$$
C_{v} = \frac{3}{2}R
$$
\n

$$
\frac{\text{Correction on previous slide}}{\text{d}Q = \text{d}E_{\text{in}} + \text{d}W}
$$
\n
$$
\text{d}Q = n\text{CvdT} + \frac{nRT}{V}\text{d}V
$$
\n
$$
Q = n\text{CylT} + nRT\text{ln}2
$$

2nd term in the Q expression above is wrong, this is not a isothermal process

It is a process at constant P, where V and T are changing. So the work is:
\n
$$
W = P\Delta V, P = \frac{nRT}{V}, \quad \Delta V = (2V - V) == W = nRT
$$
\n
$$
\Delta S_{env} = -\frac{3}{4}nR - \frac{1}{2}nR = -\frac{5}{4}nR
$$
\n
$$
\Delta S_{univ} = \frac{5}{2}nR\ln 2 - \frac{5}{4}nR = \frac{5}{4}nR(2\ln 2 - 1) = 0.48nR
$$

$$
\frac{1}{V_{1}T}
$$
\n
$$
\frac{1}{V_{2}T}
$$
\n<math display="block</math>

© 2014 John Wiley & Sons, Inc. All rights reserved.

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 A statistical view of entropy

Learning Objectives

- **20.21** Explain what is meant by the configurations of a system of molecules.
- **20.22** Calculate the multiplicity of a given configuration.
	- **20.23 Identify that all** microstates are equally probable but the configurations with more microstates are more probable than the other configurations.
- **20.24** Apply Boltzmann's entropy equation to calculate the entropy associated with a multiplicity.