Final project

Monte Carlo applications

problem 1 (individual): 10 % problem 2 (team): 20%

due: December 13, 2019 2:00 pm

Team A: Russel, Seibert, Le

Team B: Thouvenin, Liang, Spisak
Team C: Correa, Haughton, Alavi
Team D: Phan, Roberts, Pham

Team E: Kruger, Levin



Problem 1 prepared and submitted individually

Consider the probability distribution p(x) which is the mixture of two multivariate Gaussian
distributions in two variables with x=(x1,x2):

1 1
p(x) = EN (x|py, Z1) + 5N (x| pa, X2)

where u, = [0, 0], Bo =[5, 517, ¥, = X, = diag{0.25, 2}

1(A) Plot the p(x) probability density function in the (x1,x2) variables

1(B) Calculate the mean of the vector x=(x1,x2) using Markov Chain Monte Carlo with
Metropolis importance sampling. Compare the histogram with the 1(A) plot.

1(C) Calculate the Monte Carlo error of the mean of the vector x=(x1,x2) using Markov Chain
Monte Carlo with Metropolis importance sampling.

1(D) After consultation with the TA, estimate the autocorrelation time (separation of
independent MC configurations) for correct error estimates.

1(E) Compare the MC results with the analytic expectations, including error estimates.
2



Problem 1 (phys 239 only)

prepared and submitted individually

1(F) Calculate the mean of sin2(x1)-sin2(x2) with your best error estimate for
the distribution p(x), defined above as,

1 1
plx) = EN(xlﬂlo 21) + EN(xlﬂz- 22)

where u, = [0,017, u, = [5,5]%, X = X, = diag{0.25, 2}
1 L)

1(G) Compare the quality of Metropolis MC sampling with Gibbs sampling.



Problem 2 submitted by the team
A CASE STUDY: CHANGE-POINT DETECTION

The task of change-point detection is of major importance in a number of scientific disciplines, ranging
from engineering and sociology to economics and environmental studies.

The aim of the chanege-point identification

task is to detect partitions in a sequence of observations, in order for the data in each block to be
statistically “similar,” in other words, to be distributed according to a common probability distribution.

Let x, be a discrete random variable that corresponds to the count of an event, for example, the
number of requests for telephone calls within an interval of time, requests for individual documents on

a web server, particle emissions in radioactive materials, number of accidents in a working environment,
and so on. We adopt the Poisson process to model the distribution of x,, that is,
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Poisson processes have been widely used to model the number of events that take place in a time interval,

7. For our example, we have chosen t = 1. The parameter A is known as the intensity of the process
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Problem 2 submitted by the team

plot your figure of gravitational wave detection events between 2017-2200 from data files
custom made for each team (linked to Final web page)

estimate with prior based MCMC the year when a space based gravitational wave detector Lisa
(space based laser interferometer) came online and changed the average annual rate.

Bayesian prior is parametrized with the Gamma distribution where a=8 and b=1
are reasonable choices although results are not sensitive to the choices

Gravitational Wave Detection Record
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Problem 2 submitted by the team

Gravitational Wave Detection Record
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Problem 2 submitted by the team

We assume that our observations, x,, n = 1,2,...,N, have been generated by two different Poisson
processes, P(x; A1) and P(x; A2). Also, the change of the model has taken place suddenly at an unknown
time instant, ng. Our goal is to estimate the posterior,

P("OlklaAstllN)'

Moreover, the exact values of A; and A, are not known. The only available information is that the Poisson
process intensities, A;, i = 1,2, are distributed according to a (prior) gamma distribution, that is,

p(A) = Gamma(A|a, b) = %a)bala_l exp(—bA),

for some known positive values a, b. We will finally assume that we have no prior information on when
the time of change occurred; thus, the prior is chosen to be the uniform distribution, P(ng) = 1lv Based
on the previous assumptions, the corresponding joint distribution is given by,

p(no, A1, A2, x1:8) = prnlA, A2, no)p(h)p(A2)P(ng) +——— the Bayesian

or

ny

N
p(no, A1, A2, x18) = [ [ PGala1) || PGralr2)p(A1)p(22)P(no).
n=1 n=np+1

Taking the logarithm in order to get rid of the products, and integrating out respective variables, the
following conditionals needed in Gibbs sampling are obtained (to prove!)



Problem 2 submitted by the team

2(A) prove the conditional probabilities to prepare for Gibbs sampling:

Taking the logarithm in order to get rid of the products, and integrating out respective variables, the
following conditionals needed in Gibbs sampling are obtained

the two definitions of the I'- function on p.5

and p.8 are equivalent with the a—a and
b— B substitutions.

p(Ailng, A2, X1.x) = Gamma(hilay, by), =

The I'- function on p.5 is mapped to the Poisson

with distribution of p.4 with the substitution in the

- function a—x (x now in the Poisson dist.) —A

(A now in the Poisson dist. ) and setting x=1 in

no
a =a + me bl — b + no, the I'- function.

n=1 So the combination of the Poisson dist. and the
- function prior becomes the product of two

p(lzlno, A1 sxl:N) — Gamma(kzlaz, bZ)s trr;;lljor:ic;lrons which facilitates the integration over

N
m=a+ Y Xn by=b+N—n),

n=ng+1
and
ny N
P(no|A1lN2, x1:0) = In Ay an —noA1 +InAz Z Xn
n=1 n=np+1

— (N —ng)ry, ng=12,...,N.

The last line for In(P) just gives the log of the products of independent Poisson probabilities once the Poisson
intensities 11,2 are determined from the Gamma distributions for a particular no. A1 up to year noand 1> from year

no+1 to year N. ~ indicates the normalization factor which has to be taken into account. See next page for how to
draw Gibbs sampling from discrete probabilities. 9



Problem 2 submitted by the team

For discrete probabilities Pi, with u ~ U(0,1) uniform
random number in the (0,1) interval:

» Defineay =% ]P,by=Y% P,k=12,....,K,a; =0.
e Fori=12,...,D0
. u~L((O,1)
* Select
xpifu € lag, br), k=1,2,...,K
* End For

10



Problem 2 submitted by the team

2(B) Implement the Gibbs sampling of the Markov Chain Monte Carlo:

Gibbs sampling for change-point detection
 Having obtained x.5 := {x1,...,xy}, select a and b.
+ Initialize n_’
e Fori=12,...,D0

0 ny (i~1)
© A~ Gamma()&la + D o1 Xn, b+ 1y
() N (i—1)
A.2l ~ Gamma(lla + ann(()i—l)-}-l Xns b -+ (N — nol ))

. né"’ ~ P(noll('),lg) y X1:N)
* End For

11



Problem 2 submitted by the team

2(C) Plot the ng probably distribution and A1, A2 from Gibbs sampling:
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2(D) What are the means of no, A1, A2 ?

2(E) Estimate the MC errors on no, A1, A2 from the independent MC
configurations of the simulations

12



Problem 2 (phys 239 only) submitted by the team

2(F) Compare your Gibbs sampling based simulation with Metropolis
Monte Carlo

13



