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1.78. Hole in a shell

First solution: We can solve this exercise by direct integration. Let’s slice up
the spherical shell (minus the hole) into rings parameterized by the angle θ shown in
Fig. 29. The width of a ring is Rdθ, and its circumferential length is 2π(R sin θ). So
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its area is 2πR2 sin θ dθ. All points on the ring are a distance 2R sin(θ/2) from the
center of the hole. Only the vertical component of the field survives, and this brings
in a factor of sin(θ/2), as you can check. If the edge of the hole is at the small angle
θ = ϵ, the total field at the middle of the hole is (writing sin θ as 2 sin(θ/2) cos(θ/2))
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in the limit where ϵ→ 0.

Second solution: The given setup with the hole is the superposition of a complete
spherical shell with density σ plus a small disk with density −σ. And very close to
the center of the disk, the disk looks essentially like an infinite plane. The fields due
to these two objects, at the point in question, are shown in Fig. 30. The sum of the
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fields at the center of the hole is therefore a field with magnitude σ/2ϵ0, directed
radially outward. Note that we obtain an outward σ/2ϵ0 field independent of whether
we look at a point just inside or just outside the shell; these points yield 0 + σ/2ϵ0
or σ/ϵ0 − σ/2ϵ0, respectively. In other words, even though the field isn’t continuous
across the original complete shell or across the disk, it is continuous across the hole.
It must be continuous, of course, because there is nothing but vacuum in the hole.

Since the field inside the complete sphere is zero, the field inside the sphere-plus-hole
is exactly the same as the field due to the negative disk. The field lines due to a disk
are shown in Fig. 2.12. Near the edge of the hole, the tangential component of the
field diverges. But at points in the hole exactly on the (removed) surface of the sphere,
the radial component of the field is exactly σ/2ϵ0, over the entire area of the hole.

Third solution: We can also solve this exercise by considering the force on the
little disk, while it is still in place in the shell. If A is the area of the disk, then we
know from Eq. (1.49) that the force on it is
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But the force on the disk equals the charge on the disk times the field at the location
of the disk, due to all the other charge in the system (that is, the shell with the disk
removed). Equation (88) therefore tells us that the (radial) field of the shell-minus-disk
must be σ/2ϵ0, as desired.

1.79. Forces on three sheets

From Eq. (1.49) the force per unit area on a sheet is (E1 +E2)σ/2, where E1 and E2

are the electric fields on either side. The fields in the various regions can be found
by the superpositions of the fields from the individual sheets, using the fact that the
field due to a given sheet is σ/2ϵ0. With σ0 ≡ 10−5 C/m2, the fields in the two middle
regions are 4σ0/ϵ0 upward and 3σ0/ϵ0 downward, as shown in Fig. 31. Above and
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below all three plates the field is zero. The forces per unit area on the three sheets


