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1 Introduction

"God gave us the integers, all else is the work of
man."

— Leopold Kroenecker

1.1 Why Learn this?

These notes are dedicated to the subject of Fractional Kinetics, which is essentially a generalization
of a Fokker-Plank theory with fractional derivatives.

A student may question the value of all these fractals and fractional derivatives for physics. After
all, the catechesis on theoretical physics by Landau and Lifshitz manages to omit the discussion of
fractional derivatives altogether.

One good reason to learn the fractional derivatives business is that it provides a tool for addressing
the memory of the dynamics. It is intuitively clear that the fractional derivatives are able to in-
troduce memory since their formal definition also contains an integral. The importance of system
memory effects is, of course, far from exotic in physical problems. To build a bridge between
the fractional derivatives and the almighty Landau-Lifshitz work, consider the problem of the ball
dynamics in viscous fluid from the book on hydrodynamics. The ball excites the fluid which in
return affects the ball dynamics, creating a memory effect. The term describing the Boussinesq
force corresponds to the fractional order derivative of velocity. Investigation on the impact of sys-
tem memory seems to be of increasing interest for modern physics, and of significant engineering
utility (for example, hidden parameters of a problem often expose themselves as a memory effect
in system dynamics). The memory effects are very much present in plasma physics, too. A Kubo
number gives the measure of the memory effect on turbulent diffusion processes, with high Kubo
number corresponding to non-Markovian processes (see previous class notes for the discussion of
Ku << 1 weak turbulence case).

It seems reasonable to attempt relaxing the Markovian property of Fokker Plank processes by
employing the fractional derivatives methods. The result is the Fractional Kinetics (FK) theory.
While being technically challenging to apply for actual problems, FK is a systematic theory that
now allows for anomalous scaling

< δx2 >∝ t→< δx2 >∝ tµ

hence introduces anomalous diffusion, and can represent flights and sticking depending on critical
exponents.

Question: Come up with a physical example of a process with anomalous diffusion?

Possible answer: Richardson Pair Dispersion, an example of super-diffusive process in turbulence
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Figure 1: Elaborating on the concept of a fractal: The eagle on the
emblem of Russian Federation holds a Scepter and an Orb. The
Scepter itself, however, also has the same emblem on it, resulting in
a fractal-like self-similarity, but it is not a fractal. Why is it not a
fractal? The reason is that the surface is only irregular in a vicinity of
a certain point, violating the presumption of the equality of statistical
character between each parts.

1.2 Comment on Fractals

Since several of this class topics involve the concept of fractals, it is worth giving a brief clarifi-
cation on the nature of these objects and on to how this concept arises in physics. Fractals can
be defined as a curve or geometric figure, each part of which has the same statistical character as
the whole. Such structures exhibit self-similarity feature (scale invariance, as in invariance with
respect to x→ αx, α ∈ R+ transform), which is present in many physical objects and frequently
used in theoretical models. The variability of a fractal-like structures (change from one fractal to
the other while preserving the general arrangement) introduces the idea of stochastic fractals and
statistical understanding of them. One of the examples of such a fractal is a trajectory of Brownian
motion. (It is perhaps important to note here, however, that in case of Brownian motion the frac-
tal trajectory is an idealization, applicable to the spatial scales larger than the characteristic body
scales, and time scales larger than the time between consecutive collisions. In other words, the
fractal picture is valid within certain intermediate asymptotics.)

Closely related to this discussion is the concept of fractional dimensionality. The most common
understanding of dimensions comes from analytical geometry, where the dimension corresponds
to a number of integer coordinates, which is restricted to integer values. We know from our daily
experience that even such concept of dimension is not uniquely defined and depends on context.
For example, consider the SERF building. Is the building one dimensional based on a coordinate
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Figure 2: Fractals were popularized in science by Mandelbrot. This
picture shows a Mandelbrot set, a classic example of fractal defined
by Mandelbrot process zn+1 = zn + c, z,c ∈ C. Unlike trajectory
of the Wiener Process (describing Brownian motion), this fractal is
deterministic.

system based on room numbers, or three dimensional based on map coordinates, or in-between
based on something else? Mandelbrot realized that self-similarity allows to introduce the concept
of a fractal dimension.

The way of introducing fractal dimension is not unique; for example, there exists a mass dimension

m(R) = m(1)RD, (1)

box dimension, etc. Fractals can be defines through concepts of dimensionality, one of the possible
definition being the structure with different values of topological and Hausdorff dimension. When
we talk about random fractals, such as in the example with Brownian motion, dimensionality
Eq. (1) is understood in a sense of an ensemble average.

1.3 Historical Map

"Always historicize."

— Frederic Jameson

To better understand the topic, it is instructive to discuss what has brought Fractional Kinetics into
being.

Developments in computer technologies simultaneously lead to the development of the theory of
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Figure 3: Used as a public highway, the "90 Mile Beach" is reported
to be 55 miles long. For a coastline fractionality-aware cartographer,
this toponym perhaps makes even less sense. (For more details, see:
"How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension" by Mandelbrot 1963 in Science)

discrete time maps of systems dynamics, and supplemented the research on fractal analysis. One
of the better-known map in plasma physics is the Standard Map (the Chiricov-Taylor map)

pn+1 = pn +K sin(θn)

θn+1 = θn + pn+1

,

where pn and θn are taken mod 2π . This is a discrete map of a particle dynamics in a electro-
magnetic wave, and it captures many features of the dynamics of different physical systems. (ref:
Ott’s book Ch7). It is area-preserving, relating it to the Vlasov equation

∂t f + v∂x f +q/mE∂v f = 0

By increasing the value of K beyond the threshold of Kcrit, the dynamics of Standard Map can be
pushed into a chaotic regime. (One can even use the map of a chaotic dynamics to generate random
values). Chaotic regime allows for transport, and for certain values of K, for anomalous scaling
〈p〉2 ∝ tµ

p (K), meaning super-diffusive process. For normal diffusion

D = DQL =
K2

2
. (2)

Defining the diffusion coefficient

D = lim
n↑
〈(θn+1−θn)

2〉, (3)
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Figure 4: Dependence of (D/DQL) on K for Standard Map, visually
resembling fractal structure.

(n grows but not to infinity, due to the upper bound on simulation time), one observes spikes on a
(D/DQL) vs K plot figure 4. Explaining the anomalous diffusion of the standard map was perhaps
the intellectual drive behind the Fractional Kinetic theory

2 Fractional Calculus

2.1 Geometrical Motivation

As the symbolic notation ∂ f
∂x suggests, the first order derivative relates the increment of the function

with the argument increment, ∆ f = f ′∆x. One can however imagine a curve where such a relation is
nonlinear. For example, for a Wiener Process, δwt ∝ ∆t1/2. This motivates the idea of a fractional
derivative, as in trajectory of a Brownian motion has not 1, but 1/2 of a derivative. Fractional
derivative does the same as the integer order derivative, but now ∂ α

x f = ∆ f/∆xα , where α (called
Hölder index) now needs not to be an integer.

Question: What is the order of a spatial derivative of a velocity field in Kolmogorov turbulence?
Answer: δv ∝ δ r1/3 for Kolmogorov turbulence implies that velocity field has 1/3 of a spatial
derivative
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2.2 Negative Integer Derivatives

The usual differentiation operator Dx =
d
dx recursively creates from f (x) a sequence of natural

order derivatives,

f (x), f ′(x), f (2)(x), f (3)(x), ..., f (n)(x), ...

Consider now the second sequence of functions, generated from f (x) by integrating from the fixed
lower limit a till the argument’s value x:

f1(x) =
∫ x

a
dξ1 f (ξ1)

fn(x) =
∫ x

a
dξn

∫
ξn

a
dξn−1...

∫
ξ2

a
dξ1 f (ξ1)

and note that

Dx fn(x) =
d
dx

∫ x

a
fn−1(ξ )dξ = fn−1(x), n≥ 1

Now the operator Dx generates both fn+1 and fn−1 from f . If we now relabel the elements of the
second sequence by the rule fn(x)→a f−n(x), the combined sequence now reads:

..., a f (−n)(x), ..., a f (−2)(x), a f (−1)(x), f (x), f ′(x), f (2)(x), ..., f (n)(x), ...

We can now call a f (−n)(x) a derivative of order −n of a function f on the interval (a,x]. Simply
put, the (−n) order derivative is just an nth order integral of f over (a,x]

2.3 Riemann–Liouville fractional derivative

We were able to define derivative of order n∈ Z. Next step is to expand n to other rational numbers.
This can be done in two steps: expand the notion of the order of the integral to fractional values,
therefor introducing a fractional order negative derivative, and then use this result and integer
positive derivatives to define positive fractional order derivatives.

First step is done with the help of a Cauchy formula:

a f−n(x) =
∫ x

a
dξn

∫
ξn

a
dξn−1...

∫
ξ2

a
dξ1 f (ξ1) =

1
(n+1)!

∫ x

a
(x−ξ )n−1 f (ξ )dξ

that transforms the integral of the integer order n into the first order integral with a power kernel.
We now use an analogue of Caushy formula with rational values of m > 0:
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a f−m(x) =
1

Γ(m)

∫ x

a
(x−ξ )m−1 f (ξ )dξ

This formula however is not yet enough for the positive fractional derivatives, since the integral
diverges for m < 0. The way Riemann–Liouville definition overcomes this problem is perhaps
explained best with an example.

Suppose you want to calculate f 2,4(x) fractional derivative. We already defined positive derivatives
of an integer order and negative derivatives of a rational order. Now, to arrive to a point n = (2.4),
suppose we make integer steps to the left until we reach negative value. For n = (2.4) that would
result in a sequence 1.4;0.4;−0.6. Let k denote the amount of such steps (k = 3 in the example).
Now the n−k order derivative can be calculated with an extended Caushy formula described above:

a f n−k(x) =
1

Γ(k−n)

∫ x

a
(x−ξ )k−m−1 f (ξ )dξ

now to come back to the m point, apply the Dx operator k times. The resulting formula reads

a f n−k(x) =
1

Γ(k−n)
Dk

x

∫ x

a
(x−ξ )k−m−1 f (ξ )dξ

.

This is the way left (
∫ x

a ) Riemann–Liouville fractional derivatives are defined.

3 Fractional Kinetics

3.1 FKE Derivation

This section presents the derivation of the Fractional Kinetics Equation.

Define the transition probability

P(x, t) =W (x,x0; t− t0) =W (x,x0; t), (4)

which is a conditional probability for a particle to be in (x, t) position of a phase space provided
that this particle was in (x0, t0).

The infinitesimal shift of P(x, t) along t by ∆t in case of fractal time is

∆̂
β

t P(x, t) =
∂ β P(x, t)

∂ tβ
+O(∆tβ

1 ),0≤ β < β1 ≤ 1 (5)
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The infinitesimal shift of P(x, t) due to the transitions from other states P(x′, t) during the same ∆t:

∆̂
α
x P(x, t) =

∫
dyW (x,y;∆t)P(y, t)−P(x, t)+O((∆t)β

2 ), β2 > β (6)

where α is a fractal dimension characterizing the local structure of a phase space near x.

The conservation of probability implies

∆̂
β

t P(x, t) = ∆̂
α
x P(x, t)+O((∆t)min(β1,β2) (7)

which can be rewritten in equivalent form of

lim
∆t→0

∆̂
β

t P(x, t)
(∆t)β

= lim
∆t→0

∆̂α
x P(x, t)
(∆t)β

(8)

Substituting expressions Eq. (5) and Eq. (6) into Eq. (8) results in

∂ β P(x, t)
tβ

= lim
∆t→0

1
(∆t)β

(∫
dyW (x,y,∆t)P(y, t)−P(x, t)

)
(9)

Expanding W (x,y,∆t) in the limit ∆t→ 0 (the existence of the expansion is assumed) results in:

W (x,y;∆t) = δ (x− y)+A(y,∆t)δ α(x− y)+B(y,∆t)δ α1(x− y), 0 < α < α1 < 2 (10)

where α and α1 are appropriate fractal dimension characteristics. Truncation of the expansion
Eq. (10) is where the treatment becomes approximate. Another assumption made here is that the
local transitions are independent of the large time behaviour. This corresponds to stating indepen-
dence of A(y,∆t) and B(y;∆t) of the transition probability P(x, t).

Next task is to find the expression for A(y;∆t and B(y;∆t) in terms of moments of W (x,y,∆t).
Multiply Eq. (10) (x− y)α1 and integrate over x.

〈〈|∆x|α1〉〉=
∫

dx|x− y|α1
(
δ (x− y)+A(y,∆t)δ α(x− y)+B(y,∆t)δ α

1 (x− y)
)

(11)

Using the integral identity

∫
g(x)δ (n)(x)dx = (−1)n

∫
∂ ng(x)

∂xn δ (x)dx (12)

from Eq. (11) get:

〈〈|∆x|α1〉〉=
∫

dx|x− y|α1 W (x,y;∆t) = Γ(1+α1)B(y;∆t). (13)
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To get an expression for A(y;∆t), integrate Eq. (10) over y:

∫
dyW (x,y;∆t) =

∫
δ (x− y)+

∫
dyA(y,∆t)δ α(x− y)+

∫
dyB(y,∆t)δα1(x− y) (14)

1 = 1+
∫

dy
∂ αA(y,∆t)

∂yα
δ

α(x− y)+
∫

dy
∂ α1B(y,∆t)

∂yα1
δ (x− y) (15)

∂ αA(x;∆t)
∂ (−x)α

+
∂ α1B(x;∆t)

∂ (−x)α1
= 0 (16)

Defining

A (x) = lim
∆t→0

A(x;∆t)
(∆t)β

(17)

B(x) = lim
∆t→0

B(x;∆t)
(∆t)β

(18)

Dividing Eq. (16) by (∆t)β , in the ∆t→ 0 get:

∂ αA (x)
∂ (−x)α

+
∂ α1B(x)
∂ (−x)α1

= 0 (19)

rewriting Eq. (9) as

∂ β P(x, t)
∂ tβ

= lim
∆t→0

1
(∆t)β

(∫
dy(W (x,y;∆t)−δ (x− y))P(y, t)

)
(20)

Plugging Eq. (10) into Eq. (20) gives

∂ β P(x, t)
∂ tβ

=− lim
∆t→0

1
(∆t)β

(∫
dy(A(y;∆t)δ α(x− y)+B(y;∆t)δ α

1 (x− y))P(y, t)
)

∂ β P(x, t)
∂ tβ

=− lim
∆t→0

1
(∆t)β

(
∂ α

∂ (−x)α
(A(y;∆t)P(x, t))+

∂ α1

∂ (−x)α1
(B(y,∆t)P(x, t))

)

∂ β P(x, t)
∂ tβ

=
∂ α

∂ (−x)α
((y;∆t)P(x, t))+

∂ α1

∂ (−x)α1
((y,∆t)P(x, t)) , (21)
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which is the Fractional Kinetics Equation, and α , α1 and β are critical exponents. In case α1 =
α +1 Eq. (21) can be simplified into

∂ β P(x, t)
∂ tβ

=
∂ α

∂ (−x)α

(
B(x)

∂P(x, t)
∂x

)
, (22)

which reduces to FP equation for α = 1, β = 1 and (x) = D/2

3.2 Special Cases

Advantage of Fractional Kinetic Equation is that it systematically includes normal and abnormal
diffusion processes. In particular, assuming that (x) can be neglected and rewriting Eq. (21) as

∂ β P(x, t)
∂ tβ

=
∂ α

∂ |x|α
(A (x)P(x, t)) (23)

Case 1: α = 2, β = 1 recovers case of normal diffusion:

∂P(x, t)
∂ t

=
∂ 2

∂ |x|2
(A (x)P(x, t)) (24)

Case 2: α = 2, 0 < β < 1 recovers equation for fractal Brownian motion:

∂ β P(x, t)
∂ tβ

=
∂ 2

∂ |x|2
(A (x)P(x, t)) (25)

Case 3: 1 < α < 2, 0β = 1 recovers equation for a Levy Process:

∂P(x, t)
∂ t

=
∂ α

∂ |x|α
(A (x)P(x, t)) (26)

3.3 Transport

Macroscopic observables of the system correspond to the moments:

〈|x|δ 〉=
∫

dx|x|δ P(x, t), (27)

where P(x,t) is the solution to FKE equation. Time dependence of these moments determines
macroscopic evolution of the system.
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Assume A (x) = const and B is negligeble. Then FK Eq. (21) becomes

∂ β P(x, t)
∂ tβ

=
∂ α

∂ |x|α
(A (x)P(x, t)) (28)

Multiply Eq. (28) by |x|α and integrate over x:

∂ β 〈|x|α〉
∂ tβ

= A
∫

dx|x|α ∂ αP(x, t)
∂ |x|α

= A
∫

dx
(

∂ α |x|α

∂ |x|α

)
P(x, t) = Γ(1+α)A (29)

Integrate Eq. (29) over tβ to get

〈|x|α〉= A
Γ(1+α)

Γ(1+β )
tβ (30)

Due to self-similarity of FKE solutions,

〈|x|〉 ∝ tβ/α = tµ/2, (31)

where µ is called transport exponent. µ > 1 and µ < 1 correspond to cases of super- and sub-
diffusion, respectively.

3.4 FP vs FKE

Since FKE is a generalization of FP method, it is instructive to list the corresponding parameters
of the two. The main original motivation to expand the FP theory was to allow for anomalous
scaling. After introducing fractional derivatives anomalous scaling becomes possible, however the
physical intuition for A and B terms is now lost.
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Table 1: Comparison between parameters of Fokker-Planck and
Fractional Kinetics theories.

FP FKE

Derivatives ∂x, ∂t ∂ α
x , ∂

β

t
Stochastic variable ∆x ∆x, ∆t
Time Fixed Variable with PDF
Second Moment scaling 〈|x|2〉 ∝ t 〈|x|2〉 ∝ tµ , µ ∈ (0,2)
Kolmogorov Conditions

lim
∆t→0

1
∆t
〈〈∆x〉〉= A (x)

lim
∆t→0

1
∆t
〈〈(∆x)2〉〉= B(x)

lim
∆t→0

1
∆t
〈〈(∆x)m〉〉= 0;m > 2

lim
∆t→0

A(x,∆t
(∆t)β

= A (x)

lim
∆t→0 B(x,∆t

(∆t)β

= B(x)

A(y,∆t) 〈〈(∆y)〉〉 -
B(y,∆t) 〈〈(∆y)2〉〉 〈〈|∆x|α1〉〉

Γ(1+α1)

A (x) to B(x) relation A(y,∆t) = 1
2

∂B(y,∆t)
∂y

∂ αA (x)
∂ (−x)α =−∂ α1B(x)

∂ (−x)α1
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