Lectures 8: Maximum likelihood II.
(nonlinear least square fits)

Y2 fitting procedure!



short review from Lecture 7:

An example might be something like fitting a known functional form to data

f(x) generic theory model

f(z) = byexp(—bozx) + b 1 (2 — ba)?
z) = by exp(—byz) + bz exp | —3 b2 f(x) = 2p(x)-0.4 x temperature
p(X) coin bias
g e
measured value
of 2p-0.4asa 1 Underlying curve is known to
function of x b nature, |but not to us! We see
08 . b % only the red data points.
Ll ‘l! 1] _ Fit 5 parameters from 20
| ¢ & irregularly space points, with
02} 5 | Ned T ] normal errors of known
= ¢ standard deviations.
O_
X - || Can we do it? How well?
% 1\ 2z 49 4 s & 7 8
,. Increasing temperature x
in some arbitrary units

for example, this rise might be an instrumental or
noise effect, while this bump might be what you
are really interested in



short review from Lecture 7:
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short review from Lecture 7:

Weighted Nonlinear Least Squares Fitting
a.k.a. 2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation
(with uniform prior and maybe
some other normality assumptions)

these are not all exactly identical,
but they're real close!

Y; = y(Xz' ]b) + e; measured values supposed to be a model, plus
| an error term

e; ~ N(()’ gz.) the errors are Normal, either independently
e ~ N(O, Z) or else with errors correlated in some known

way (e.g., multivariate Normal)

We want to find the parameters of the model b from the data.



Maximum Likelihood discussion

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

P(b[{y:}) o< P({y:}|b)P(b)

ocHexp 1 (yi_y(xib))z_ P(b)

g;

~ exp 52 (yi - y(ixz-b))g-_ P(b)

o

x exp|—1x*(b)| P(b)

Now the idea is: Find (somehow!) the parameter value b, that
minimizes 2 .

For linear models, you can solve linear “normal equations” or, better,
use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem,
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)



Maximum Likelihood discussion

Nonlinear fits are often easy in MATLAB (or other high-level languages) if you
can make a reasonable starting guess for the parameters:

(z — b4)2>

b5

y(z|b) = by exp(—bax) + b3 exp (—%

2
2 _ yi — y(z;|b)
ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)) .A2)
chisqfun = @(b) sum(((ymodel(x,b)-y) /<iad A?)

1.2

bguess = [1 2 .5 3 1.5] L

1

bfit = fminsearch(chisqgfun,bguess)
xfit = (0:0.01:8); o5}
yfit = ymodel (xfit,bfit);

\

bfit = 1.1235
3.2654

Suppose that what we really care about is or 1 QL

the area of the bump, and that the other !
parameters are “nuisance parameters”. ‘o 1 2 3 4 5 6 7 8

increasing temperature x
in some arbitrary units

1.

04Fr

>



Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

5%\
—%XQ (b) ~ _%X?&ﬂn - %(b —bo)” {%ab@b] (b —by)

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then

P(b[{y;}) o< exp [—%(b - bo)sz_l(b - bo)] P(b)

with I

5 _ {1 agxg }— L covariance (or “standard error’) matrix

1 of the fitted parameters
20bob

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



y2 distribution

Let’s talk more about chi-square.
Recall that a t-value is (by definition) a deviate from N(0,1)

v2 is a “statistic” defined as the sum of the squares of n independent t-values.

2
2 Lg — i

= i ~ N(ui,0;

=2 (%2H) . w N

7

Chisquare(rv) is a distribution (special case of Gamma), defined as

x>~ Chisquare(v), v > 0

l 2)%1)—1

1 (x
22"T'(3v)

/7()(2)(1)(2 = exp (—%Xz) d)(z. )(2 > ()

The important theorem is that ¢ 2 is in fact distributed as Chisquare.

Let’s prove it.



I' function 1-pager

In mathematics, the gamma function (represented by

the capital Greek letter I') is an extension of the
factorial function, with its argument shifted down by 1,

to real and complex numbers. That is, if 7 is a positive
integer:

I'(n) =(n—-1).

The gamma function is defined for all complex numbers
except the non-positive integers. For complex numbers
with a positive real part, it is defined via a convergent
improper integral:

['(2) :/000 z* e de. ( )
I‘(l+n)=(2n)!\/7_r=(2n_1 (

B | =




y2 distribution

Prove first the case of v=1:

1
Suppose Px(x)zme = z~N(0,1)

and Y = T2

py (y)dy = 2px (x) dx

—\
qs
» a
>
~N

o2
>

as o<
S

)

[+ N
Q<
Tl

S¢ |

dx X

1
So, py (y) = vy~ 2px (y'/?) = \/2173,6—23'

~ Chisquare(1)




y2 distribution

To prove the general case for integer v, compute the characteristic function

¥? ~ Chisquare(v), v > 0

| L
22"T'(3v)

exp (—%Xz) dy?. ¥? >0

characteristic function by Fourier transformation:

o V2
(1-21*1) | _
\ Since we already proved that v=1 is the
distribution of a single t?-value, this proves that

the general v case is the sum of v t?-values.



x2 distribution Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

82/‘2
-3~ i, 3 b [10 5] (b

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(bl{y:}) o exp [~5(b — bo) 33 (b — bo)] P(b)
2
with I
5 _ [1 32X2 }— L covariance (or “standard error”) matrix

1 of the fitted parameters
20bob

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal



x2 distribution Maximum Likelihood parameter errors?

Numerical calculation of the Hessian by finite difference

o°f 1 <f++‘-f—+__f4—‘-f——)

dxdy  2h 2h 2h
1
=z e T fe = o = fs)

bfit = 1.1235 1.5210 0.6582 3.2654

chisgfun = @(b) sum(((ymodel(x,b)-y)./sig).A2)
h = 0.1;

unit = @(i) (1:5) == 1;

hess zeros(5,5);

for i=1:5, for j=1:5,

bpp = bfit + h*(unit(i)+unit(3));
bmm = bfit + h*(-unit(i)-unit(j));
bpm = bfit + h*(unit(i)-unit(3));
bmp = bfit + h*(-unit(i)+unit(3));

hess(i,j) = (chisqfun(bpp)+chisqgfun(bmm)..
-chisgfun(bpm)-chisqgfun(bmp))./(2*h)A2;
end
end
covar = inv(0.5*hess)

o + ® 0+ ® ++
h
h
*-0 %00 *>0 *
o _ ‘O_ .+_

1.4832

This also works for the diagonal
components. Can you see how?



distribution Maximum Likelihood parameter errors?

(ZE — b4)2
For our example, y(z|b) = by exp(—baz) + b3 exp (_% b2
5
bfit =
1.1235  1.5210  0.6582  3.2654  1.4832
hess =

64.3290 -38.3070 47.9973 -29.0683 46.0495
-38.3070 31.8759 -67.3453 29.7140 -40.5978
47.9973 -67.3453 723.8271 -47.5666 154.9772
-29.0683 29.7140 -47.5666 68.6956 -18.0945
46.0495 -40.5978 154.9772 -18.0945 89.2739

covar =
0.1349 0.2224 0.0068 -0.0309 0.0135
0.2224 0.6918 0.0052 -0.1598 0.1585
0.0068 0.0052 0.0049 0.0016 -0.0094
-0.0309 -0.1598 0.0016 0.0746 -0.0444
0.0135 0.1585 -0.0094 -0.0444 0.0948

This is the covariance structure of all the parameters, and indeed (at least in
CLT normal approximation) gives their entire joint distribution!

The standard errors on each parameter separately are 0; — Cz-z'

sigs =
0.3672 0.8317 0.0700 0.2731 0.3079

But why is this, and what about two or more parameters at a
time (e.g. b; and bg)?



x2 distribution Maximum Likelihood marginalized parameters

For our example, we are conditioning or marginalizing from 5 to 2 dims:

T — by)?
y(z|b) = by exp(—boz) + by exp (_%( b2 1) )
o

the uncertainties on b, and b, jointly (as error ellipses) are

1.9

sigcond =
0.0044 -0.0076 18} 1
-0.0076 0.0357
1.7+ .
sigmarg =
0.0049 -0.0094 er
-0.0094 0.0948 15t

‘ 14F

13F

conditioned
marginalized
1

1 { 1 1 | 1 1 1 1 |
0.58 06 062 064 066 068 0.7 072 074

bg

Conditioned errors are always smaller, but are useful only if you can find other
ways to measure (accurately) the parameters that you want to condition on.



