on the sign of η.
To see the behavior of moments of X, we begin with the mean:

〈X〉 =

∫
X(η)P (η) dη

=

∫
exp
(
N1/2η

)
exp

(
−(η − µ)2

2σ2

)
dη

∼ exp
(
Nσ2/2

)
,

where the last step comes from completing the square in the previous ex-
ponential. The same exercise can be carried out for higher order moments,
giving

〈Xp〉 ∼ exp

(
p2Nσ2

2

)
.

Exponential growth in the moments is then

γp = lim
N→∞

ln〈Xp〉
N

∼ p2σ2

2
.
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Evolution of Randomness

In all of the examples that we’ve looked at so far, we have only talked about
number of samples as being a scale for the system, but we can also view it
as an analog for how randomness is affected by time. Let’s look from the
perspective of random noise: In an additive process

dψ

dt
= ε(t),

we can see how the noise leads to diffusion if ε is delta correlated

〈ε(t1)ε(t2)〉 = σ2τacδ(t1 − t2).

Here the variance of ψ gives

〈ψ2〉 ∼
∫

dt1ε(t1)

∫
dt2 ε(t2)

∼ σ2τact.

Alternatively, the Central Limit Theorem can be applied since we assume
that each time step τac is uncorrelated[4].

ψ =

∫
ε(t) dt

=

∫ τac

0

ε(t) dt+

∫ 2τac

τac

ε(t) dt+ ...

= 〈ε〉t+ τacσ

[
t

τac

]1/2
η,

with η randomly distributed on a standard Gaussian. If we take the noise to
have an average of zero, we get

〈ψ2〉 = σ2τact〈η2〉
∼ σ2τact.

The multiplicative process is somewhat different:

dψ

dt
= ε(t)ψ.
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For this case, Quasilinear Theory can actually get the lowest order moment
correct. Assuming ψ = 〈ψ〉+ ψ̃, we can split the ODE in two.

d〈ψ〉
dt

= 〈εψ̃〉

dψ̃

dt
= ε〈ψ〉

The fluctuation equation shows that

ψ̃ =

∫
ε〈ψ〉 dt ,

so the ODE for the mean can be written as

d〈ψ〉
dt

= 〈ε
∫

dt ε〈ψ〉〉

∼ σ2τac〈ψ〉.

It follows that the mean is

〈ψ〉 ∼ exp
(
σ2τact

)
.

While this works for the lowest order moment, everything else requires
a different approach. Luckily enough, that is to simply work with the loga-
rithm.

d lnψ

dt
= ε(t)

The logarithm behaves exactly as the additive process would, but now we
have

ψ(t) ∼ ψ0 exp

(∫
ε dt

)
.

Using the previous result

lnψ = 〈ε〉t+ σ
√
τactη,

we find that for noise with zero mean,

ψ ∼ exp
(
σ
√
τactη

)
.
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As stated earlier, the QLT average holds

〈ψ〉 =

∫
ψ(η)P (η) dη

∼
∫

exp
(
σ
√
τactη

)
exp
(
η2/2

)
dη

∼ exp
(
σ2τact

)
.

As before with the log-normal distribution, γp ∼ p2σ2τac.
To summarize:

� ψ grows exponentially with time (∼ exp
(
t1/2
)
),

� fluctuations also grow exponentially,

� QLT can get the mean right, but not structure of higher moments,

� large higher order moments are a signature of “slow” intermittency,

� and intermittency comes from rare, but intense, peaks in random be-
havior.

Intermittent Examples in Random Media

IF we want to look at particle statistics — say the density n of u(~x, ω) at
temperature T — we can see how randomness in one variable affects another.
With u distributed according to a Gaussian and ω labeling an ensemble, we
can look at the probability of a density

P (n(u)) = n(u)P (u).

Using the Boltzmann distribution n = n0 exp(−u/T ), we get

P (n) =
n0√
2πσ

exp
(
− u
T

)
exp

(
− u2

2σ2

)
.

The usual trick with completing the square shows that not only is Pmax ∼
n0/σ exp(σ2/2T ), but the moments go as

〈np〉1/p = n0 exp

(
pσ2

2T

)
.
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Once again we have the familiar signs of exponential growth in the higher
order moments, and we see that even though u is normally distributed, the
statistics of n have large deviations from the Gaussian.

For a more meaningful example, let’s look at the something a type of
Reaction-Diffusion Equation:

dψ

dt
= D∇2ψ + u(~x, ω)ψ.

Here we are using u as a stochastic potential with limited range (〈u(x)u(x′)〉 →
0 for |x− x′| > l)

Note that this equation is similar to Fisher’s Equation ([∂t − D∇2 −
ru(1 − u)]ψ = 0) with only the linear term, so it has some relevance. It is
also similar to the Schrodinger Equation, but without imaginary time. As
in quantum mechanics, we will use a (Wiener) path integral to tackle this
differential equation. Redefining dψ/ dt ≡ Hψ = (H0 + u)ψ, we formulate
our solution as

ψ = ψ0 exp

(∫
H0 dt

)
exp

(∫
u dt

)
.

If we average over diffusion trajectories, we find

〈ψ〉 = MX [ψ0 exp

(∫
u dt

)
],

with Mx defined as the trajectory weighted average. This is taken by using
the independent nature of steps

P (t1, t2 − t1, ...;x1, x2 − x1, ...) =
n∏
j=1

1

[2π(tj − tj−1)]1/2
exp

[
−(xj − xj−1)2

2(tj − tj−1)

]
.

It should be remembered that, being Brownian motion, Wiener paths
have several properties. The paths wt(ω)

� are equivalent to locations x(t, ω),

� start at the origin (w0 = 0),

� are Gaussian distributed,

� have zero mean and finite variance between time steps (wt+τ − wt),
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� and they are continuous but not differentiable.

The lack of differentiability comes from the fact that ∆w ∼
√

∆t, so the limit
of ∆t→ 0 of ∆w/∆t isn’t finite.

While the averaging can be complicated, the dominant contribution comes
from the area around the maximum potential. If the peak has radius R and
your grid sizing is l, you should get

(
R

l
)3P ∼ 1,

with a probability of approximately exp(u20/2σ
2) for the region. A bit of

algebra finds that u0 ∼ [6σ2 ln(R/l)]1/2. If we remember that the region of
interest grows with time for the diffusive trajectories (R ∼

√
Dt), we get a

solution of

ψ ∼ exp{t
[
3σ2 ln

(
Dt

l2

)]1/2
}.

From this, we can draw several conclusions:

� the solution is weakly super-exponential,

� the dominant contributions of u in the Wiener path averaging deter-
mine the evolution,

� and path integrals can be useful for intermittency.

Spacial Intermittency

The way turbulence was approached by Kolmogorov[5] was to assume a uni-
form distribution of dissipation; however, real dissipation is distributed in
patches with varying intensity, and the whole of space isn’t filled. In order to
characterize the geometry and dimensionality of the structures created, we
must look toward fractal models like the β model.

To start thinking about fractional dimensionality, we can use the box-
counting dimension. Consider an object in usual Cartesian space: if it takes
N(ε) cubes of size ε to completely cover the object, we can define its box-
counting dimension as

D0 = lim
ε→0

lnN(ε)

ln 1/ε
.
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Figure 3: Several consecutive steps in the Middle Third Cantor Set.

As an example, to cover a finite number of points p, you need p boxes,
no matter the size. D0 = lim

ε→0
− ln p/ ln ε = 0. If you wanted to work with a

line of length l,

D0 = lim
ε→0
− ln l/ε

ln 1/ε

= lim
ε→0
− ln l + ln 1/ε

ln 1/ε

= 1.

Far more interesting is something like the Middle Third Cantor Set, where
the lines do not cover the entire space. In fact, for the nth step, it takes 2n

lines to cover the length 3−nl. For this case

D0 = lim
n→∞

ln 2n

ln 1/3−n

= lim
n→∞

n ln 2

n ln 3

=
ln 2

ln 3
≈ 0.631.
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This result lies between the dimensions of a point and line (0 < D0 < 1).
Other structures can similarly exist between a surface and volume in dimen-
sion. Several features of this set are important to remember:

� the process is multiplicative,

� it is self-similar (very important),

� the result is patchy,

� this is a power law (N(ε) ∼ ε−D0)

� and the effective dimensionality result need not be a whole number.

The simplest fractal model is the β model[6], using the active volume
fraction 0 < β < 1. For any dissipation eddy of size l in 3 dimensions, when
it breaks into “daughter” eddies of size l/2, it must break into 8 in order to
fill the same space. The fraction of space that is actually filled is then

β =
N

23

=
2D

23

= 2D−3.

Here we are using the fractal dimension D. If we look at an eddies “children”
after n dissipative steps, we find βn = βn = 2n(D−3).

Looking at the Vorticity Equation for an incompressible fluid — obtained
by taking the curl of the Navier Stokes Equation — we can see how vortex
tube stretching relates to intermittency.

d~ω

dt
= (~ω · ~∇)~v + ν2∇2~ω

Because the vorticity is a derivative (curl) of the flow, we can look at

dω

dt
∼ ω2 + ν2∇2ω

as a vague approximation. This increases exceedingly fast, causing the mag-
nitude to explode in a finite time. Here the mean dissipation rate is

ε̄ ∼ βn
v3n
ln
,
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but the occupation factor 2n(D−3) can also be written as (ln/l0)
3−D. This is

important, as it means there is a memory of the original size. To get the
energy we rewrite the rate

ε̄ ∼ (
ln
l0

)3−D
v3n
ln

in terms of flow

vn ∼ (ε̄ln)1/3(
ln
l0

)(D−3)/3.

Then the energy is

En ∼ βnv
2
n

∼ ε̄2/3l2/3n (ln/l0)
(3−D)/3.

E(k) ∼= ε̄2/3k−5/3(kl0)
(D−3)/3

The deviation between this result and the −5/3 from Kolmogorov is
largest at the dissipation scale

ν

l2d
∼ v(ld)

ld

→ ld ∼ l0R
−3/(1+D)
e .

The higher order moments also deviate most at small scales:

〈|δvn|p〉 ∼= ε̄−p/3lp/3n (
ln
l0

)φp .

Here we use φp ≡ (3−D)(3− P )/3.
Throughout this example have been some important things to remember:

� intermittency is rooted in the active volume,

� there is an explicit memory and dependence on original scale l0,

� cascades are self-similar, fractal structures (D < 3),

� this is a highly nonlinear, localized process,

� and the deviation from Kolmogorov’s result is entirely dependent on
the dimensionality.
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Bifractals and Multifractals

What happens if there are multiple dissipative processes with different di-
mensions? Multifractals! For example, think of shocks: essentially the ramp
is 1D and the drop is 0D. This type of bifractal system would need to have
a phase transition or kink in it.

δvl
v0
∼

{
(l/l0)

h1 L1, dimD1

(l/l0)
h2 L2, dimD2

Now the union L1∪L2 must cover all of the dissipation. While the moments
are a combination of terms

〈δvpl 〉
vp0

= µ1(
l

l0
)ph1+3−D1 + µ2(

l

l0
)ph2+3−D2 ,

in reality, the one with the smallest power dominates.

εp = min[ph1 + 3−D1, ph2 + 3−D2]

Where a kink in the structure function leads to a bifractal system, a
curve or ensemble of kinks leads to a multifractal. Zonal flows, turbulence,
and some waves in plasma can be thought of as multifractal systems. In these
systems, you could (in theory) try to construct the spectrum of dimension-
ality by fitting higher order moments. On the other hand, this is a method
that “fits everything, but explains nothing.”
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