Formulas:

$$
F = k \frac{q_1 q_2}{r^2}
$$
 Coulomb's law ; $k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$; $\epsilon_0 = 8.85 \times 10^{-12} \text{C}^2 / Nm^2$

Electric field: $\vec{E} = \frac{q}{4}$ $4\pi\varepsilon_{0}r$ $\frac{1}{2}\hat{r} = \frac{kq}{r^2}\hat{r}$; \vec{E} (\Rightarrow \vec{r}) = $k \int \rho(r)$ \Rightarrow *r*') ! *^r* [−] ! *r*' | $\int \rho(\vec{r}\,') \frac{r-r}{|\vec{r}-\vec{r}\,'|^3} d^3$ r' ; $\vec{F} = q_0$ $\overline{1}$ *E* Linear, surface, volume charge density: $dq = \lambda d\ell$, $dq = \sigma da$, $dq = \rho dv$ Electric field of infinite: line of charge: $E = \frac{\lambda}{2\lambda}$ $2\pi\varepsilon_{0}r$ $\frac{\sigma}{\sigma}$; sheet of charge : $E = \frac{\sigma}{\sigma}$ $2\varepsilon_0$ ľ $\vec{\nabla} \times \vec{E} = 0$ (electrostatics) Gauss law: $\Phi = \oint \vec{E} \cdot d$ $\vec{a} = \frac{q_{\text{enc}}}{a}$ $\oint \vec{E} \cdot d\vec{a} = \frac{q_{\text{enc}}}{\varepsilon_0} = \frac{1}{\varepsilon_0}$ $\int d^3r \, \rho(\vec{r})$ \vec{r}) ; Φ =electric flux Energy: $U = k \frac{q_1 q_2}{r_1 q_2}$ *r* ¹² $U = \frac{\varepsilon_0}{2}$ 2 *E*($\int E(\vec{r})^2 d^3r$ Work: $W = \int \vec{F} \cdot d\vec{s}$ *s* Electric potential: $\phi(P_2) - \phi(P_1) = -\int_{a}^{P_2} \vec{E}$ *P*1 P_{2} $\int\vec{E}\cdot d\vec{s}$ *s* φ($(\vec{r}) = \frac{1}{4}$ $4\pi\mathcal{E}_0$ d^3r' $\frac{\rho(r)}{r}$ \Rightarrow *r*') | $\int d^3r' \frac{p(r)}{|\vec{r}-\vec{r}'|}$ Point charge: ϕ ($(\vec{r}) = \frac{1}{4}$ $4\pi\mathcal{E}_0$ *q r* Dipole: $\phi(r,\theta) = \frac{p \cos \theta}{4}$ $4\pi\varepsilon_{0}r$ $\frac{2}{2}$ $U = \frac{1}{2} \int \rho \phi d^3$ $r \qquad \vec{E} = \vec{\nabla}\phi$; $\vec{\nabla}$. $\vec{E} = \frac{\rho}{\rho}$ $\pmb{\varepsilon}_{_{0}}$ $\vec{\nabla} \times \vec{E} = 0$ Capacitors: $Q = C\phi$, $U = \frac{Q^2}{2C}$ 2*C* ϵ ; Planar: $C = \frac{\varepsilon_0 A}{\varepsilon}$ $\frac{\partial^2 I}{\partial S}$ Spherical: $C = 4\pi \varepsilon_0 R$ $I = \int \vec{J} \cdot d\vec{a}$, $I = \frac{dQ}{dt}$, $\vec{F} = a(\vec{E} + \vec{v})$ $\vec{J} = nq\vec{u}$; $div\vec{J} = -\frac{\partial \rho}{\partial x}$ ∂*t* $P = I^2 R$; $P = \varepsilon I$ Lorentz force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$; force on wire: $d\vec{F} = Id\vec{l} \times \vec{B}$ $V=IR;$. $\overline{\overline{a}}$ $J = \sigma$ $\overline{}$ E ; s' theorem: $\oint_C F \cdot dS =$ \overline{a} $E = \rho$ $\overline{}$ \vec{J} ; $R = \rho \frac{L}{A}$; $\sigma = \frac{ne^2 \tau}{m_e}$ *me* ; $Q(t) = C\varepsilon(1 - e^{-t/RC})$; $Q(t) = Q_0 e^{-t/RC}$ $\vec{E} + \vec{v} \times \vec{B}$; force on wire: d $\overrightarrow{ }$ *F* = *Id* $\vec{l} \times \vec{B}$; solenoid: $B = \mu_0 nI$ Stokes' theorem: $\oint \vec{F} \cdot d$ \Rightarrow *s* $\oint_C \vec{F} \cdot d\vec{s} = \int_S ($ \rightarrow ∇× $\int_S (\vec{\nabla} \times \vec{F}) \cdot d$ \Rightarrow \vec{a} ; vector potential: $\vec{\nabla} \times \vec{A} = \vec{B}$ Ampere's law: ! *B*⋅ *d* \Rightarrow *s* $\oint_C \vec{B} \cdot d\vec{s} = \mu_0 I_{enc} = \mu_0$ \Rightarrow *J* ⋅ *d* \Rightarrow *a* $\int\limits_{S} \dot{J} \cdot d\vec{a}$; $\vec{\nabla} \times \vec{B} = \mu_0$ \Rightarrow *J* ; π \rightarrow $\nabla \cdot$ \overline{a} $B=0$ Field of a wire: $B = \frac{\mu_0 I}{2}$ 2π*r* $\hat{\theta}$; Force between wires: $F = \frac{\mu_0 I_1 I_2 \ell}{2}$ 2π*r* ; cyclotron: ^ω⁼ *qB m* $\mu_0 = 4\pi \times 10^{-7} kg m/C^2$

In the circuit in the figure, the two resistors shown have the same value, $R_1=R_2=R$. Initially the charge in the capacitor C is zero and the switch S is open. Then the switch is closed, and a current 1A circulates through R_1 immediately after the switch is closed. (a) A long time thereafter, how much current will circulate through R_1 ? (b) Assume at that time (i.e. a long time after S was closed), S is opened again. How much current will circulate through R_1 right after S is opened again? (c) How long after S is opened again will the power dissipated in R_1 be $\frac{1}{2}$ as large as immediately after S is opened again? Give your answer in terms of $t_0=RC$.

The cylindrical conductor shown in the figure has length 50cm, cross-sectional area $1mm^2$ and is made of Cu, with resistivity $1.7x10^{-8}$ ohm-meter. The emf ε =0.2V. Assume the other wires in the circuit have zero resistance.

(a) Find the current flowing through the cylinder, in A (amperes).

(b) Find the magnitude of the magnetic field at point P at the surface of the cylinder, in T. (c) Find the magnitude of the electric field (in N/C) and of the magnetic field (in T) at point P' on the axis of the cylinder.

Problem 3 (10 pts)

Consider 3 wires with currents I, 2I and 3I respectively arranged along the x, y and z axis of a rectangular coordinate system as shown in the figure.

(a) Find the magnetic field at a point (x_0,y_0) in the xy plane. You can give your result either in Cartesian

coordinates, B_x , B_y , B_z or in cylindrical coordinates B_r , B_s , B_z . Give also the magnitude of B.

(b) Find the line integral $\oint \vec{B}$ $\oint \vec{B} \cdot d\vec{s}$ where C is a rectangle in the (x,y) plane with vertices at *C*

points $(\pm x_0, \pm y_0)$.