Lectures 12: Bootstrap |l.

bootstrap and its statistics reviewed



error on nonlinear function of fitted parameters?

What is the uncertainty in quantities other than the fitted coefficients:

|. Linearized error propagation

by is the MLE parameters estimate

b; = b — by is the RV as the parameters fluctuate

f=f®)=Ff(bo)+Vfbi+--
(f) = (f(bo)) + V£ _(b1) = f(bo)
(£2) = (£)* = 2f(bo)(Vf 4b1)) + ((Vf b1)?)
=Vf (bib] )VfT
=VfEVfT



Linearized error propagation

In our example, if we are interested in the area of the “hump”,

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832

covar = 8 . -:'; :
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f = bsbs
vf — (0707b5707b3)

Vi EVFL = b23335 + 2b3b5 X35 + b2355 = 0.0336
v/0.0336 = 0.18

the one standard deviation

So b3b5 — 098 1 018 «— (1-c) error bar

Is it normally distributed?

Absolutely not! A function of normals is not normal (although, if they
are all narrow, it might be close).



Sampling the posterior histogram

Method 2: Sample from the posterior distribution

1. Generate a large number of (vector) b’s
b ~ MVNormal(bg, 33)

2. Compute your f(b) separately for each b

600

3. Histogram
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Note again that b is typically (close to) m.v. normal because of the CLT, but
your (nonlinear) fmay not, in general, be anything even close to normal!



Sampling the posterior histogram

Our example:

bees = mvnrnd(bfit,covar,10000);
humps = bees(:,3).*bees(:,5);
histChumps, 30);

std Chumps)
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Does it matter that | use the full covar, not
just the 2x2 piece for parameters 3 and 5?



comparison of linear propagation and posterior sampling:

Compare linear propagation of errors to sampling the posterior

 Note that even with lots of data, so that the distribution of the b’s
F\Ieally ? multivariate normal, a derived quantity might be very non-
ormal.

— In this case, sampling the posterior is a good idea!

* For example, the ratio of two normals of zero mean is Cauchy
— which is very non-Normall!.

* So, sampling the posterior is a more powerful method than linear
propagation of errors.

— even when optimistically (or in ignorance) assuming multivariate
Gaussian for the fitted parameters

* |In fact, sampling the posterior distribution of large Bayesian models
whose parameters are not at all Gaussian is, under the name
MCMC, the most powerful technique in modern computational
statistics.



bootstrap sampling

Method 3: Bootstrap resampling of the data

 We applied some end-to-end process to a data set
and got a number fout

« The data set was drawn from a population of
repetitions of the identical experiment

— which we don'’t get to see, unfortunately
— we see only a sample of the population

« We'd like to draw new data sets from the population,
reapply the process, and see the distribution of answers

— this would tell us how accurate the original answer, on average, was
— but we can’t: we don’t have access to the population

 However, the data set itself is an estimate of the population pdf!
— in fact, it’s the only estimate we've got!
 So we draw from the data set — with replacement — many “fake”
data sets of equal size, and carry out the proposed program
— does this sound crazy? for a long time many people thought so!

— Bootstrap theorem [glossing over technical assumptions]: The
distribution of any resampled quantity around its full-data-set value
estimates (naively: “asymptotically has the same histogram as”) the
distribution of the data set value around the population value.




bootstrap sampling

Let’s try a simple example where we can see the “hidden” side of things, too.

Visible side (sample): Hidden side (population):

These happen to be s
drawn from a
Gamma distribution.  socor
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Statistic we are interested in happens to be (it could be anything):

mean of distribution
median of distribution

sammedian = median(sample) themedian = median(bigsample)
sammean = mean(sample) themean = mean(bigsample)
samstatistic = sammean/sammedian thestatistic = themean/themedian
sammedian = themedian =

2.6505 2.6730
sammean = _ . themean =

2.9112 How accurate is this? 2.9997
samstatfstiqk;///// thestatistics =

1.0984 1.1222



bootstrap sampling
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bootstrap sampling

To estimate the accuracy of our statistic, we bootstrap

ndata = 100; new sample of integers in ndata = 100;

nboot = 100000; 1:ndata, with rep|acement nboot = 100000;

vals = zeros(nboot,1); vals = zeros(nboot,1);

for j=1:nboot, for j=1:nboot,
choose = randsample(ndata,ndata,true); sam = randg(3, [ndata 1]);
vals(j) = mean(sample(choose)) vals(j) = mean(sam)/median(sam);

/median(sample(choose)); end
end hist(vals,100)

hist(vals,100)
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Things to notice:
The mean of resamplings does not improve the original estimate! (Same data!)

The distribution around the mean is not identical to that of the population. But it is
close and would become identical asymptotically for large ndata (not nboot!).



statistics reviewed

The Empirical density function

Statistical inference concerns learning from experience: we observe a
random sample x = (x1, %2, -+ ,X,) and wish to infer properties of the
complete population A that yielded the sample. A complete knowledge is
obtained from the population density function F(.) from which x has been
generated F ~» x = (x1, X2, , Xp)

Definition

The empirical density function F(.) is defined as:

F(x) = 337, 0(x — x;)

where §(-) is the Dirac delta function. So the probability of x = x; is :

i:- X; dX = 1 '.7= 6 X; — X; dx _— rl)’ XjE{Xl,---,xn}
J n £Lui=1"\"J

0, otherwise




statistics reviewed

Parameters

Definition
A parameter, 6, is a function of the probability density function (p.d.f.) F,

e.g.:
6 = t(F)

if @ is the mean

+00
6 =Eg(x) = f x F(x)dx = pr
if 6 is the variance
+00
0=Eel(x—uefl = [ (x—ue)? F(x)dx = ot

a=3 (=1 a parameter B8 on F: B=mean/median



statistics reviewed
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bootstrap sampling

Let’s try a simple example where we can see the “hidden” side of things, too.

Visible side (sample): Hidden side (population):
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Statistic we are interested in happens to be (it could be anything):

e_ mean of distribution
~ median of distribution

sammedian = median(sample) themedian = median(bigsample)
sammean = mean(sample) themean = mean(bigsample)
samstatistic = sammean/sammedian thestatistic = themean/themedian
sammedian = themedian =

2.6505 2.6730
sammean = _ . themean =

2.9112 How accurate is this? 2.9997
samstatfstiqk;///// thestatistics =

1.0984 1.1222 =>Q parameter

A " "
O statistic



statistics reviewed

Statistics or estimates

Definition
A statistic (also called estimates, estimators) @ is a function of F or the
sample x, e.g.:

d = t(F)

or also written 8 = s(x).

if § is the mean:

§ =t(F) = fjoo:x F(x)dx
= _+o°§x LS 1 0(x —x;) dx

= % D o1 Xi

=s(x) =Xx




statistics reviewed

Statistics or estimates

if § is the variance:
0 = [T2(x —x)? F(x)dx

= 5 21 (% —X)?

— 52




statistics reviewed

The Plug-in principle

Definition
The Plug-in estimate of a parameter § = t(F) is defined to be:

0 = t(F).

The function 6 = t(F) of the probability density function F is estimated by the
same function t(.) of the empirical density F.

@ X is the plug-in estimate of ur.
@ 0 is the plug-in estimate of of




bootstrap review and bias

Bootstrap samples and replications

Definition

A bootstrap sample x* = (x{',x3,--- ,x") is obtained by randomly
sampling n times, with replacement, from the original data points
X = (X1,X2,** , Xn).

Considering a sample x = (xi, X, X3, X3, X5), some bootstrap samples can

be:
x*(l) = (X2,X3,X5,X4,X5)
x*(2) — (X1,X3,X1,X4,X5)
etc.

Definition

With each bootstrap sample x*(1) to x*(B), we can compute a bootstrap
replication 6*(b) = s(x*(P)) using the plug-in principle.




bootstrap review and bias

How to compute Bootstrap samples

Repeat B times:

@ A random number device selects integers i1, - , i, each of which
equals any value between 1 and n with probability %
@ Then compute x* = (X, -, X;,)-

Some matlab code available on the web

See BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D.
Robert Iskander,

http: //www.csp.curtin.edu.au/downloads/bootstrap_toolbox.html




bootstrap review and bias

How many values are left out of a bootstrap resample 7

Given a sample x = (xq,Xp,- -, X,) and assuming that all x; are different,
the probability that a particular value x; is left out of a resample
X* = (X{, X3, ,xp) Is:

P(xi #x,1<j<n)= (1—1)

n

since P(x* = x;) = . When n is large, the probability (1 — 1) converges

to e~ 1 =~ 0.37.



bootstrap review and bias

The Bootstrap algorithm for Estimating standard errors

© Select B independent bootstrap samples x*(1), x*(2) ... x*(B) drawn
from x

@ Evaluate the bootstrap replications:
9*(b) = s(x*®), vbe{1,---,B}

© Estimate the standard error se;:(é) by the standard deviation of the B

replications:
i R . 1
o _ [ZElr) - 8 (1]
5 B—1
AL B= é‘*(b)
where §*(-) = ==




bootstrap review and bias

Bootstrap estimate of the standard Error

Example A

From the distribution F: F(x) = 0.2 N (u=1,0=2) + 0.8 N'(p=6,0=1). We
draw the sample x = (xg, -+ , x100) :

 7.0411
5.2546
7.4199
4.1230
3.6790
—3.8635
—0.1864
—1.0138
6.9523
B 6.5975
X=19 6.1559
4.5010
5.5741
6.6439
6.0019
7.3199
5.3602
7.0012
4.9585
| 4.7654

4.8397
7.3937
5.3677
3.8914
0.3509
2.5731
2.7004
4.9794
5.3073
6.3495
5.8950
4.7860
5.5139
4.5224
7.1912
5.1305
6.4120
7.0766
5.9042
6.4668

We have pur = 5 and x = 4.9970.

5.3156
4.3376
6.7028
5.2323
1.4197
—0.7367
2.1487
0.1518
4.7191
7.2762
5.7591
5.4382
5.8869
5.5028
6.4181
6.8719
6.0721
5.9750
5.9273
6.1983

6.7719
4.4010
6.2003
5.5942
1.7585
0.5627
2.3513
2.8683
5.4374
5.9453
5.2173
4.8893
7.2756
4.5672
7.2243
5.2686
5.2740
6.6091
6.5762
4.3450

7.0616
5.1724
7.5707
7.1479
2.4476
1.6379
1.4833
1.6269
4.6108
4.6993
4.9980
7.2940
5.8449
5.8718
8.4153
5.8055
7.2329
7.2135
5.3702
5.3261




bootstrap review and bias

Bootstrap estimate of the standard Error

Example A

@ B = 1000 bootstrap samples {x*()}
© B = 1000 replications {x*(b)}
© Bootstrap estimate of the standard error:

N =

. Chlx(b) = (2] * _
SER—1000 — 1000 — 1 = (0.2212

where x*(-) = 5.0007. This is to compare with se(x) =




bootstrap review and bias

Distribution of 8

When enough bootstrap resamples have been generated, not only the
standard error but any aspect of the distribution of the estimator 6 = t(F)

could be estimated. One can draw a histogram of the distribution of 8 by
using the observed 6*(b), b=1,---,B.

Example A

¥

Figure: Histogram of the replications {x*(b)}s=1...5.




bootstrap review and bias

Bootstrap estimate of the standard error

Definition
The ideal bootstrap estimate sez(6*) is defined as:

lim seg = sez (6"
Jim sep seg(6%)

sex(0*) is called a non-parametric bootstrap estimate of the standard
error.




bootstrap review and bias

Bootstrap estimate of the standard Error

How many B in practice ?
you may want to limit the computation time. In practice, you get a good
estimation of the standard error for B in between 50 and 200.
Example A
B 10 20 50 100 500 1000 | 10000
seg | 0.1386 | 0.2188 | 0.2245 | 0.2142 | 0.2248 | 0.2212 | 0.2187

Table: Bootstrap standard error w.r.t. the number B of bootstrap samples.




bootstrap review and bias

Bootstrap estimate of bias

Definition

The bootstrap estimate of bias is defined to be the estimate:

Biasz(0) =Ez[s(x*)] — t(F)

=0"() -9
Example A
B 10 20 50 100 500 1000 | 10000
@Egi*) 5.0687 | 4.9551 | 5.0244 | 4.9883 | 4.9945 | 5.0035 | 4.9996
Bias 0.0617 | -0.0419 | 0.0274 | -0.0087 | -0.0025 | 0.0064 | 0.0025

Table: Bias of x* (X = 4.997 and pr = 5).




bootstrap review and bias

Bootstrap estimate of bias

© B independent bootstrap samples x*(1), x*(2) ... x*(B) drawn from x
© Evaluate the bootstrap replications:

9*(b) = s(x*®), vbe{1,---,B}

© Approximate the bootstrap expectation :

1 o 1 o
N * = % = *(b
0()= 5 D 0°(b) = 5 > s(x*®)
b=1 b=1
© the bootstrap estimate of bias based on B replications is:

Biasg = 0*(-) — 0




bootstrap sampling

ndata = 20;
nboot 1000;
vals = zeros(nboot,1);

ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)).A2);

for j=1:nboot,

samp = randsample(ndata,ndata,true); new sample of integersin 1:ndata, with replaceme

xX = x(samp);

yy = y(samp);
ssig = sig(samp);

chisqfun = @(b) sum(((ymodel (xx,b)-yy)./ssig).A2);

bguess = [1 2 .7 3.14 1.5];

here is the embedded “whole

options = optimset('MaxFuntkvals',10000, '"MaxIter’, / statistical analysis of a data set”

inside the bootstrap loop

10000, 'TolFun',0.001);
[b fval flag] = fminsearch(chisqfun,bguess,options);
if (flag == 1), vals(j) = b(3)*b(5); 120
else vals(j) = 100; end
end
hist(vals(vals < 2),30); 100

std(vals(vals < 2))

80+

0.2924

60

So we get the peak around

1, as before, but a much ol

broader distribution.

20
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bootstrap sampling

We previously compared bootstrap-from-sample to bootstrap-from-population.
More relevant, let’s compare boostrap-from-sample to sample-the-posterior:

1400 120

bootstrap

sample the posterior
1200 F
100+

1000
80+
800+

80+
800
400+ a0t

200+

0O 02 04 08 8 | 2 14 4.8 L8 0
3b5 0 02 04 06 boab | 12 14 16

 We could increase number of samples of posterior, and of bootstrap, to make both
curves very smooth.

— the histograms would not converge to each other!

* We could increase the size of the underlying data sample
— from 20 (x,y) values to infinity (x,y) values
— the histograms would converge to each other (modulo technical assumptions)

« For finite size samples, each technique is a valid answer to a different question

— Frequentist: Imagining repetitions of the experiment, what would be the range of values
obtained?

« And. conservatively, | shouldn’t expect my experiment to be better than that, should 1?

— Bayesian: For exactly the data that | see, what is the probability distribution of the
parameters?

Because maybe | got lucky and my data set really nails the parameters!



bootstrap sampling

Note that sampling the posterior “honors” the stated measurement errors.
Bootstrap doesn’'t. That can be good!

Suppose (very toy example) the “statistic” is
sample posterior

S —=I1+ X9
bootstrap

then the posterior probability is

(s —x — T9)?

P(S) X eXp _§ O_]? + O‘% B 24 XX 2x;

Note that this depends on the o’s!

The bootstrap (here noticeably discrete) doesn’t depend on the ¢’s. In
some sense it estimates them, too.

So, if the errors were badly underestimated, sampling the posterior would give
too small an uncertainty, while bootstrap would still give a valid estimate.

If the errors are right, both estimates are valid. Notice

that the model need not be correct. Both procedures

give estimates of the statistical uncertainty of

parameters of even a wrong (badly fitting) model. But ‘ ‘

for a wrong model, your interpretation of the
parameters may not mean anything!






