Formulas:

 $T_3 = 273.16K = 0.01^{\circ}C$; water freezes/boils at $T = 0^{\circ}C = 32^{\circ}F/T = 100^{\circ}C = 212^{\circ}F$ $1cal = 4.1868J$; $N_A = 6.02 \times 10^{23}$ Thermal expansion: $\Delta L = L\alpha\Delta T$; $\Delta V = V\beta\Delta T$; $\beta = 3\alpha$ Heat capacity and specific heat: $Q = C\Delta T$; $Q = cm\Delta T$ Heat of vaporization, fusion: $Q = L_V m$; $Q = L_F m$

First law of thermodynamics: $\Delta E_{\text{int}} = Q - W$; $dE_{\text{int}} = dQ - dW$; $W = \int p dV$ *Vi Vf* $\int p dV$ work

Conduction: $P_{cond} = \frac{Q}{4}$ *t* $= kA \frac{T_H - T_L}{I}$ *L* $; R = \frac{L}{l}$ *k* k,R=thermal conductivity, resistance Radiation: $P_{rad} = \sigma \varepsilon A T^4$; $\sigma = 5.67 \times 10^{-8} W / m^2 K^4$ $\varepsilon = 1$ for black body I deal gas: $PV = nRT = NkT = nN_A kT$; R=8.31J/molK; $k = 1.38 \times 10^{-23} J/K$ Pressure: $P = \frac{Nm}{2V}$ $\frac{Nm}{3V}(v^2)_{avg}$ Kinetic energy: $K_{avg} = \frac{1}{2}$ 2 $m(v^2)_{avg} = \frac{3}{2}$ 2 *kT* Internal energy: $E_{int} = NK_{avg}$; $C_V = \frac{3}{2}$ 2 *R* for monoatomic gas; $C_p = C_V + R$ C_V , C_P = molar heat capacity at constant volume, pressure $C_V = \frac{f}{2}$ 2 *R* for polyatomic gases with f degrees of freedom per molecule Adiabatic expansion of ideal gas: $PV^{\gamma} = const$, $TV^{\gamma-1} = const$; $\gamma = C_p / C_v$ Distribution of molecular speeds: $P(v) = 4\pi(\frac{m}{2\pi})$ 2π*kT* $\int^{3/2} v^2 e^{-mv^2/(2kT)}$ Velocity distribution: $F(v_x, v_y, v_z) = f(v_x)f(v_y)f(v_z)$, $f(v_x) = \left(\frac{m}{2\pi\epsilon_0}\right)^{1/2}$ 2π*kT* $\int_0^{1/2} e^{-mv_x^2/(2kT)}$ Mean free path: $\lambda = 1/(\sqrt{2\pi d^2 N/V})$, d=diameter ; $v_{rms} = \sqrt{(v^2)_{avg}}$ **Entropy:** $dS = dQ/T$ in a <u>reversible</u> process. S is a function of state. $\Delta S = \int dQ/T$ *i f* ∫ $\Delta S \ge 0$ for a closed system. = if reversible process, > if irreversible process Ideal gas: $S(T, V) = nR \ln V + nC_v \ln T + const$ Heat engine: $\varepsilon = \frac{|W|}{|Q|}$ $|Q_{\scriptscriptstyle H}^{}|$; Carnot engine: $\varepsilon = 1 - \frac{|Q_L|}{|Q_L|}$ $|Q_{\scriptscriptstyle H}^{}|$ $=1-\frac{T_L}{T}$ T_H

Refrigerator coefficient of performance $K = \frac{|Q_L|}{|W|}$ |*W* | ; Carnot refrigerator $K_C = \frac{T_L}{T}$ $T_H - T_L$ Statistical view of entropy: $S = k \ln W$; $W = N!/(n_1! n_2!)$; $N! ≈ N(\ln N) - N$

<u>Fluids</u>: $\rho = m/V$, $p = F/A$, $1atm = 1.01x10^5 Pa = 760torr$ Fluid at rest: $p_2 + \rho gy_2 = p_1 + \rho gy_1$; gauge pressure=p-p_{atmospheric} Pascal's principle: $\Delta p = F_1 / A_1 = F_2 / A_2$ Archimedes principle: buoyant force $F_b = m_{fluid}g$ Continuity equation: volume flow rate = $R_V = Av = a$ constant Bernoulli equation: *p* + 1 2 $\rho v^2 + \rho gy = a$ constant **Oscillations:** simple harmonic motion: $x(t) = x_m \cos(\omega t + \phi)$; $\omega = 2\pi f = 2\pi / T$ spring: $F = -kx$, $\omega = \sqrt{k/m}$, energy: $E = U + K = \frac{1}{2}$ 2 kx_m^2 ; $U = \frac{1}{2}$ 2 kx^2 , $K = \frac{1}{2}$ 2 mv^2 torsion pendulum: $\tau = -\kappa\theta$, $\omega = \sqrt{\kappa / I}$; simple pendulum: $\omega = \sqrt{g / L}$ physical pendulum: $\omega = \sqrt{mgh / I}$; $I = I_{CM} + mh^2 = \int r^2 dm$ Damped shm: $F_d = -bv$, $x(t) = x_m e^{-bt/2m} \cos(\omega' t + \phi)$, $\omega' = \sqrt{\omega^2 - (b/2m)^2}$ Forced oscillations: $F_f = f \cos(\omega_d t)$, $x(t) = x_m \cos(\omega_d t + \phi)$; resonance: $\omega_d = \omega$ $x_m = (f/m)/\sqrt{\omega_d^2 - \omega^2} + b^2 \omega_d^2/m^2$, $\tan \phi = (b/m)\omega_d/(\omega_d^2 - \omega^2)$

Problem 1

You weigh 70 kg and are standing on a block of ice that is floating in the middle of a lake. Your feet are unavoidably starting to get very wet. What is approximately the mass of the ice block?

Ice density: 0.92 g/cm^3 . Water density 1 g/cm³. Your density 0.95 g/cm^3 . **A: 64 kg; B: 220 kg; C: 480 kg; D: 800 kg; E: 875 kg**

Problem 2

In the cylindrical tubes shown in the figure, the diameter of the wide region is twice the diameter of the narrow region. Water if flowing from left

h_t

to right, in the narrow region its speed is 5m/s. If the pressure is the same at the center of the narrow region as it is at the center of the wide region,what is their vertical distance h? **A: 0.99m; B: 1.09m; C: 1.19m; D: 1.29m; E: 1.39m**

Problem 3

In a tank that holds 100,000 liters of water there is a hole of area 10cm^2 at distance 5m below the water level. Approximately how long will it take for 10 liters of water to flow out?

A: 1s; B: 2s; C: 3s; D: 4s; E: 5s

Problem 4

A mass undergoing simple harmonic motion moves in a straight line between positions -5m and +5m. Its maximum speed is 5m/s. What is the shortest time interval during which it will travel a distance of 5m?

A: 1.09s; B: 2.09s; C: 3.09s; D: 4.09s; E: 5.09s

Problem 5

A thin homogeneous rod of length L oscillates with period 1s when the pivot is at the end of the rod. What is the period of oscillation when the pivot is at distance L/4 from the end of the rod?

The moment of inertia of a rod of mass m, length L, around its center of mass is mL $^{2}/12$. **A: 1s; B: 0.86s; C: 0.78s; D: 1.05s; E: 0.94s**

Problem 6

After undergoing 20 oscillations a damped harmonic oscillator has lost 1/4 of its initial energy. After how many more oscillations will it have lost another $\frac{1}{4}$ of its initial energy? **A: 20; B: 24; C: 28; D: 32; E: 16**

Problem 7 (for extra credit)

A wooden cylinder of height 10cm is floating in water in vertical position, 90% of it is submerged. If you tap it slightly on the top it will start oscillating up and down, with period:

A: 0.6s; B: 0.8s; C: 1s; D: 1.2s; E: 1.4s