PHYSICS 4C PROF. HIRSCH

<u>Formulas</u>:

$$F = k \frac{q_1 q_2}{r^2} \quad \text{Coulomb's law} \quad ; k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2; \\ \varepsilon_0 = 8.85 \times 10^{-12} C^2 / Nm^2$$

Electric field: $\vec{E} = \frac{q}{4\pi\epsilon r^2} \hat{r} = \frac{kq}{r^2} \hat{r}$; $\vec{E}(\vec{r}) = k \int \rho(\vec{r}') \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} d^3 r'$; $\vec{F} = q_0 \vec{E}$ Linear, surface, volume charge density: $dq = \lambda d\ell$, $dq = \sigma da$, $dq = \rho dv$ Electric field of infinite: line of charge: $E = \frac{\lambda}{2\pi\epsilon_r r}$; sheet of charge: $E = \frac{\sigma}{2\epsilon_r}$ $\vec{\nabla} \times \vec{E} = 0$ (electrostatics) $\Phi = \oint \vec{E} \cdot d\vec{a} = \frac{q_{enc}}{\varepsilon_0} = \frac{1}{\varepsilon_0} \int d^3 r \ \rho(\vec{r}) \ ; \quad \Phi = \text{electric flux}$ Gauss law: Energy: $U = k \frac{q_1 q_2}{r_{12}}$ $U = \frac{\varepsilon_0}{2} \int E(\vec{r})^2 d^3 r$ Work: $W = \int \vec{F} \cdot d\vec{s}$ Electric potential: $\phi(P_2) - \phi(P_1) = -\int_{D}^{P_2} \vec{E} \cdot d\vec{s} \qquad \phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}$ Point charge: $\phi(\vec{r}) = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r}$ Dipole: $\phi(r,\theta) = \frac{p\cos\theta}{4\pi\varepsilon_{0}r^{2}}$ $U = \frac{1}{2} \int \rho \phi d^3 r \qquad \vec{E} = -\vec{\nabla} \phi \quad ; \quad \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \quad ; \quad \vec{\nabla} \times \vec{E} = 0$ Capacitors: $Q = C\phi$, $U = \frac{Q^2}{2C}$; Planar: $C = \frac{\varepsilon_0 A}{s}$ Spherical: $C = 4\pi\varepsilon_0 R$ $I = \int \vec{J} \cdot d\vec{a} , \quad I = \frac{dQ}{dt} , \quad \vec{J} = nq\vec{u} ; \quad div\vec{J} = -\frac{\partial\rho}{\partial t} ; \text{ Power: } P = I^2R ; \quad P = \varepsilon I$ V=IR; $\vec{J} = \sigma \vec{E}$; $\vec{E} = \rho \vec{J}$; $R = \rho \frac{L}{A}$; $\sigma = \frac{ne^2 \tau}{m}$; $Q(t) = C\varepsilon(1 - e^{-t/RC})$; $Q(t) = Q_0 e^{-t/RC}$ Lorentz force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$; force on wire: $d\vec{F} = Id\vec{\ell} \times \vec{B}$; solenoid: $B = \mu_0 nI$ Stokes' theorem: $\oint_{\alpha} \vec{F} \cdot d\vec{s} = \int_{\alpha} (\vec{\nabla} \times \vec{F}) \cdot d\vec{a}$; vector potential: $\vec{\nabla} \times \vec{A} = \vec{B}$ Ampere's law: $\oint_{\alpha} \vec{B} \cdot d\vec{s} = \mu_0 I_{enc} = \mu_0 \int_{\alpha} \vec{J} \cdot d\vec{a}$; $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$; $\vec{\nabla} \cdot \vec{B} = 0$ Field of a wire: $B = \frac{\mu_0 I}{2\pi r} \hat{\theta}$; Force between wires: $F = \frac{\mu_0 I_1 I_2 \ell}{2\pi r}$; cyclotron: $\omega = \frac{qB}{m}$ $\mu_0 = 4\pi \times 10^{-7} kg m / C^2$

In the circuit in the figure, the two resistors shown have the same value, $R_1=R_2=R$. Initially the charge in the capacitor C is zero and the switch S is open. Then the switch is closed, and a current 1A circulates through R_1 immediately after the switch is closed. (a) A long time thereafter, how much current will circulate through R_1 ? (b) Assume at that time (i.e. a long time after S was closed), S is opened again. How much current will circulate through R_1 right after S is opened again? (c) How long after S is opened again will the power dissipated in R_1 be $\frac{1}{2}$ as large as immediately after S is opened again? Give your answer in terms of $t_0=RC$.

The cylindrical conductor shown in the figure has length 50cm, cross-sectional area 1mm^2 and is made of Cu, with resistivity 1.7×10^{-8} ohm-meter. The emf ϵ =0.2V. Assume the other wires in the circuit have zero resistance.

(a) Find the current flowing through the cylinder, in A (amperes).

(b) Find the magnitude of the magnetic field at point P at the surface of the cylinder, in T.(c) Find the magnitude of the electric field (in N/C) and of the magnetic field (in T) at point P' on the axis of the cylinder.

Problem 3 (10 pts)

Consider 3 wires with currents I, 2I and 3I respectively arranged along the x, y and z axis of a rectangular coordinate system as shown in the figure.

(a) Find the magnetic field at a point (x_0,y_0) in the xy plane. You can give your result either in Cartesian

coordinates, B_x , B_y , B_z or in cylindrical coordinates B_r , B_{θ} , B_z . Give also the magnitude of B.

(b) Find the line integral $\oint_C \vec{B} \cdot d\vec{s}$ where C is a rectangle in the (x,y) plane with vertices at

points $(\pm x_0, \pm y_0)$.