Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

» The Gibbs sampler is a conditional sampling technique
in which the acceptance-rejection step is not needed.

» The Markov transition rules of the algorithm are built
upon conditional distributions derived from the target
distribution.

» Suppose that the random variable can be decomposed
into n components, i.e. x = (x1,...,x,). In Gibbs sampler,
one randomly or systematically chooses a coordinate x;
and then substitutes it with x/ drawn from

7T(Xi [ Yo X1yeo oy Xi—1s Xi41s Xi42s+«+ ,x,,),

that is, the conditional posterior density of x;.

» This conditional posterior usually is but does not have to
be one-dimensional.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Gibbs Sampler (Systematic Scan)

1. Let k = 0 and x© = (xio),xéo),.. . ,x,(,o)).
2. Draw x,-(k+1) from the conditional density
k+1 k+1) (K
7t (x; [x{ * ),...,x;_le ),x,-(+)1,...,x,(7k)),

fori=1,...,n

3. Set k = k + 1, and if k is less than total number of
iterations defined by the user, go back to the 2. step.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Gibbs Sampler (Random Scan)

1. Let t = 0 and x(© = (xio),xéo),...,xﬁo)).

2. Select a random uniformly distributed index / from the
set {1,2,...,n}

5. Draw x,-(k+1) from the conditional distribution

k k k
jT(Xi ] X:{ )’ t ’Xlg—)l’xlg+)1' e :Xr(yk)).

4. Set k = k + 1, and if k is less than total number of
iterations defined by the user, go back to the 2. step.

$ TAMPERE UNIVERSITY OF TECHNOLOGY



Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Metropolis-Hastings Gibbs sampler

Differences between the moves of Metropolis-Hastings
(M-H) and Gibbs sampler (GS). In the images, the actual
samples have been visualized with red and the other
proposed (M-H) and conditional sampling (GS) points with
blue.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Balance Equation for Gibbs Sampler

The balance equation [ 7(x)A(x,y) dx = [ 7t(y)Aly, x) dx holds
for Gibbs sampler, which can be shown as follows. Let us
for simplicity assume that the systematic scan Gibbs sampler
is in question and each conditional density is a
one-dimensional one. The transition function is given by

n
Alx,y) = ]—[ﬂ(y,- [ Y10 eos Yic1s Xis1s e« s Xn)-
i=1

Integrating A(y, x) with respect to the last coordinate x, gives

n
/A(y,x)dxn=/I_IJT(X,-]x1,...,x,-_1,y,-+1,...,y,,)dx,,
I B
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Markov chain Monte Carlo (MCMC) methods
Gibbs Sampler
Balance Equation for Gibbs Sampler continued

1

n

TO(XGi | X1, oo s Xic1) Yieds - - - ,yn)] TC(Xn | X105+ -« s Xn—1)dXn
R

_

= jT(Xi]XL--in—ll}/i+1:---r}/n)-

=

3 -

[y

The last equality follows from [R T0(Xn | Y1, -0 Yno1)dXy = 1.
Repeating this integration inductively with respect to
Xn—1,Xn—2, - - -, x1, it follows that [p, Aly, x)dx = 1. Thus, we
have
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Balance Equation for Gibbs Sampler continued

Considering now the right-hand side of the balance equation,
and observing that A(x, y) is independent of x;, we have

/ (Al y)da = Alx,y) [ nt(x)dba

n

= A(X,y)jT(XQ,X3, ... an)r

and further [, 7(x)A(x,y)dx; =

n
(l_ljr(y,- [yi, oo s Yict Xists - - ,x,,))yr(yl [ X2, .. ) Xn)Tt(X2, . . ., Xn).
i=2
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Balance Equation for Gibbs Sampler continued

n
= (l_[ﬂ()/il)ﬁr---r}/i—eri+1r---'Xn)>7T(Y1rX2;X3,---;Xn)-
i=2

Repeating this inductively for x, x3, ..., x,, and taking into
account that

/.T[(}/l,---IYI—eri,---:Xn)T[()/i ly1:---r}/i—lrxi+1:---,Xn)dXi
R!

= ]T(yl,.. o Yi—1,Xi+1,- - .,X,,)]T(y,' [ Yiree o Yi—1,Xit1, - .,X,,)
= ﬂ(Yl:---rYi—l:)’i,Xiﬂ,---,Xn),

it follows that [, 71(x)A(x, y)dx = 7(y), showing that the
balance equation holds.



Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

» In general, one step of Gibbs sampler (GS) requires
more work than that of the Metropolis-Hastings (M-H)
algorithm, since the former is likely to require more
point evaluations of the posterior density.

» However, subsequent points produced by GS are usually
less mutually correlated than those produced by M-H,
i.e. the sample ensemble of a given size is typically
better distributed according to the posterior in the case
of GS than that of M-H.

» Sampling from a conditional density in Gibbs Sampler
typically requires findind the essential part of the density
due to which implementation can be difficult.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Sampling from one-dimensional density
One can draw x distributed according to the probability
distribution ® : R — [0, 1], ®(t) = f_too 7t(t) dt, through the
following steps:

1. Draw u from Uniform([0, 1]).

2. Set x = ®7(u).

» If the integral ®(t) = f_too 7t(t) dT is computed for a set
of points t;, t, ..., t,, covering the essential part of the
support of s, the above algorithm can be used to
numerical sampling.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Numerical sampling from one-dimensional density

One can draw x distributed accordmg to the probability
distribution ® : R — [0, 1], f 7t(t) d1, through the
following steps

1. Find a set of points t, t», ..., t,, covering the essential
part of the support of .

2. Compute the integral ®(t f 7t(t) dt for each point
ti,t,...,tm.
3. Draw u from Uniform([0, 1]).

4. Find the smallest index i for which ®(t;) > u and set
x = tj.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Example 9 (Matlab)

Draw and visualize a sample ensemble consisting of 100000
points from a probability density

(a) 7t(T) ox cos(mrT/2)

(b) (1) x (T + 1)%/4
(c) m(T) o< (T + 1)/2
(d) 7t(T) o< log(T + 2)

with T € [-1,1]. Use the algorithm of the previous page.
Visualize the results using histograms.
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Markov chain Monte Carlo (MCMC) methods
Gibbs Sampler
Example 9 (Matlab) continued

0

©) @

Blue = Histogram, Red = Exact.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Example 10 (Matlab)

Repeat the sampling procedures of Example 9 using Gibbs
Sampler. Compare the results to the ones obtained with the
random walk Metropolis with Gaussian proposals. Observe
that the Gibbs sampler produces faster moving Markov
chain than Metropolis-Hastings.

Solution

Samples from each one-dimensional conditional density
were produced numerically by dividing intersection of the
unit disk and the line corresponding to conditional density
into a 200 equally spaced points, and then the previously
given one-dimensional sampling algorithm was used.
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Example 10 (Matlab) continued

Case 1IO:0 Three sensors, o = 0.1 o

A 4500 9000 A 4500 9000
STD = 0.098054 STD =0.17148
horizontal component vertical component

purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler
Example 10 (Matlab) continued

Case I: Three sensog'cs, o=0.1

5]

= 0 1 91 0 1

Marginal density (horiz.) = Marginal density (vertical)
blue = sample based, red = exact

™ 500 1000 1 500 1000
Burn in sequence (horiz.) Burn in sequence (vertical)
purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler
Example 10 (Matlab) continued

Case II: Three sensors, o0 = 0.2

100 100
@ ISO * lso
0

Pos’(erior density Sample ensemble
4500 9000 4500 9000
STD = 0.13864 STD =0.32186
horizontal component vertical component

purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler
Example 10 (Matlab) continued

Case II:V Three Sensors, 0 = 0.2

n,
2]

Marginal density (horiz.)  Marginal density (vertical)
blue = sample based, red = exact

™ 500 1000 1 500 1000
Burn in sequence (horiz.) Burn in sequence (vertical)
purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Example 10 (Matlab) continued

Case III: Five sensors, 0 = 0.1
o 100 o 100

Posterior density Sample ensemble
4500 9000 4500 9000
STD = 0.053875 STD = 0.057192
horizontal component vertical component

purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler
Example 10 (Matlab) continued

" Case III: Five sensm;g, o=0.1

=il 0 1 -1 0 1
Marginal density (horiz.)  Marginal density (vertical)
blue = sample based, red = exact

™ 500 1000 1 500 1000
Burn in sequence (horiz.) Burn in sequence (vertical)
purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler
Example 10 (Matlab) continued

Case IV: Five sensors, 0 = 0 2

: |100

Posterior den31ty Sample ensemble

100

1 4500 9000 1 4500 9000
STD = 0.1283 STD =0.12458
horizontal component vertical component

purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler
Example 10 (Matlab) continued

Case IV: Five sensors, 0 = 0.2

Bl 0 ' 1 il 0 1
Marginal density (horiz.) = Marginal density (vertical)
blue = sample based, red = exact

™ 500 1000 1 500 1000
Burn in sequence (horiz.) Burn in sequence (vertical)
purple = exact, green = conditional mean, black = 95 % credibility
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Markov chain Monte Carlo (MCMC) methods

Gibbs Sampler

Example 10 (Matlab) continued

» Based on the burn in sequence, it is clear that the Gibbs
sampler produces a faster moving Markov chain than
the Metropolis-Hastings, i.e. the sample points are less
mutually correlated in the case of Gibbs sampler.

» A rule of thumb is that the more the sampling history
for a single coordinate looks like a "fuzzy worm" the
more independent are the sampling points and the
better is the Markov chain in general with regard to
convergence of the estimates.

$ TAMPERE UNIVERSITY OF TECHNOLOGY



