Lecture 10: Maximum likelihood V.
(nonlinear least square fits)

Y2 fitting procedure!



Multivariate normal distribution
correlated data

Multivariate Normal Distributions components Xx; of vector x are

: : : . correlated random variables
Generalizes Normal (Gaussian) to M-dimensions

Like 1-d Gaussian, completely defined by its mean and (co-)variance
Mean is a M-vector, covariance is a M x M matrix
1

(27)M/2 det (Z)1/2

N(x|p, X) = exp[—3(x — ) BT (x — p)]
normalize distribution in all components X

The mean and covariance of r.v.’s from this distribution are*

p = (X) Y= ((x—p)(x— p,)T> 2ij = <(Xi-Mi)(X;-Mj)> matrix notation

I © I In the one-dimensional case o is the standard deviation,
which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.

l=(x—p)'27 (x—p)




Multivariate normal distribution
correlated data

Question: What is the generalization of
x* = Z (%) : zi ~ N(pi, 04)

to the case where the x;'s are normal, but not independent?
l.e., x comes from a multivariate Normal distribution?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

, dQ\Z
BB b 30 b [ (b b X=>Db

So, while exploring the x2 surface to find its minimum, we must also
calculate the Hessian (2n derivative) matrix at the minimum.

Then
P(b|{y:}) o exp [~1(b — bo)TS; (b — by)] P«g)
with I

% ] -1~ covariance (or “standard error”’) matrix
1 /

3N, = |2 of the fitted parameters
° [28bab

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



correlated data in general
multivariate distribution:

The covariance matrix is a more general idea than just for multivariate Normal.
You can compute the covariances of any set of random variables.
It's the generalizaton to M-dimensions of the (centered) second moment Var.

Cov (z,y) = ((z — 7)(y — ¥))

For multiple r.v.’s, all the possible covariances form a (symmetric) matrix:

C = C;; = Cov (x4, ;) = ((z; — 75)(z; — Tj))

Notice that the diagonal elements are the variances of the individual variables.

The variance of any linear combination of r.v.’s is a quadratic form in C :

Var (Z o,x;) = <Z a;(z; — ;) aj(z; — :c_])>

¥
— oal'Ca

This also shows that C is positive definite, so it can still be visualized as an ellipsoid in
the space of the r.v.’s., where the directions are the different linear combinations.



correlated data in general
multivariate distribution:

The covariance matrix is closely related to the linear correlation matrix.

> (xi =X)(yi =)

rij = Cij more often seen P
\/Ciicjj written out as \/Z(.\',- E T)2\/Z(_\~I. —y)2

When the null hypothesis is that X and Y are independent r.v.’s, thenris
useful as a p-value statistic (“test for correlation™), because

1. For large numbers of data points N, it is normally distributed,
r ~ N(0, N~1/2)

so rv/N is a normal t-value
2. Even with small numbers of data points, if the underlying

distribution is multivariate normal, there is a simple form for the p-
value (comes from a Student t distribution).




x2 distribution goodness of fit

we have assumed that, for some value of the parameters b
the model y(x;|b) is correct

Suppose that the model y(x;|b) does fit. This is the null hypothesis.

N 2
i —y(x;|b :
Then the “statistic” x* = Z (y ?;( | )> is the sum of N t?-values.
= z AN (not quite)

So, if we imagine repeated experiments (which Bayesians refuse to do),
the statistic should be distributed as Chisquare(N).

If our experiment is very unlikely to be from this distribution, we
consider the model to be disproved. In other words, it is a p-value
test.




x2 distribution (from Lecture 9)
1

2

1
2% = z~N(0,1)

1
py(y) =y Ppx(y*?) = g—e 2"

v2 is a “statistic” defined as the sum of the squares of n independent t-values.

2
N
= (FoH) L N

1

Chisquare(r) is a distribution (special case of Gamma), defined as

x* ~ Chisquare(v). V>0

1
L (2!

p(*)dy® = — exp (—3x°) dx’. 2 >0
22"T'(3v)



confidence intervals

The variances of one parameter at a time imply confidence intervals
as for an ordinary 1-dimensional normal distribution:

(Remember to take the square root of the
variances to get the standard deviations!)

-196SD  mean +1.96SD

If you want to give confidence regions for more than one parameter

at a time, you have to decide on a shape, since any shape
containing 95% (or whatever) of the probability is a 95% confidence

region!

It is conventional to use contours of probability density as the
shapes (= contours of Ay?) since these are maximally compact.

But which Ay?2 contour contains 95% of the probability?



y2 distribution

Measurement precision improves with the amount of data N as N-1/2

twice the data implies about
/ twice the y2atany b
™~
\\/

/ -
_ so fixed Ay? implies \2
better precision

szin ~1 7




confidence intervals

What Ay? contour in v dimensions contains some percentile probability?

Rotate and scale the covariance to make it spherical.
(Linear, so contours still contain same probability.)

Now, each dimension is an independent Normal, and contours are labeled
by radius squared (sum of v individual #2 values), so Ay?~ Chisquare(v)

0.8
v=1 . .
07k : Ay* as a Function of Confidence Level p and
2 Number of Parameters of Interest v
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= 95.45% 618 802 972 113 128
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5 , You sometimes learn “facts” like: “delta
0 1 2 3 4 5 . . .
O, WINE chi-square of 1 is the 68% confidence
:\-

level”. We now see that this is true only
for one parameter at a time.



what is the Degree of Freedom?

How is our fit by this test? W

In our example, x?(bg) = 11.13 }”H {
This is a bit unlikely in Chisquare(20), o ] k HL
with (left tail) p=0.0569. |

In fact, if you had many repetitions of the experiment, you would find that

their 2 is not distributed as Chisquare(20), but rather as Chisquare(15)!
Why?

0.08

nu=20

the magic word is:
“degrees of freedom” or DOF

chi-square pdf
O O
g &
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what is the Degree of Freedom?

Degrees of Freedom: Why is y2 with /V data points “not quite”
the sum of N t2-values? Because DOFs are reduced by constraints.

First consider a hypothetical situation where the data has
linear constraints:

ti_yz'_,ui ~ N (0,1)

0;
joint distribution on all the t) = H tYoxexp | =1 E 12
t's, if they are independent p( ) , p( z) P 2 : ¢
(] (]

x? is squared distance from origin »_ t

Linear constraint: E QGY; = C = <C> = E QG L5
1 ?

C = Z%(Uz‘ti + 1)

So E oot = a hyper plane through the origin
’ e in t space!



what is the Degree of Freedom?

Constraint is a plane cut through
the origin. Any cut through the
origin of a sphere is a circle.

So the distribution of distance from origin is the same as a multivariate

normal “ball” in the lower number of dimensions. Thus, each linear
constraint reduces v by exactly 1.

We don't have explicit constraints on the y;’'s. But as the y's wiggle around
(within their errors) we do have the constraint that we want to keep the

MLE estimate b, fixed. (E.g., we have 20 wiggling y;'s and only 5 b/’s to
keep fixed.)

So by the implicit function theorem, there are M (number of parameters)
approximately linear constraints on the y;'s. So v = N — M , the so-
called number of degrees of freedom (d.o.f.).




what is the Degree of Freedom?

Review:

1. Fit for parameters by minimizing

N 2
P yi — y(x;|b)
o)

1=1

2. (Co)variances of parameters, or
confidence regions, by the change
in y2 (i.e., Ay?2) from its minimum

value 2. .

3. Goodness-of-fit (accept or reject
model) by the p-value of ¥2_..
using the correct number of DOF.
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Ay? as a Function of Confidence Level p and

Number of Parameters of Interest v

v
P I 2 3 1 5 6
68.27% 1.00 2.30 3.53 4.72 5.89 7.04
90% 2.71 4.6l 6.25 71.78 0.24 10.6
95.45% 4.00 6.18 8.02 9.72 11.3 12.8
99% 6.63 9.21 11.3 13.3 15.1 16.8
09.73% 9.00 1.8 14.2 16.3 18.2 20.1
99.99% 15.1 18.4 21.1 23.5 25.7 21.9
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Goodness-of-fit

Goodness-of-fit with v= N— M degrees of freedom:

this is an RV over the population of different data
sets (a frequentist concept allowing a p-value)

we expect Xmin & ¥ T V20

Confidence intervals for parameters b:

- O(1 this is an RV over the population of possible model
~ ( ) parameters for a single data set, a concept shared
by Bayesians and frequentists

we expect X° = X?nin =

How can +0(1) be significant when the uncertainty is +v2v ?

Answer: Once you have a particular data set, there is no uncertainty about
what its x2 . is. Let's see how this works out in scaling with N:

v? increases linearly with v= N—- M

Ay? increases as N (number of terms in sum), but also decreases
as (N-12)2 since b becomes more accurate with increasing N :

Ax? < N(6b)?, sbox N2 = Ax? x const

guadratic, because at minimum universal rule of thumb



