TURBULENCE IN TOROIDAL SYSTEMS

B. B. Kadomtsev and Q. P. Pogutse

INTRODUCTION

Toroidal systems represent one of the traditional approaches in research
carried out for the purpose of producing controlled thermenuclear reacrions.
One typical system is the rorojdal discharge (Zeta, Tokomak, etc.) in which
the plasma is confined, in the final analysis, by the magnetic field associated
with the longitudinal current; another system is the stellarator, in which con-
finement is achieved in the absence of a current.

Unfortunately, the experimenzal results have shown that plasma con-
finement in toroidal systems is significantly poorer than would be expected on
the hasis of classical considerations. In experiments that have been carried
out up to the presen: time on many devices over a wide range of plasma pa-
rametess, it has been found that even in the absence of macroscopic plasma
instabilities there are so-called "anomalous-diffusion™ mechanisms that lead
to the relatively rapid loss of plasma particles and energy. This fact has
served to stimulate intensive theoretical research which has shown thar certain
effects that had not been considered earlier, i.e., collisions and the finite
value of the Larmor radius, can cause a wide class of dissipative and drift in-
stabilities. At the present time, a fairly complete linear theory has been de-
veloped to describe the instabilities characteristic of an inhomogeneous
plasma. Therefore, it is now appropriate to evaluate the ultimate threat
posed by instabilities as far as plasma confinerment in toroidal systems is con-
cerned. An investigation of plasma stability in the linear approximation
could resolve this problem and the answer would be most satisfacrory —if it
could be shown that it is possible to build a toroidal system which is free from
instabilities. Unfortunately, the hope of producing such a system in practice
has all but vanished. However, the growth rates for many instabilities are
very small and hence one might expect the averaged macroscopic effects
associated with the enhanced diffusion and thermal conduetivity (due to these
instabilities) to be relatively small. In other words, giving up the idea of
achieving absolute stability one can still proceed with the purpose of finding
those conditions for which instabilities exist, but are not serious. In order to
carry out this program, first of all it is necessary to know the averaged macro-
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scopic particle flux and heat flux produced by the instabilities. In other WOIds,
it is necessary to investigate macroscopic effects associated with plasma turbu-
lence. The present review is devoted to this topic.

Although most of the results that are obtained have a broader‘range of
applicabitity, many of the actual analyses have been carricd olut u'slng the ex-
ample of a circular torus with axial symmetry in which a longitudinal current
flows, i.e., a system such as Tokomak. This approach is due not cnly .to the
great simplicity of such a system, but also to the fact that it has cerl:a.ln ad-
vantages as compared with more complicated configurations. The ch}ef of
these advantages is the possibility of obtaining appreciable shea-r by virtue of
the large curvature, i.e., the rather large ratio of the minor radius of the Loru_s
a to the major torus Ry. Another advantage is the fact that the mean magpetic
field exhibits a minimum at the magnetic axis in systems of this kind.

In §1 we consider briefly the question of plasma equilibrium in a torus
and introduce coordinates that will be found convenient for the further analy-
sis: these coordinates become the usual cylindrical coordinates if the torus is
"straightened,” i.e., when Ry — . The following four sections _are devoted to
an investigation of the various instabilitics that are characteristic of a plasma
in a toroidal systerm. These sections contain some new resulrs‘: for ex.amp.lc',
an instability due to trapped particles and an instability associated with finite
orbits; in the main, however, these sections are of a review nature in th.at
many of the instabilities that are described have been investigated earlier. On
the other hand, the analysis of these instabilities is somewhat different from
the one that is generally used, since it is closely related to tl‘le subsequent an=-
alysis of the nonlinear oscillations produced by the instabilities.

Nonlinear plasma phenomena in toreidal discharges are investigated in
§§6-10. In §7 we investigate the plasma convection that develops as a result
of the current-convective instability. Although the associated anomalous ther-
mal conductivity is not important at high temperatures (above 50 eV), we in-
vestigate the nonlinear convection in detail since this concrete .example can
be easily generalized to demonstrate the general nature of nonhnear'phenom-
ena in toroidal systems. Specifically, as we show in §17, the convection that
develops in a toroidal plasma exhibits the feature that, in addition 10 the 1an-
dom nature of the process, which is characreristic of turbulence, there are cer-
tain elements of order which play a significant role. The order is imposed by
the magnetic field: in toroidal systems with shear dissipative instablhnes.can
develop only for perturbations that are highly elongated along the magnetic
field; hence, the existence of shear in the lines of force means that the per-
turbations are localized in the radjal direction in such a way that the pitch of
the perturbation follows the pirch of the lines of force as closely as possible.
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The localization of the perturbations means essentially that only those per-
turbations interact which have a common point of localization (the peoint at
which the pitch of the perrurbation coincides with the pitch of the lines of
force); this interaction leads to the formation of nonlinear convection cells in
the plasma. The interaction between different cells can be characterized as
follows: for a given cell, ail cells of larger scale size effectively represent a
complicated macroscopic flow that does not have a strong effect on the flow
pattern within the cell; on the other hand, all cells of smaller scale size cause
an enhanced thermal conductivity, whicl can be taken inte account by the in-
troduction of an appropriate thermal conductivity coefficient. This coeffi-
cient is different for cells of different size, since contributions ro the thermal
conductivity come only from cells which are smaller than the one being con-
sidered. The largest value of the effective coefficient of thermal conductiv-
iry then obtains in cells of the maxirmum scale size; obviously, this effective
thermal conductivity is approximately equal te the macroscopic thermal con-
ductivity that characterizes the plasma as a whole.

A similar pattern helds for ether instabilities, and this suggests the fol-
lowing method for determining the cffective thermal conductivity x and diffu-
sion D. Assumc that at the outset we take account of the appropriate effects
in the equations of motion and choose ¥ or I in such a way that the perturba-
tions with minimum localization are neutrally stable, while all more localized
solutions are damped. In this way, in considering the largest scale perturba-
tons, we have taken account of all perturbations of smaller scale. Asa result,
the effective coefficients that are found, D and y, will differ from the true
values only by the contribution duc 10 the perturbations of largest scale size.
But, since D and y are found under the assumnption that the growth rates for
these perturbations are close to zero, the corresponding contribution from the
large-scale perturbations will be smail. In other words, the values that are ob-
tained for the effective coefficients must be close to the true values as deter-
mined by all of the perturbations. This method, which is used as the basis for

ihe nonlinear analysis, then also yields a linear formulation with the effective
coefficients included beforchand.

In view of this approach, we must change the merhod of investigating
the instability in the linear approximation. The point here is that if the
plasma is unstable, it is not meaningful 1o seek asymptotic solutions of the
lincarized equations for t — <, since the oscillations become nonlinear very
rapidly. Hence, in the presence of instabilities, the linear solutions are mot
treated as ends in themselves, but rather as stepping stones toward the non-
linear investigation. As such a stepping stone we frequently find it convenient
to replace the lecalized solutions by somewhat less exact solutions in the semi-
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classical approximation; in this approximation the frequency of the oscilla-
tions depends on 1, so that the corresponding solutions are not characteristic
functions of the linear equations. In any case, in analyzing the instability in
the linear approximation we find it desirable to introduce the possibility of in-
cluding the effective transport processes associated with the small=scale oscil-
lations.

Sectjons 2-5 contain the results of the linear stabiliry theory. In §2 we
present the stabilization conditions for hydromagnetic instabilities in toroidal
systems. In subscction 1 of §2 wc obtain a stability criterion for small=scale
perturbations (m >> 1) which generalizes the familiar Suydam criterion to a
toroidal geometry. In subsection 2, we discuss the stability of a plasma with
respect to the Jowest modes (screw instability).

In the first subsections of §3 we derive equations that describe the dissi-
pative instabilitics of a high-temnperatute plasma. We consider the current-
convective, drifi-dissipative, and gravitational instabilities The last cannot
exist in a minimum-B system (such as Tokomak) but is included for reasons of
completeness. Main interest attaches to the growth rates and the regions of
localization, the basic quantities that are needed for the subsequent nonlinear
theory. A distinguishing feature of the dissipative instabilities is their strong
dependence on the shear  , A small reduction in shear leads to a sharp in-
creasc in the transport coefficients associated with these instabilirjes.

In subsection 6 of § 3, and in subsequent subsections, we deal with the
collisionless drift instability. The advantage of high shear is especially marked
for this instability. In particular, the results show that only two instabilities
can develop in a plasma in which 0 » (me/mi)1 % these are the tempera-
ture-drift instability and another instability that has much in common with it,
the electron-temperature instability; the larter leads to a much smaller macro-
scopic coefficient. It is shown that in equilibrium with a low plasma pressure
only the electrostatic drift instabilities can develop.

In § 4 we consider instabilities associated with trapped particles. In sub-
sections 1 and 2 we consider collision-free and collision-dominated instabili-
ties that arise in toroidal systems by virtue of the existence of local traps for
particles; these traps tend to separate the particles into two classes — trapped
particles and [ree particles. It will be evident that this instabiliry is most
dangerous in toroidal systems with low-density plasmas. In subsection 3 it is
shown that particle drift in a bumpy magnetic field leads io effects that are
equivalent to transverse ion inertia, i.e., these effects can determine the spa-
tial structure of the instabilities. This mechanism is especially important in
small-shear systems (stellarator).
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Finally, in §5 we present the basic results pertaining to the high-frequen-
cy drift cyclotron and ion-acoustic instabilities. A plasma is also subject to
the develepment of a drift cyclotron instability, but this instability is relative-
ly easily stabilized by collisions. The lon-acoustic instability with kde ™
(de is the Debye radius) can be excited only in a nonisothermal plasma with
T; << T, in the presence of a longitudinal current.

The results of the nonlinear theory are summarized in § 11, in which we
present equations that take account of turbulence cffects such as anomalous
diffusion and anomalous thermal conductivity. In conclusion, we discuss the

possibility of realizing controlled thermonuclear reactions in the presence of
losses due to plasma turbulence,

§1. EQUILIBRIUM

1. Equilibrium of an Ideal Plasma.

Coordinate System

A large number of original research papers and reviews have considered
the equilibrium state of plasma in a toroidal system. In the presemt review we
shall consider equilibrium only to the extent to which it is necessary in carry-
ing out the subsequent investigation of stability,

For reasons of simplicity, we consider a system such as Tokomak, i.e., a
circular torus with an axis of Symmetry and a strong longitudinal magnetic
field Hy. The magnetic field due to the longitudinal current is denoted by
13 and it is assumed that Hy < H . Under the assurptions of ideal mag-
netohydredynamics, to obtain equilibrium it is sufficient that the gradient of

the plasma pressure be balanpced by the force associated with the magnetic
field:

— | - 1
TP~ [jHE - - reun
P [T fowlH, H, (1.1

where p is the plasma pressure and j is the current density.

In order to simplify the analysis, we assume that the toroidal features
are not important, i.e., the minor radius of the toroidal pinch a is much small-
er than the major radius Ry. Following Shafranov [1], we introduce a special
curvilinear coordinate system which becomes the usual cylindrical coordinate
system when Ry — «., We denote the new coordinates by r, % and ¢, and de-
note the usual coordinate system by 1*, 8, and 2'. It is assumed that the to-
roidal plasma is produced by bending a cylindrical plasma of circular Cross
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section. Then, as an approximation, it can be
assumed that magnetic surfaces in the cross

I The radius of the circles r can convenienily be
taken as one of the curvilinear coordinates, so
| that the equation r = const defines the magnet-
ér ic surfaces. The second coordinate is taken to
I
|
f

be the quantity %, which is related to the azi-
muthal angle of the minor circle ot (Fig. 1) by
the expression & = o« —&(a); the small corec-
tion 8{a) will be treated below. Assume thai
Fig. 1. Coordinate system.  the center of the circle r = const, which repre-

sents the cross section of a given magnetic sur-

face, is located at a distance R = Ry + A(r)
from the axis of symmetry (where Ry = const, while the small quantity A takes
account of the displacement of the magnetic surfaces due to the distortion).
Then, taking the third coordinate to be the azimuthal angle 9, we can estab-
lish the following relation between the cylindrical coordinates ¢, &', and z’
and the new coordinates 1, %, and &:

r' = Ry 4+ A(r) —reosa =Ry A(r)—rcos (¥ - §); \
O =% 2 = rsina = rsin(® -+ 0). I {1.2)

If the toroidal features of the problem are weak, ie., if e =a /Ry 1, the
quantities § and A /q are smallness parameters of order ¢. The magnitude of
the displacement A(D) is determined, as we shall see below, by the equilibrium
condition and the arbitrary quantity & can be chosen in such a way that the
lines of force of the unperturbed magnetic field are straight lines in the co-
ordinates & and £ . Below we will take account only of first-order corrections
in £. For small values of ¢ the Jongitudinal (in the sense of a straight pinch)
magnetic field (to an accuracy of order g) is given by

H. =H, (l -+ -;— cosoc) = H[,(l - ?r- cosﬁ) , (1.3)

[¢]
where H, is the value of the field at the magnetic axis.

In this approximation, the azimuthal magnetic field can be written in
the form

Ho = Hy (1 + A(r)cos®), (1.4)

section &' = const are a systemn of nested circles.
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where A is a small asyminetry parameter that depends on the distribution of
plasma pressure and current density.

Assuming, in accordance with (1.2), that the quantity & is a function of
rand 9 we can now write i
i an expression for the square of the element of length
Al = dr'” - r*d0® 1L gyt = Mg di'dx®
= ’ (1.5

where dx! = {dr i i i
- dx {d‘ , (.19; d¢} , white &y 1s the metric tensor; to order & the only
nown nonvanishing components of this tensor are

gn =120 cos B gm:”(ﬁ"sin0+ r 2 );

dr
4 ad

f\] +2_a_{.}_); Gog oo Rﬁ(l— ;; cosﬁ),

(1.6)

o
ra

where &' = dA/dr.

The equarion for the lines of foree s given by

4 H?

df 7
2 3
where H® and H* are the second and third contravariant components of the
maguetic field, these being given by

o ’

. — 1
H — Hof oy = - f13(1 1 Acos ﬂ-——a?-)- (1.7)

! — 1
HO = HyV g =~ H, (1 4 —;‘;L cosﬁ-) ,
Q

1]

(1.8)

In stability investigations it is convenient to choose & in such a wa that the
lines of force are straight lines in the coordinates & and ¢, ie., th)iIs quanti
is chosen in such a way that the ratio H*/H? is independent of & and £. It 7
then follows from Eqs. (1.7) and (1.8) that we must choose

0= (A —2r/Ry)sin?. (1.9)
Further, using the equation
1

divH- . 1 @ o
: Ve ab Vgt (1.10)
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and taking account of Egs. (1.6) and (1.7), we find

_ 4 (1.11)
A= dr 'R,
r
!/ g — Ror (1 —2 Ro COS\?) , (112)

where g = Det g!k. Now, taking account of the relations in Eqs. {1.9) and (1.11)
l -
we obtain the final expression for the components of the metric tensorn:

g, =1 —2A cos O (1.13)
Fyo = (Anrz A — _gu)sin t; (1.14)
Q
Go =1 [1 + Q(A’ m?—?im) cos fr] : (1.15)
0
g3 = Ri (1 —2 !; cos 1‘})‘ _ (1.16)
a

The lines of force are now straight in the coordinate system that has
been developed:
HY R

U= 2% 4 const =
rHy

g
pre -+ const, .17

while the magnetic field has the following contravariant H! and covariant
Hy = Z gika components:

i [ s ; r - HO( I cosﬂ)l;(l.w)
H :0,-—;—([1—2—R—~C051‘}>, = 1+ R J

l o o o

Ha (A”r + A — R*" )sin O; rHg (1 -+ 24 cos B); RoHo}- (1.19)

0

|
H=|

In view of the fact that the third component Hy and the external magnetic
field contain a small correction §Hy which arises from the azimuthal cuirent,
the electric current can be written in the form

. o e (e
ji= oy (curll'l) == {O, 75 o V?( ar a0 /I (1.20)

It follows from the condition div j = 0 that j° = Kr)/g where I depends
only on the magnetic surface.
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Substituting the expression for j in the equilibrium equarion
— b,
NP = ~ {jH] (1.21)

and carrying out an expansion in the small parameter a /Ry, in the zeroth ap-
proximation we obtain an equaiion that coincides with the equilibrium equa-
tion for a straight cylinder:

1, {
G P AR} .-;r (rHg), (1.22)

it dr r

while the following approximation yields an equation for the quantity A = A'+

1/ Rg:
d o r2 a r2 dn r 5
——(rHgA — ——H3) =8 . & T g2
dr (’ 0 R, ") TRy Tar R (1.23)

For simplicity, we have omitted the subscript 0 on H and p. Then we can ob-
tain an expression for A [1, 2]:

r

A—-:wr—{liﬂ__g] S‘(mnp_;_H%)rdr]_

24

2 92,0
1y iy (1.24)
0

Knowing the quantity A we can then easily determine the displacement & . If
it Is assumed that A vanishes when r = b, where b is the radius of the chamber,

then
b
A (A —mL> dr.
. Ry
r
Thus, the relations obtained above determine uniquely the geometry of
the pinch and the corresponding coordinate system for apy distribution of p

and H, along the radius r.

2. Drift Flows in an Equilibrium Plasma

Above we have only considered the so-calied features of the equilibrium
associated with the farces, i.e., we have determined the conditions for which
the pressure gradient in the plasma is balanced by the magnetic field. In
order to obtain a more compleze picture of the equilibrium state of the plasma
we mast also find the thermal fluxes and the plasma flow rate {including diffu-
sion}. If the plasma is dense, in which case the mean free path A does not ex-
ceed the length over which there is a significant change in the plasma param-
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eters ilong the magnetic field TqRg, we can apply the equations of two-fluid
hydrodynamics [3] for this purpose:

o divaV = —divav,; (1.25)

!

;i AN sp een (E 4+ — [V H]) —en —_| — Divr, — RS
ar (1.26)

.

=— 5/ p,—en (E -} L [Vﬁ'j) - oh % i—Dive, + Ry
¢

{1.27)
%ﬂ ddT' + pdivV, = —divg -+ Qa: (1.28)
-g—n _d_;{_“ -p,divV, = —divg —Qa NRL —i‘—JR! (1.29)

In the continuity equations {1.25), the ion density and the electron den-
sity are assumed 10 be equal (quasineuiraliry); Eqgs. (1.26) and (1.27) represent
the equations of motion; Eqs. (1.28) and (1.29) represent the heat-balance
equations; V; is the mean velocity of particles of species j; m; is the ion mass;
me is the electron mass; %— =. %ﬁ 4+ V5 o LI—:TT— is the plasma
conductivity; ; is the viscosity tensor; R is the thermal force; qJ is the

thermal flux; QA represents the heat exchange between the electrons and ions.

We first consider the heat-balance equations (1.28) and (1.29). Asis
well known, the heat flux carried by charged particles in a plasma in a strong
magnetic field is made up of a transverse magnetized heat flux q, ==

— %, %/, T, a drift heat fix g, = 7 “’,‘;:_ [H7T] and the longitudinal
heat flux q, == —Z!Iv “T.
In the case of interest here, a plasma in which Z = 1 (Z is the atomic
number} 7 ; = ginTi -, =39 — nT o= ot ,Ti is the mean

HI Q 1!1‘ m;c
ion—ion collision time. émce the longitudinal thermal conductivity of the

electrons ®; ~ M.V, is overwhelmingly large, the electron temperature can
be assumed to be constant along the lines of force and thus, also on the mag-
netic surfaces. The jon temperature can also be regarded as constant on the
magnetic surfaces to a first approximation; however, because of the drift thei-
mal flux qq the surface T = const is somewhat different from the magpetic

surface, so that to a first approximation, Ty = Tolr) + T'(r)sin+, where'f «Ty.

The quantity T* can be determined from the condition div{dq +qy) =0,
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and it is found that the longitudinal thermal conductivity tends to remove the
departure of T from the magnetic surface caused by the drift. In the equation
for g4 we neglect the small quantity T', and since nTy is a function of ¢ only,
we can write this condition in the form

ne

cnT Hy .
5 ,n HY H] T, snd a7 =G, (1.30)
r Hu n
_ H
Here, we have made use of the relations '/ Tycwl H=10 and ",y = Hfl* X
of

o In the gradient "7/f we necd only take account of the inhomogeneity

of the longitudinal field caused by the toroidal geometry of the system, sothat,

in the coordinates r, 9, and § wefind that 7 H = {cos ¥, — sin®, 0} Ho .
Q
Consequently, when HJ <« H.= H,
;L henT o Hor? .
T'ee e 8 dT (1.31)

f’Hﬂ d Ry T dr
In order-of-magnitude terms we find T' ~ T/ Q;T; << Ty- ©On the other hand,

the eleciron temperature Te can obviously be obtamed from the expression
Te ™ To/QeTe ™ (mg/my )I/ZT'«cT’

The existence of T' leaves the appearance of a radial compoenent of d;
in the drift flux qg:

b} cn T

=—— 2 T cos b,
Gar 2 elr (1.32)
Now we average (1.32) over $ with the weighting factor [1—{(t/Rg) cos 8] in
order to take account of the toroidal geometry; recalling thar H ~ Hy -
[1 + {r/Rg) cos 9], replacing T' by Eq. (1.31), and adding the resalt to Qe We
obtain the following expression for the radial heat flux [4]:

2nT; ar;
g = — e (1 LB
’ m, QJT (1.33)
where ¢ = r[—IO/Rqu}r is the “stability margin™ for the screw instability. The
second term in the curved brackets in Eq. (1.33) takes account of the addition~
al flux caused by the toreidal drifi of the particles [5].

We now consider the equation of metion for the electrons (1.27) in which
we shall neglect inertia, viscosity, and the longirudinal heat force Ry,

p.o= —en (E -- L [VCH}\) L jn = £ i —
c ‘
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n

h<yT

9 Qe (1L, (1.34)
where h = H/H, and in the frictional term we have taken account of the dif-
ference between the longitudinal and transverse conductivities Jy = hkj),
54_ =j- j” - Using Eq. (1.34), and taking account of the equilibrium equation
(1.1}, we find

C AV . 2 o 3 cin
Vo oz — P S L _—— - N, -
i 12 [E I ’ HJ T ot o T eI VT, v H,
- (1.35)

where the second term describes the diffusion and the third term describes the
thermal diffusion in the plasma. The terin y H takes account of the possi-
bility of electron flow along the lines of force. Multiplying Eq. (1.34) by H
under the assumption that H /p. = 0, we have

JH = 0y EH. (1.36)

Since T, = T.(r}), the quantities oy and o , are functions of r only. Taking
jy = «H, and assuming that under stationary conditions E, ~ E[1 + (1/Rg) -
cos ¥, from Eq. (1.26) we find

=% (g T e
174 o lEo(l 4 Ro cost'})+ i, L-U}, C@.an

On the other hand, using the equation divj =0 and taking account of the
equilibrium equation (1.1) and the relation div H = 0 we have

- 1 da o 2 HTp) T H
H /g =~ Hy, — = o= VA VI
Y YT divij T (1.38)
92
whence it follows that o = o, + ———“Eg—---- . —[3-)— cos (. Substituting this ex-
HoH 3R r
pression in Eq. (1.37), we find oo
Ty Eo Porl d
0 H, o H5PR,  dr O v (1.39)

Knowing the quantity g we can find the radial component of the electric
drift in Eq. (1.35). We can then average this quantity with respect to & with
the weighting factor {1 —(r/Ry cos#] (in order to take account of the increase
of the surface in the outer part of the torus), thus cbtaining the diffusion rate
(6]

P c? lm +72q_2__\ dp . 3 cznr dT_
' o ) ar T oo GpHED g (1.40)

Up = - —{—
H* A9 I
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Here, the second term in the curved brackets takes account of the effect of
toroidal drift on diffusion. Using the relation in (1.35) and divv =0 itisa
simple matter to find the components of the electron velocity VS and vg'.

The ion velocity vy differs from v, by the known quantity j/eny. If the
value of vy in the equilibrium equation (1.1) is large enough, it is then neces-
sary to take account of the ion inertia, and this leads to some displacement of
the surface p = const with respect to the magnetic surfaces 7).

We note further that in the presence of a temperature gradient in the
plasma there will be an azimuthal electric field which is significantly larger
than that given in (1.39). The point here is that if the perturbation in tem-
perature is taken into account (1.31}, it then follows from the equilibrium con-
dition H*,p = 0 rhat

20°Ty -+ T'rygsind = 0,

where n’ is the density perturbation. Since the electrons exhibit a Boltzmann
distribution in the first approximation, taking (1.31) into account we find

11‘1‘}- N __7:”_ - a.‘”‘ll’# e Mﬂﬂj_{ﬂf_ﬁ_ . ..ii,T.:f)_ Cos by i (1 393)
CHyr ) L’EzHg?‘f. I RU dr )
A I

This quantity is (mi/mc)l/ ? times larger than the azimuthal field given by
(1.39).

3. Particlie Drift Trajectories

We now wish 1¢ consider the motion of individual particles in a torus.
As is well known, the motion of the guiding center of a charged particle is
described by the equation

dr ¢ [ q,) e 2 2 -
_:hv, .‘_,,‘._._n_%____ R V7
dt o H © o 2eH? (02 + 203) hR7H1. (1.41)
This relation together with the energy conservation relation
me® ‘
5 -} ey - oconst (1.42)
and the conservation of magnetic moment
vl
L= —== == const {1.43)
i

determines the motion completely.
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Here we shall consider the simple case ¢; = 0. Furthermore, under the
assumption that & = 1/Ry « %, in \/#1 we need only introduce the gradient
of the longitudinal field Hy = Hglt + (1/Rg cos 9. In this approximation the
covariant components of 7 H are given by

(TH) =~ S

¢ cos &; —
1] n

—-sin O} (1 i cos 1‘)) . (1.44)

a
Introducing the quantity §, the departure from the line of force on the mag-
netic surface, by means of the relation & £ —q%, and taking account of the

approximation in (3.44), to accuracy of first order in 1/Ry we find from (1.41)

L{}' = L (] - N cos ﬂ) Uy ==
dt Rog Ry /
(e ) | ) aas
Ryq R,
dr e 2 28 . T
= - vt 4oy )sin [ 1 - — cos ﬁ); .
dt 2001 ,R, (0" 4 o) ( "R, (1.46)
dz me g r
—— ur geos g’ risind ( L cos ‘})

(1.4
where q' = dg/dr.

The departure from the line of force is small, so that the quantity r in
Eq. {1.45) can be tegarded as a constant. Thus, the equation for the longi-
tudinal motion (1.45) can be solved independently of the equations for the de-
parture from the line of force.

It is evident from the longitudinal equarion (1.45) that the most impor~
tanteffect thar arises in the transition to toroidal geometry is the appearance
of trapped particles, which oscillate between the magneuc mirrors. These

pamcles have a small longitudinal velocity v, = VeV, l.e., for these paricles,

pHU/v is approximately unity. For this reason, the dependence of the radical
on ¥ in Eq. (1.45) becomes extremely important. The weak dependence on
4 contained in the factor (1 + ¢ cosd), can be ne glected. We now introduce a
sphencal coordmate system Vs w‘ﬂ" and « in velocity space at the point & = .
Then vy /v: = uHy(1=&)/v* = sin® y_ , and Eq. (1.45) assumes the form

LU Vcost iy — e sin®apy (1 4+ cos 1), (1.48)

di - Rg

where ¢ = t/R,-
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It is then evident that for small values of cos%; the radical can vanish
for certain values of &, i.e., the particles are reflecied from a magnetic mir-
ror. We now introduce an additional angle y, = (7/2) —¢ . Since the angle y
is small for the trapped parncles for these particles we can write as an ap—
pr0x1mat10n cOos iﬁﬂ- =3 yﬂ., sin gbﬂ, . Introducing the new variable »n?t
711/25 we can now write Eq. (1 48) in the following form for particles with
small longitudinal vicinity:

dit 01 e Bow T
TR Ves— it (49

Evidently, a turning point & = $4(n) occurs at 1 = cos®, = 2%*. This
turning point appears when x < 1. Thus, the value % =1 distinguishes the
trapped particles from the free particles. Using Eq. (1.49), we can now find
the oscillation period of the trapped particles T,

R

T N )

o) ¢ Vour -1 —costh v} e (1.50)

o

where K is a complete elliptic integral of the first kind.

For the free particles (. > 1),

Ryg 4 ¥ HM‘K( )
j‘ l 2/ — | —cos ¥ UI/E ® * ’ (1'51)

InFig. 2 we show the dependence of the quamtity wy =27/7 on %. For
large values of » the particles move along the magnetic field in essentially
free fashion and wy = w(W2e/2Rg). When % -> 1, the frequency of gyration
of the particles in the 9 direction is reduced to zero and the particles are
trapped, in which case w, becomes the angular frequency of the oscillations
between the mirrors.

Evidently, the presence of an inhomogeneity along the magnetic field
causes an essential change in the nature of the particle motion. In a uniform
magnetic field there can be particles that move arbitrarily slowly, these par~
ticles being capable of resonant interactions with slow waves which lead to
damping when w/k Wvi~ 0; in the present case (cf. Fig. 2), there are almost
no particles that move with slow average velocities, since w tends to zero
logarithmically when w «» 1 (in other words, the number of slow particles is
exponentially small). Thus, there is no reason i¢ assume that the oscillations
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will be damped when w/k] vi =~ 0. Actu-
ally, as we shall see below, in toroidal
geometry there is an instability that arises
specifically from the presence of trapped
particles. In order to treat this instability
we must consider the transverse motion in
addition to the longitudinal motion. This
feature is the basic reason for our interest

+ in trapped particles.

0 1 2y
In the case of particles with small
v,p in Eqs. (1.46) and (1.47) we can neglect

Fig. 2. Mean angular velocity v as compared with v then, from Eq.
of a particle in the azimuthal (1.45),
direction.

Ar — 4 meog sin Od¢ .

—J 2H, Ve VZP—I—cost
=+ D 19T " cos©
T eH, Ve V2 ) (1.52)

The particle trajectory in the 1, & plane is shown in Fig. 3. In its mo-
tion along the magnetic field (v > 0) an ion drifts outward from the magnetic
surface and in its reverse motion it diifts inward. The quantity Ar is of oppo-
site sign for the electrons.

It will be evident from Eq. (1.52) that the displacement of the ions in
the radial direction is of order Ar ~ p;q/Ve. We assume that this quantity is
smaller than a; if this condition does not hold, a significant fraction of the
ions can escape to the walls even in the absence of collisions or instabilities.

For the free particles characterized by w1 we can assume that vy =
const, in which case Eqs. (1.45) and (1.46) yield the relation

S 2 '
Ar = T (v* + v”) cos i, (1.53)

whence it is evident that the displacement of the free particles along r is
smaller than the displacement of the trapped particles, the ratio being ap-
proximately vRy/r [Eq. (1.53) obviously holds only when vy >> vo1/Rg 1.

In what follows we shall require the quantity A8, which is the displace-
ment of the trapped particles along the plasma (i.e., along ¢) in one oscilla-
tion perod. It is evident from Eqs. (1.45) and (1.46) that this displacement
can be written in the form

B. B. KADOMTSEV AND Q. P. POGUTSE 265

Qrf ,
v, ;GE qgrig=1t
! s gr7/g+0
g
T 2=y/2e
rrge-1
N T

Fig. 3. Particle trajectory in the Fig. 4. Mean velocity associated withthe

L, & plane. magnetic drift as a function of the posi-
tion of the tuming point &.

F’.‘_‘ q d
A:~_2 —J“.

mur dr (1.54)
Here,
o
Jy== <f, muydl -~ 4 fmv” gR, (1 — ecos ¥) db ==
b
=8V 2eqRwI(E (x) — (1 — A K (%)), (1.55)

where E(x) is a complete elliptic integral of the second kind. The quantity
_]'“ is the longitudinal invariant, which is equal to twice the imegral of the
longitudinal momentum my) laken along the line of force between the turn-
ing points. We note that a relation such as (1.54) can be obrained in general
form for any quasiperiodic motion [8} and applies to more complicated mag-
netjc configurations.

Carrying out the differentiation in Eq. (1.54) and using {1.51) we can
find v, the mean drift velocity of the trapped particles along &:

AL T G, (1.56)
T

wheite

2q'r A E 1 .
G = Gut) + = Gyl = (5 )+
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g2 <£—1 1. -ﬂ). (1.57)
q K

The dependence of v, on the angle & for different q' is shown
in Fig. 4. When &, is close to m, the charged particle is close to the outer
part of the toroidal suiface r = const, i.¢., the region in which the magnetic
tield falls off in the outward direction. When q' = 0, the pariicle executes a
drift in this region, which is unfavorable from the point of view of stability
(vy > 0). As the quantity %, is reduced, the velocity v is reduced, and when
% =~ 0.85 the latter changes sign: the corresponding particles spend a large
part of the time in the region & < #/2, in which the magneric field increases
outward from the magnetic surface. When #,—0, the velocity v¢ tends to
"some finite value corresponding to the drift velocity for & = 0, where the par-
ticles spend the largest fraction of time.

If g’ = 0, the expression for vy contains an additional term which
arises as follows: when v, > 0, the particle is located in the region Ar > 0,
where the pitch of the line of force for q' > 0 is larger than the pitch at the
point r, and when v, < 0 the particle moves in the region with smaller pitch.
As a result, when q' > 0, the contribution to the drift associated with this ¢f-
fect is unfavorable, and when q' <0 it is favorable.

When Q' - -, the fraction of particles that execute unfavorable drifts
approaches zero.

4. Equilibrium of a Rarefied Plasma

If the mean friee path is larger than 27Rg, in its motion along a line of
force a particle will not collide in one circujt around the minor azimuth and
the problem of equilibrium is no longer amenable to hydrodynamic analysis.
In this case the equilibrium state is described by the kinetic equations for the
electrons and ions:

- € [ l i
Vi fo; - ;’Ij {.E + - [VH]} ;’/”* = sfy, (1.58)

where st is the collision term.

When the number of collisions is small, Eq. (1.58) can be solved by an
expansion in st, neglecting this term in the zeroth approximation. In this
case, Eq. (1.58) can be written in the form dfoj /dt =0, where d/dt is the
total derivative along the trajectory. The general solution of this equation is
in the form of an arbitrary function of the integrals of motion. In other words,
foj is a constant along the particle trajectories. The trajectory of an individual
particle can be written in the form
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r—=r,-Il- Lhﬂ

Qi a; (1.59)
where QJ = ejH/m]-c; Iy is the coordinate of the center of the guiding center,
and v is the particle velocity. As we have shown in the preceding subsection,
the guiding center depares only negligibly from the magnetic surface: the dis-
placement Ar s given by Eq. (1.53). Thus, r = 1y + Ar + (hv]/Qj, where
Tgo = CONSt is the magnetic surface close to which the given particle moves.
Using Eqs. {1.41) and (1.42), we {ind

AT P R A
f k.uHU, o ﬁ(ro, ) ) == A == const, (1.60)

where i, ¢, and 1 are taken on a given trajectory.

In the zeroth approximation r = ry, uH, = v, and we can take

rpo(rug)zz 0 without loss of generality; then, in Eq. (1.60), we find A = -
(vf. V', 1gg) (it is assumed that the equilibrium state is symmetric with respect
to 9). In the next approximation we must substitute the following in (1.60):

. . [h o A Jp
R T e T [—{ti, wify =2 (1 — T;~ Cos ﬁ) DGy = -g;(l“-Ar 4+,
= ur

- o

where ¢ rakes account of the possibility of an azimuthal field, We now cx-
pand this expression and take the first term in the expansion;

aLa hvl, i g .
F==F, (@i, %) — !'T‘L LRV (8 +o? - cos i afg -
L, ar ar = Ry du_L
Jep Oy, o Ze;  , dfg
— S N T .
mp o or du? " di® (1.61)

where, for simplicity, we have omitted the subscript on rgy the coordinates
corresponding to the magnetic surface being considered.

Since we are only interested in systems in which the plasma is confined
for many collision 2periocis, the function fo can be taken as a Maxwellian, i.e.,
fo = F(1) CXp(‘I’HjV /2’13 ). Then Eq. (1.61) assumes the simpler form

i 2 Iv], df, afq ej d e
L R . IR R [Ny v A A
0 S o o T dr fo - T; Pl (1.62)

Here, the last term corresponds to a simple Boltzmann distribution with re-
spect o the angle &, while the second term describes the so~called Larmor
current. Grear interest attaches to the third and fourth terms, which are associ-
ated with the motica of the guiding centers along the drift tuajectory. The
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displacement Ar is very small for electrons, and hence these particles can be
assumed to move along the magnetic surfaces, i.e.,, A = 0. On the ather
hand, for the ions we find that the displacement Ar ~ ¢p;, and this can lead
to a significant distortion of the Maxwellian function (especially in the region
of trapped particles where Ar ~ qvR/1). If the Larmor radius p; is large
enough, some of the ions can be lost directly to the walls of the chamber.
Under these conditions the plasma becomes charged negatively, and the equilib-
rium is maintained by virtue of confinement of ions to the drift trajectories of
the electric field [in Eq. (1.62) this cffect is described by the fourth term].
Under these conditions the plasma is confined by the electrons, and hence it is
very imporiant that there be magnetic surfaces in the system. In the general
case of a toroidal equilibrium (not axisymmetric) the possibility is not ex-
cluded that there will be some distortion of the magnetic surfaces for which
the ions will not feel the small fluctuations of the magnetic field, but in which
electrons (in the absence of collisions) can move freely to the walls, because
of random wandering of the lines of force. In this case, the plasma is not
charged negatively and the containment time will be determined by the ion
drift. In the presence of collisions this effect is important anly if there is a
strong disturbance of the magnetic surfaces.

In the next approximation in st it is possible to take account of collj-
sional transport effects. The order of magnitude of these effects is the same
as that found in subsection 2 [4, 5].

§2. HYDROMAGNETIC INSTABILITY

1. Fluie Instability

If a dense plasma executes rapid motions, the magnetic field can be
regarded as frozen into the plasma matter so that large-scale instabilities that
are reasonably rapid can be investigated in the approximation of ideal mag-
netoliydrodynamics. In this approximation 4 toroidal plasma is subject to two
instabilities, the flute instability and the screw instability (cf. the revicw in
[9). The usual criterion for the stability of a current-carrying plasma with i
respect 1o a localized perturbation of the fiute rype is taken to be the Suydam ’
criterion for a straight pinch [10]:

2 , L2
s ()] @

where q = rHy/RHg is the so-called stability margin with respect to the 1
screw instability and the primes denote differentiation with respect to 1. ‘
|
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However, the condition in (2.1) will generally not apply in toroidal sys-
tems such as Tokomak, which have a strong longitudinal magnetic field, i.e.,
Hy > Hg. The point here is that in the final analysis the flute instability de-
velops because of the curvature of the lines of force. In a straight discharge
the radius of curvature Rg = rHé/ Hf} and when Hg >» Hg, this quantity is ap-
preciably greater than r. It is clear that when F; > Ry the curvature of the
lines of force due to the toroidal geometry will start to play a role. This
curvature changes sign as a function of the minor azimuthal angle . In the
outer region the lines of force are convex, and in the inside region they are
concave with respect to the plasma. Henee, for small § = 811'p/1-12 the curva-
ture exhibits an effect which represeats an average over 9; for large B there is
a transition to the so-called ballooning mode [11, 12], in which the perturba-
tion in the ourer region is greater than in the inner one.

Within the framework of ideal hydrodynamics an instability starts when
an initial axisymmetric equilibrium state is characterized by the possibiliry
of formazion of an equilibrium configuration characterized by a perturbed
magretic field. Hence, to find a stability criterion it is sufficient to investi-
gaic the solution of the equilibrium equation

. l

Vo= —|iH] = ——[curl H, H] (2.2)
C dn

and te determine under what conditions there are equilibria that are close to

the axisymmetric equilibrium.

In the case being considered here, in which Hy » Hg, it is found con-
venient to replace Eq. (2.2} by certain relations that follow from it:

.0 i, — ClHyp] .
Hyp. 03 jL = =220, (2.3)
where j, is the component of the current density which is perpendicular to the
direction H. The total vector j c¢an be written in the form

jo=j.--aH,a=—""HeculH. )
i i o s curl H (2.4)

Using the condition divj = 0 1aking account of the fact that div H = 0 ,
and making use of Eqgs. (2.2)+2.4), we find

Hya -+ divj} = Hya + 2 ﬂ';;i]- vp = 0. (2.5)

We now consider the initial equilibrium state characterized by po, Hg,
and HE; and the linearized equations (2.2)~2.5) under the assumption thai the
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quantities p’, HJ, and Hg are small. We take account of the fact that
HY < HE, py <CHE 8.

Since Hy is large, the perturbation H'; can be neglected (if this is not
the case, we would have a very large perturbation in the magmetic pressure
HéHg/ 4r}. For this reason we can neglect the perturbation in H and take this
quantity to be Hg-

I the effect of the toroidal geometry is small, the longitudinal mag-
netic field goes as 1/R as a function of distance from the axis of symmetry of
the torus; thus, to first order in r/Ry, in accordance with Eq. (1.3), we find

r

H?zHo(l—é— cosf}),

Q

where Hy is the longitudinal field at the magoetic axis. Thus, in the first ap-
proximation in the toroidal parameter in Eq. (2.5) we can take the quantity
v tobe Hyy };; cos ¥, while H? is replaced by H3. The second term

]
in Eq. (2.5) then takes account of the cuivature of the lines of force in the to-

roidal geometry. In Eq. (2.4), the equationfor ¢, we can neglect the toroidal
geomeiry and assumne, as an approximation, that r, &, and £ coincide with the
cylindrical coordinates for a straight plasma,

In view of the foregoing considerations we can now write the linearized
equation {2.5) in the form

H(Jva’ + f];ﬁ ._L‘E}F_Oﬂ_ ,p' “ _lﬂ"ii \":I')U _ b (]’ (2.6)
dr 3R, HyR,

where €. = v/ cos{ is a unit vector directed along the x axis, while the
last term, b, takes account of second-order terms in r/Ry.

Since V1o is directed along the radius r, the next-to-last term in (2.6)
is proportional to H; and Is negligibly small,
Since Hg PoS Hg}, we find

1 . C]'J-ﬂ

[ e — ————.—.7.”]’1’:},
T L R (.7

while the perturbation «' satisfies the relation

. } ,
R TS U SR (S S T WL B ol SRR
S daf, Lror oot
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Since Hy is small, the equation of centinuity div H' = 0 assumes the form

1 7 . 1 ] .
_— s — rH ) SRS, f}r' ==
ro o T a7 ' (2.9)

It is then eviden: that the perturbation in the magnetic field can be expressed
in terms of a stream function ¥ :

R o p
T Hi o= ar (2.10)

Substituting these ex pressions in Eq. (2.8) and using the result for a* in Eq.
(2.6), we find

s dm dj ap 8t (.. ap’
Hopd, o 20 S 99 —{sml‘}i
VAW cr dr it g cRy or

1 p* Elats

4 cos i — . I—I-L} 4+ = Q, (2.11)
r Ji c
where
il 2.
Agp= L Ly

r dr ar re (h'}; ’

In order to find the quantity b, we assume that the flute instability de-
velops from perturbations that are highly elongated along the magnetic field,
in which case H°ya'—0, H% p'—0, i.e., o' and p' are slowly vary-

ing functions along the lines of force. Bui Ha Hby = f 9 where 2 is
Car’ o1

the derivative along the lines of force; consequently, neglecting /4o we
find from Eq. (2.5),

, div iL
o :__5. 57 dl, (2.12)

where H is the unperturbed magnetic field. Since p*is a slowly varying func-
tion of I, we can carry out the integration in Eq. (2.12) over a bounded range
of L assuming p' to be constant. If this interval corresponds to one or more
orbits with respect to &, then we can carry out an averaging over { and sepa-
rate the required second-order terms in r/Ry. In computing the integral in

Eq. (2.12) we make use of the curvilinear coordinate system introduced in § 2,
in which the magnetic surfaces coincide with the coordinate surfaces r = const
and in which the ratio H¥/H? = q(1) is independent of & . In this coordinate
system, Eq. {2.12) can be written in the form
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Ml r LAY )

o =— | _cdl (9 L(H_z_‘?{_ — i, ) a0
) HYg Vor T HR % &0 a9

]

1 ap’ ap’ a H dp’ ap'\
7 POy SO/ WV N W 0 S S A
He ( ® or ! ag) P E ( 1oy T )}’ (2.18)

where the Hj are the covariant components of the unperturbed magnetic field.

Since p’ is essentially constant along the lines of force, as an approximation
! f" J’
70 ~—q —JJE— . We assume further that along the lines of

ol 49 s : .
force —-H— = 7” = 7_]? . where the H* are the contravariant components of

H", 50 that, in accordance with Eq. (1.10), the quantity 14"gH2 is independent
of #. Then, Eq. (2.13) can be written in the form

we can write

Tl e o
- l/‘—gf[: v 1 ot . 4q ar HE ' dr i ) .
i - r r Y
Lo Apt @ Hy  ap .a ._1%1_;(30' 10
oar ¢  H* dt ot e :

Since p' varies slowly along the lines of force, the derivarives with respect to

p' in the integrands can be taken to be constant and an average can be taken

over 4. Inthis case, the second and third terms drop out and the first reduces
to the expression

@ o € \ dp’ _(EU, IR R PTY (2.15)
VgH®a ) 6t dar Rog* dr
wheie
i+
U — lim 225 5 Haafls 4o Sif__ (2.16)
00 . H* P H

We take account of the fact here that Hyd$ + qld9 = H,d$ + Hodg =
Hdl and H, = rHy. When H} « H}, we can write U = 2mRy/H, Yg = IR,
d9/H® = dl /H,, so that Eq. (2.15) can be written in the form

+

2= \ LN ( VO N 2.17)
Hy v Ry o4

where Hy can be regarded as constant and equal to the value of the field at the

maguetic axis, since y U is 2 second-order quantity in 1/Re. Taking ac-

count of the fact that q° > 1, we neglect the second term in the curved brack-

ets in the integrand in Eq. (2.17). Differentiating Eq. (2.17) aleng the lines of

force, we find HYye’ + & = U; where
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b— cHU]lvp’\’:UI . {2.18)
HIU

This is the desired value of the second-order terms in & as averaged over the
angle t/ Ry in Eq. (2.6). The calculation of this quantity by means of a direct
expansion in r/Ry would require much more extended calculations,

Now, by adding to Eq. (2.11) the linearized first equation in (2 3 ik,

. 1 dp ap
Hoy- Lodey _
Ve + . ar 70 0, (2.19)

we obtain two equations for p'andy.

We note that for a straight pinch (Ryg = =) with Hg} ® Hg, by taking ac-
count of small guantities of order Hf}/Hé we would obtain an equation of the
form (2.11) in which the”%ast two terms would be replaced by the expression
_‘11_ L dp’ Antly 1 ap”

Ry " r e oz g It is evident that the toroidal geom-
z

etry starts to play a role when Ry < R;. By virtue of the periodicity in & and z,
an agbitrary solution of the system of equations (2.11) and (2.19} can be writ-
ten in the form ¢ = $pu(%, ryexp(im¥%—ing) and similarly for p', where the
functions $mp(9, 1) and pp (9, 1) can be regarded as having a minimum
aumber of nodes in 9. In other words, if ‘f’mn and Pmp 2re expanded in
Fourier series in 4, i.e., Ymn = Syexp (il0), then ¥ must be a diminish-

&

ing function of the index {.

Substituting this expansion in Eqs. (2.11) and (2.19), and converting from

. ] i
tlﬁjtream function y to the quantity §; = y, /kt . ﬂftereliminatmg foy R
Ty i .
—;rT — F , We obtain a systeml of equations for the harmonics & IR
[P a

o Admin o ! ; 5
R Ry - SO D i s g {__ :éen_ (ot 0y,

. ) AN
cridy dr 5

. - 4L .
L D= r Py =0, @20
in ap®
—_— . —— 3 1M -
Portii ar nd have in
cluded the small term ~1/Rg for completeness. We are interested in localized
flute perturbations which develop close to the singuiar peint r = 1y at which

Here, we have introduced the notation A == —
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H()
o mn b I
the longitudinal wave number Ry = — . _H—” —- 7 vanishes. In the vicin-
r [

ity of this point we can expand kyinx = r—roz: kg = (mA%0x, where 0 =
rzq'/Roqz, q' = dg/dr. Furthermore, in Eq. (2.20) we can neglect the second
term compared with the following terms.

The width of the localized short-wave perturbations Ax ~ r/m. As we
shzll see below, it is sufficient to consider the case 19"/ q « 1. In this case,
the singular point for the permurbation { = 1 is determined by the relation

19
\l — T T T . — H

r H RN g Lo HY

z

o Iy ,

o ML T o m Sl L ) L = (0, and lies far be-

yond the limits of the localization of the perturbation, so that ky can be re-
R

garded as a constant equal to Hg/ H;r. When Py = --23- & —%, a condi-

I

tion which is almost always satisfied, the harmonics £; fall off rapidly with

the harmonic number ¢. For this reason, in tiie system of equations in (2.20)

we need only consider the first two harmonics. Applying the operater & | 1o

Eq. (2.11) for the fundamental, and then eliminating ¢; and ¢, by means of

Eq. (2.11) for the first harmonics, we obtain the following eduation for ¢

ArxA gy — (7+8)A 0 =0, (2.21)
where
b ST E‘JE'_Y (i)z- y = __&'T_""(_q_>2__ ap’ i(if '
2 (RU Ca ) % \a’ mp Ut

where the primes denote differentiation with respect to r. In order to solve
this preblem, we shall find it convenient to carry out a Fourjer transformation
with respect 10 X: ¥ ¢x) = [y (k) exp(ikx)dk. In the Fourier representation,
Eq. (2.21) becomes
B b —(y-EB)(]-L x¥) U= 0, (2.22)
d»2? (1 4 =2)?

where ® = rk/m. This equation is essentially the same as the Suydam equa-
tion [9), differing from the latter only in the fact that y is replaced by y + 6.
This equation will have characteristic solutions only wheny + § > Y, Thus,

the stability condition for the flute instability is of the form y + § < ¥, or, in

inverted form,

_ Bapt  AmprU L E g 8apt N2 <L(¢' V. (2.29)
02 A2y T 2 1 ) )
er hﬁ U
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As has been poiated out in [13, 14], toroidal systems with a strong longitudinal
magnetic field have a2 minimum of U in the sense that U increases toward the
periphery of the plasma. The quantity U"/U is computed in [14], and is found

to be
U 4r ( - 3 ) , 7t @
TR Tt A A -24)
U /gf) 4 R[f

where A is the asymmetry coefficient of the azimuthal magnetic field [cf. Eq.
(1.4)]. In general, the quantity U" is negartive,

It follows from Eqs. (2.23) and (2.24) that the flute instability is stabilized
anp

in Tokomak systems when [ =
”02
1y

<1 and when the variation of p with

r is not too strong,

2. Screw Instability

In considering perturbations with smali azimuthal numbers m in Eq.
(2.11) we must take account of the second term, which corresponds to the
. - . 8ny ..
screw instability. Assuming that B, = % <« 1, in which case we can neg-
. . B
lect the third term in Eq. (2.11), and using the relations in (2.18) and (2.19),
we have

1 d ap  om?

-7 —_— =V
r dr dr re v v (2.25)
where
v 4o dj, ) [ 4zl p’
¢ Hg(l —’—;q) 1'132(/(1——”—.:7)2 (2.26)
' mo

Equation (2.25} is analogous to the Schradinger equation with a potential V.

When p' = dp/dr < 0 and U" < ¢, which corresponds 1o a minimum in H,
the second tern: in Eq. (2.26) is positive and approaches infinity as (1 — g™ a5
r approaches the singular point rp, where 1 —(n/m)q(ry = 0. This strong singu-
larity completely divides two regions : r—ry > 0 and 11y < 0 {cf., for ex-
ample, the review in [9]).

Thus, the solution that satisfies the boundary conditions #(r = 0} < o,
¥{r = b) = 0 {where b is the chamber radius) can appear only by virtue of the

first term in Eq. {2.26), if the latter is negative. Since A jﬂ = RS -d,rH?h
¢ v dr
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the first term is of order 1/1% and for small m (say m = 1, 2) the instability is
determined by the range of 1. However, if the stability margin q is appreciably
greater than unity, when n/m ~ 1, the potential V ~ l/rzq2 is small and the
instability must vanish for small values of m. In this case, the instability can
develop for a rapid change of current density j, with radius r, that is, if the
quantiry djg/dr becomes sufficiently large in some region. The instability is
also favored by values of m and n for which 1 —(n/m)q is small in a region in
which jq changes rapidly, i.e., in a region that contains a singular point r =1,
corresponding to the point at which 1—(n/m)q vanishes. Near the singular

point we can write 1 —~(n/m)q = —{q"/Qx, x = 1—1y i€,
B
y-24 .8
x x*
where
[
At Ao g 1 . p_ AU (2.27)
¢ dr gyl H3 uq

If 8 g <« 1, then B is small in the second term in V and can only cause ¢ to
vanish when x = 0, but has no effect on the potential in the main region. For
large values of m, which correspond 1o the region in which the difference

1~ (n/m)q vanishes, the instability is localized. In this case, r can be re-
placed by rq and Eq. {(2.25} assumes the form of a Schrodinger equation with a

Coulomb potential
2 2
d*p z(m + A)\p_ (2.28)

dx? 2 x
s

From the condition that the first level must vanish, which for A < 0 corre-~

sponds to the solution P == x e€Xp (—- ix) » we find the stability condition
o
darg | dia. <2[£~1m. (2.29)
cHY | dr q

For large values of m this condition can easily be satisfied if the current den-
sity varies sufficiently smoothly.

Thus, if the current density exhibits a smooth profile, and if the stability
margin jo(x) is large enough, the screw instability can also be stabilized. Con-
sequently, we may assume that hydromagnetic instabilities are not dangerous.
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§3. DRIFT AND DISSIPATIVE INSTABILITIES

1. Choice of Parameters and Localization

Width for the Perturbarions

The instabilities we shall analyze below are characterized by being
highly clongated along the lines of force and occupy a localization region
that is much smaller than the radius of the plasma. For this reason, we cag
carry out a simplification by replacing the toroidal plasma by a straight pinch
of length L = 2wR and radius a surrounded by an ideally conducting chamber
of radius b. The toroidal feature car be simulated by joining the ends. We
introduce a cylindrica} coordinate system 1, &, and z in which the z axis is
along the cylinder axis. We assume that the longitudinal magnetic field H,
is strong and that the quantity q = er/RHS, whose value at the edge of the
plasma is sometimes called the stability margin for the screw instability, is
between 1 and 10. Since the ratio a /R cannot exceed 1/2-1/3 because of geo-

metric and constructional considerations, the ratio Hg/H, ~ 10* « 1. The
. 91 LHy
quaniity = — = —
g ril,
threugh which the line of force rotates in azimuth in a length L. The rate of
change of the angle v with respect 1o radius characterizes the shear of the
lines of force. We shall find it convenient to introduce the quantity § - .

R

dt

P which we will simply call the shear. We shall assutne at the outset
-

that

represents the rotational transform, i.e., the angle

0> (’_”_) (3.1)

n;

This condition, as will be shown below, means that it is not necessary to coa-
sider the collisionless drift instability in which kp; > 1, where k is the wave

e . .
number, (¥ = TTaT .y = (according to some estimates [15],
i m;e

these instabilities should lead to a diffusion characterized by a coefficient

: r
D~ I/ Lm—"p‘-vi when j = 8ap -3 e ,where U; = l//_— . In what
[ g 1 ny S

follows, in making estimates we will frequently assumé that 8~ 1¢~.

From the equilibrium condition wgth respect to the major radius in a to-

;
roidal system it follows that % P << #a( ? < 1, and we assume below that
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s R

poz0r—, (3.2)
a

This condition means that we can neglect nonelectrostatic features of the drift

waves.,

We shall limit ourselves 1o the case of a strong magnetic field:

i i, \ e
— < {—] - (3.3)
4 "y
In investigating plasma stability it is natural to guide our.thinking by
the conditions which hold in existing toroidal devices or in future thermo-

nuclear devices. For the first case we have T ~ 10-100 eV, ™ 1ot cm’,
@~ 10 cm, H~10% g: for the second case we have T ~10 keV, n ~10*°

em™, @~ 10% cm, H ~ 10° 5. In each case the mean free path Ao =~ 3 -107*-

(T*/mfor Goulomb collisions is large, so that we can limit ourselves to the re-
gion

In what follows it will be found convenient to use another dimensionless
parameter to characterize the collisional environment § = A, pi /a®. This
parameter indicates the ratio of the ion gyrofrequency vipi/a’ to the collision
frequency U R v/ e Vi/}‘e- We shall assume that

»

n '
S Meli ]/ e (3.4)

a?

On the other hand, we shall take

S« ]//E, (3.4a)

B,

because, if this is not the case the plasma is subject to instabilities associated
with trapped particles (cf. §4).

In present-day devices the parameter S ~ 107-10 and for thermonuclear
devices, S~ 1.

We shall aiso introduce a velocity associated with the current u = i/ en.
To avoid two=stream instabilities, we must make u smaller than Vel

L, (3.5)
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Furthermore, in order to avoid perturbations associated with cyclotron
waves we must satisfy the condition u < (ve/S)(Ti/Te)s/z. In order to avoid
Alfven waves [16], it is desirable to have u < cp, where cp = H/Y4mnmy; is
the Alfven velocity. As an approximation the condition u < ca ©an be writ-
ten in the form ,

1] matn - ~”—} (3.6

iz 2 7 T2
nyet H;

Everywhere below we shall assume that the relations in (3.1)<(3.6) are satisfi.
Specific cases in which these inequalities do not hold will be discussed qualj
tatively.

Drift instabilities develop from perturbations that are highly elongated
along the magnetic field. For the case of a cylindrical plasma column we

. - : . . . 2nn
can writwe the perturbation in the form cxp(—imf + imd — ;i z)

The derivative along the lines of force for these perturbations is given by
17,
]’ (/M -—tig). At points r = 1y where qi{rg) = m/n, this derivative

by

£
vanishes, i.e., the perturbation is constant along the lines of force. It is pre-
cisely at these points that we then find the development or perturbations cha
acterized by specific values of m and n. Wiiting Hy = iHky, we can o
tain a projection of the wave number of the magnetic field k, close to the
point r =rg ky = kyOx/r, where ky, = m/ry, X =r—1y If 0 is not too small,
as we assume below, it is sufficient to consider the case of small x.

The most dangerous instabilities are the electrostatic instabilities char
acterized by E = — ¢, in which the lines of force of the magnetic field
remain fixed. If the longitudinal phase velocity of a wave w/k, is appre-

2T
ciably smaller than the electron thermal velocity v, == I / —-, the elec-
i,

trons can set up a Bolzmana distribution along the lines of force, i.e., the pel
turbation in electron density n; will be given by

N — feg
[4 Tﬂ
2T
~— , we can neglect the
i
longitudinal motion of the ions; the transverse motion of the ions (when
we @ = eH/myc) is given by the drift motion vy = clhygl/H, where
h = H/H. If we assumne, as an approximation, that H =~ const, then from the

On the other hand, if o/k) > v, =
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Fig. 5. Region of localization of various instabiliries.

ion equation of continuity we find
0 — kye  dn
g win  dr

Using the neutrality condition n} = ng, from the foregoing we find

" kycT dn
O—0" = — R
cin dr

Thus, in this approximation the’ densiiy perturbation propagates in the
azimuthal direction in the form of a wave with frequency w*. In order-of-
magnitude terms, w* ~ (m/az)pivi, where p; = vi{/Qi is the mean ion Larmor
tadius. These waves are called drift waves [17]. The longitudinal phase velo-
city of a drift wave w/ k“ ~ vipi/ex; consequently, w/ k!l > v; when

co Pi (3.7)
x < 0

If x > pi/0, the fons can also establish an equilibrium along the lines of force
and a perturbation arises only in the presence of curvature of the lines of force.
Under these conditions the instability (if it actually occurs) is a magnetohydro~
dynamic nonelectrostatic instability, i.e., it is either a screw instability or a
flute instability or some combination of these (when the finite conductivity is
taken into account). Thus, the condition in (3.7) defines the region of char-
acteristic drift waves.
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If account is taken of the dissipative effects that have been neglected
above, the drift waves grow in rime. The particular instability that become

important depends on precisely which dissipative effect plays the predomina
role.

We now wish to consider the regions of localizarion associated with th
various instabilities. In Fig. 5 we have plotied the quancity x6/p; along the
abscissa axis, where x is the width of the region of localization; along the o
nate axis we have plotred m™ = r/ky, the inverse azimuthal number for the
appropriate perturbation. All of the drift instabilities lie in the region
xe/Pi < 1, regardless of the number m, However, in the case of coliisionless
instabilities the basic contribution to the Lransport process is associated with
perturbation characterized by k,x ™ 1, so that the important collisionless pe
turbations are grouped around the line 1/m = a/x (Fig. 5, curve 1). If a lo-
calization x0/p; ~ 1 is possible, then 1/m = pi/a6 . We assume that this qus
tity is smaller than the maximum allowed value of the quantity 1/m for the
localized solution, which is 1/4q. Aleng the ordinate axis {Fig. 5) we have al
so plotted the quantity L_s Mo hebr e For this value

n m; a® m;

of m and higher values, as will be shown in §4, there are collisionless insta-
bilities associated with trapped particles. If the loss due to this instability is
to be smaller than the loss due to the drift instabilitics, then the quantiry

nt, . . ! my s

—= 5 must not exceed pi/a®, ie., Aja<<—)/ 2L a condition

1y ~ U "
which imposes a limitation on the plasma density from below (for a given
temperature). On the other hand, as A is reduced the collision-dominated
dissiparive instabilities become important. These instabilities are character
ized by the condition k“)\e < 1, i.e., they lie in the region above curve 2
(Fig. 5) which corresponds 1o k ?‘c = 1. As we shall see in §7, the cells as-
sociated with the collision-dominated instabilities can overlap the entire pinc
and can have a macroscopic effect on the diffusion of thermal conductivity
when xm® ~ @, i.c., when the pumber of cells ~m® multiplied by the mean
cell width x becomes comparable with ¢. In other words, a contribution to tl

. | I I
1Ianspor process ¢otnies only from perturbations characterized by — —

m X
i.e., perturbations below curve 3 (Fig. 8). Thus, the important dissipative in-
stabilities exhibit a localization which is smaller than x ~ pi/aezs, COITESPON
ing to the cross-hatched region in Fig. 5. Actually, the localization of the
dissipative instabilities can be even smaller; when § ~ 1, dissipative instabili-
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ties are not important in systems with reasonable shear, i.e., systems in which

an
(e ~ 107, When S > —[l)— ' % ihese are known to fall in the localiza-
—_— / a

=

tion region x € pji- P
Curve 4(Fig. 5)shows the functional dependence L S 1/ M .—i\;z—l}-—

L]
a
123 ni =

& p[

corresponding to the relation Xl kzIl = w?* wheie y, = AV, Is the longitudinal

thermal conductivity of the electrons. Below rthis curve the electron tempera-
ture can be regarded as constant along the lines of force.

2. Equations for the Dissipative

Hydromagnetic Instabilities

The stability conditions for an ideal plasma represent necessary, bur not
sufficient, conditions for the stability of a real plasma. If these are satisfied,
the plasma may not be subject to fast hydromagnetic instabilities; however,
if account is taken of the dissipative terms that have been neglected carlier
(friction, viscosity), the plasma can still be subject to slow dissipative insta-
bilities. In order to examine these instabilities, it is convenient to use the
equations of two-fluid hydrodynamics (1.25)~(1.29) [18].

Together with the Maxwell equations

cul H— 5. divH = 0; He=curlA; E - — pp — —— %?“ (3.8)
[ ¢

these equations form a complete system. In order to simplify the calculations
we shall replace Egs. (1.25)41.29) by somewhat simpler equations and then
show under what conditions these simpler equations are valid. The changes
introduced by the neglected terms can then be evaluated.

We first combine the equations of motien (1.26) and (1.27), neglecting
the electron inertia compared with the ion inertia, also neglecting the vis-
cosity tensor . This procedure provides anequation that describes the motion
of the plasma as a whole

dv I .
Y ad 4 — [iH]. (3.9)
mn " v -+ . [iH]

In the electron equation {1.27) we neglect the inertia and express v, in terms
ofv = v and j so that the resulting equation represents Ohm's law for the
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plasma:

I, A - . vh,
— j=F - —[vH] — —[jH} &+ =,
5 i - [vH] o (iH} + (3.10)

(41

If the Hall current -— [iHj and the electron pressure gradient are also neg-
oon

lected, (3.10) becomes the usual form of Chm's law for a conducting fluid:

i _egxLivHy (3.11)
g [

In place of the two cquations of continuity for the ions and electrons we make
use of the equation for the ions
an

— -+ divnv =0 (3.12)
of

and the difference of these equations; thus, when quasineutrality 1y = ng = 0
is introduced, we find

divi=o0. (3.13)

The energy cquations will be taken in the following form:

{;'T!' y [ T .
“‘*‘(}t T I [Hyo] VIz 0;
Aar, 8 . . .
ot '}‘ 7-‘;'_2.' [H\/(P]VTg - /:eu A I Tg + /'_EL—\‘ LTU' (3'14’)

The system of equations (3.9), {3.11)<3.14) is equivalent to the system that
has been treated in [19].

As in §2, we write the total current j in the form

j = j.L + aH:
where
o = jH/fH?, (3.15)
From Eq. (3.9) we find
¢ dv
j| = --—|H —|. (3.16)
I e [ VP mn m ]

The expression for « can be obtained by using the longitudinal componeni of
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Ohm's law (3.11):
o = o (HE)/H®, (3.16a)

Fricrion can be neglected in the transverse components [cf. Eq. (3.11)]
and we find

Vi=—

L (3.17)
Substituting this expression in Eq. (3. 16) and carrying out the operation
divi =0, making use of the relation {(3.15), we have
4 & JF
Hye 4 2 Mvp+ m‘.—c— diva —q—hw:O, (3.18)
73 1 Jt

which differs from Eq. (2.5) in that ion inertia appears [last term in Eq. (3.18)].
Now, taking the projection of the first equation in (3.8) along H we have

o — C c ll‘curl_!i_
A It (3.19

EFI

The systems of equations (3.18), (3.19), together with (3.12) and (3.13)
and the relation divH = 0  is more convenient for the subsequent calcula-
tions than the original equations, (3.7), (3.9}+3.13).

Let us consider the stability of a rarefied plasma (8 « 1) which forms a
pinch of length L in a helical magnetic field Hy = {0, HBL}, Hy}. The per-
inz | )
[

what follows we shall make use of the more convenient quantities / I ==

In

nurbation will be expressed in the form exp { — ot L imd — 2%

’ HE} n H~ ne H
___H#ﬁ_H)H and b, = —n P B M s
. v ¥ Hy, L + Hy 7 r

case the perturbation of the longitudinal component of the magnetic field H 'L
can be neglecred (it is of order § compared with the other components), so
that we are saying that the lines of force are only cdrved, and not compressed
or expanded. This distorting curvature can be described by one component of
thevector poential A, . Actually, neglecting k,H, from the relation

divH=10
we find
[Hovy | 194,

P 4/____;”,11 . (3.20}
H, E Ve c Ji 0

H = —-

Thus, as follows from Eq. (3.20), the transverse components of the elec-
tric field E' are derivable from a potential. This is the feature that allows us
to write the energy equation in the form in (3.4} and (3.5).
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Linearizing Eq. (3.18) and using Eq. (3.20), we find

i@ diy aye = 0. (3.21)
0
The pressure perturbation p' can be found from the temperature equation
and the equation of continuity. In the expression for p' we can neglect the
longitudinal electron thermal conductivity, writing as an approximation

Hovo! + ik, A ‘i;'r‘ — 2k

W

(0]

p = —"engg, (3.22)
where
©o_ £ ky dp
pi Hy emy dr

We now consider Eq. (3.19). Since
(Heurl HY' = H3 curl, H' = — HIAAY,

Eq. (3.19) can be written in the form

dnH, o
¢

—AAy = (3.23)

Finally, linearizing the expression for the longitudinal current {(3.16), we

A, H>H
0

The conductivity depends primarily on the electron temperarure, so that

have

G T (s
Ty HO

Uf:d% T‘::"S_U e, (3.24)

- 0Ty
aly

on the cther hand, using Eq. (3.14), we can find the perturbation in the elec-
tron temperature Tt

° Ore ‘e (3.25)
Ty w - iy lzi -L ixJ_ki Toe

where w* = —{ck,/ eH)(dToe/dr). Thus, if the electron thermal conductivity
is neglecred (w >>x k xlk IR

3 by Hy ; : o 4
O€r=i.—rg-.—0(—‘;°-.—qpnﬁ——gu—(wl]EIj(P-Jrl—fli!).
2 w Hé Toe Hy ¢ (3.26)
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Expressing j, in terms of the directed electron velocity u = —jy/en, we
can now write &' in the form
. oetngk [ .3 W . s
s —je (1““1% LA )CP'* = Ayl sam
fgVeHy | 2 @ v Ry, kye

Equations (3.21), {3.23), and (3.21), together with Eq. (3.22), represent the
system of equations that we need to describe the slow hydromagnetic dissipa-
tive instabilities. Substituting Eq. (3.27) for o' in Eqgs. (3.21) and (3.23), we
obtain the two following coupled equations:

* N2
. © kT I oae
2div (n — 9. Anl —"—) - ¥l 4
p*div (1yyp) ety A o, +
2 o .
nek v .3 @ 1 v ® .
—%——:‘—-‘l!—e(l"—'l-—— Te -———-“r';—— (P'—’ﬁfl” :O;
ivew | 2w w KyT, I (3.98)
, R ©y
A Ay = — Aaeing I [([ KB L IR
M iv.c 2 w 4
v ® ’
4 “ne" )qj kye AH}

Here, p is the mean Larmor radius: pz = Te/minf; Qi = eH/mic;
11 dpy TiT,
0y = -— — =
po dr T
It is easy to show that these equations are equivalent to the equations
in [19] for the case of a plane plasma layer. if the longitudinal field is strong,

g . 0
dF d [ RyHy -+ B H .
H® » H?, the quantity F/ = — = — | =2 2% lthat appears in
Z ¥ 4 o dx dx kH, PP
ky | dHy

[19] can be written in the form £’ == . Taking account of this

kHy  dx
feature, and alse the fact that the conversion te planar geometry proceeds by
the transformations

d

d
r—os, —— —, i—>:’ey=const, k, = n/R,
dr dx r

we can write the system in (3.28) in the form

V(1 ) (F/Tf}+ _ﬂ’_L);

o? -

ng /
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Here, we have intreduced the notation of [19]: p=A;; W= iC’L‘Rkycp;

Hy . dna® o mev,

C=Rya; T,, =afC,; C,j = = =
FH AT T Vg m, R et ény '

m=n/{n>; F=ki/ky n=n/{n}; Sg =1, /1, p=yra=—liaTy

The primes denote differentiation with respect to the dimensionless vari-
able ',ﬁ" =x/a, where a is the thickness of the layer. The quamity G is a
dimensionless quantity that takes account of the curvature of the lines of force.
In a planar plasma layer the lines of force are strajght; thus, in order to carry
out an analogy with the curvature effect in a cylindrical system, we introduce
a simulated gravitational force mjg, in which case G = 1},g _rz]:,- . %

If we do not convert to planar geometry in the system in (3.28), in the
variables in which we have written the system (3.29), Eq. {3.28) can be writ-
ten in the form

% ) \ v =~
=y l—'—uf(éf'——%fl);
nmt W 7‘ e

\ IR 7 ne
~ 3 2 ~,
(WY =W L _Sﬂg_ £ FSo _F_ + n'Fy 1 (3.30)
W= n? -~ -~ - '

p o\ np
cys [ L Ry ]
oow

Here, y = 1/1g Iy is the point at which
SRy
I3 - R 2 !55 )

Flrg=0. Fe=omoeo—~1 (=

Haomftg - Rag ’
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2
: R , g ! i I dH .
F:L(i,%_i‘)L:__" [ &gy L A
! dr P j’}, " mlfy \ r? dr( ‘}) %o dr ’

the remaining quantities are defined, as in Eq. (3.29), only asa -»1p. Inthe
planar case, Ty = F7; the condition that replaces Eq. (15) of reference [19],
which expresses the stationarity of the unperturbed state, becomes

R i (L
H 1

Since the dissipative instabilities usually have a very narrow range of
localization (in which the change in quantities, such as g I, ete., can be
neglected) Eqs. (3.29) and (3.30) are essentially the same. (The only small
difference is the fact that F; # F'.) The most importamt difference from the
planar case arises because of G. We have considered the real curvature, so
that G can contain the pressure gradient (as it should) and not the density gra-
dient, as is the case when the curvature is simulated by the introduction of a

gravitational force.

Equation (3.30) contains a large parameter S¢ = Tp/ Ty which is the
ratio of the skin penetration time to the characteristic hydrodynamic time.
The transition to ideal hydrodynamic occurs as 5, = «, and in this case the
frequencies are found to be of order Tﬁl (i.e., p~ Sy. However, if S; # 0 but
Sy > 1, then, in addition to the hydrodynamic oscillations there can be

slower dissipative oscillations. For the latter case, p ~ S%’ y where 0 = vy =1.

The case ¥y = 0 corresponds to a growth rate of the same order as the collision-
al diffusion time and is thus not of interest; y = 1 corresponds to the usual hy-
drodynamic case. For this reason, in what follows primary attention will be
given to the case 0 <y < 1.

For a plasma characterized by high conductivity (S, >> 1) dissipation is
important only in a narrow region near the point at which F(ry) = 0. Actually,
when 5y — ¢ from the second equation in (3.30) we find

pro=—FW{ ie. q—- % A= ) (3.31)

N

everywhere except for the point F = 0. The condition in (3.31) is simply the
condition that the magnetic field be frozen into the plasma; in accordance

]
with the relation i =~ —-— [vH], this condition can be written E“ =
c

(HE)/H = 0. If we take account of the next term of order Sy/p in Eq. (3.31),
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and substitute in the first equation of (3.30), we obtain an equation (which de-
scribes the oscillations of an ideally conducting plasma for P =0, since
p/Sy — 0) which holds everywhere except for a small region around the point
r =rq [cf. Eq. (2.25)}:

! L L IR ’

) = (0 = o ) )b 5.52)

Thus, if it is nccessary to find the exact characteristic functions and the

exact characteristic values of a problem, the general procedure for solution of
Eq. (3.30) (forthe case Sy 1, 0 < ¥ < 1) is essentially to find those solutions
$ and W for which W falls from the point r = ry and ¢ goes-over to the solution
in (3.32) with the appropriate boundary conditions for g -~ « .

Equations (3.28) and (3.30) have been obtained under certain special as-
sumptions. We now wish to see under what conditions these assumptions actual-
Iy hold. If the exact equations {(1.25) and {1..29) are used instead of the simpli-
fied equations (3.9} and (3.13), for example we obtain the following expression

for a’ {for simplicity we shall confine ourselves to the electrostatic case A= 0):

, e*rnghyy
o = —
mgv i,
_ o 3 u Vo
I_Lonf Ore i v, 47, [lm_Q_.k””_d]ﬂ”o)
) @ o I—hyule - Qikzu uf/mv - 1%, k_zl_ \ 4w dinT,
3 f AL (pl
P
(2 REe 2w )
2.0 = =il i
L ik”oe ’ 3 v, l v, k“ve (1—- k“u)
- - m
OV, | kﬂu L oip? 2 i 2
e 2ik Ve /B, - M_Lk_l.. (3.33)
where
* [ T *
0, = — ERyTo dny Lol = — ck, ) dTy ]
Hen, dr € He dr

Comparing this expression with Eq. (3.27), we can draw the following

conclusions. The Hall current - [iH] can be neglected if
c

© 20, (3.34)

ch v dpl)r'
Heny dr

where o = —
oe

is the electron drift frequency.
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The term containing the gradient of electron pressure in Ohm's law is
small if (3.34) is satisfied and if the frictional contribuzion is large, specifi-
cally,

B2 ulfwy, < 1.

e

(3.38)

. . o 0 -
In this case we can also omit the 7', e v? term in the temperature equation.

Z
. . O
Furthermore, if w > kyu, we can omit the & -~ Te term.

oz
In what follows we shall generally assume thar the coadition in (3.35) is
satisfied. However, in order to have the possibility of treating frequencies of
the order of the drift frequency, we must generalize Eqgs. (3.28) and (3.30).
Retaining the ion viscosity tenser in the equation of inotion and using Ohm's
law in the form in (3.8), we obtain the following system of equations that take
account of the jon Larmor radius (w*) and the ion viscosity:

z(l_i;, i g2 YA, @ —29 % (‘i’?
e e S A tyAL

Ky Toe d’;lf . kﬂﬂ Ug m:)e m}e -3 u Ny
oy L g 1 — ‘ )(-

o engH, dr B iwv, o e 2 ;:'ﬂ-a;
{3y m‘e ’
— | — =204, =0 (3.36)
kllc( @ it
Ay Ay — Ao Ry M 9 O7e 13w ve)(p_
Mg ivee W ® 2w, RByve

* Cky dp? .
Haeny dr’
LRy e o Lk TiF T
pe eHong dr ' ° P dr T
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In the notation of Furth et al. [19],

AV i A Iy |-
-3 2 i

P P
S2G6  FSE [ F ptie.  woF
~v[-Eey (L 2 AR
p P p np
. F P i, I "
-+ S [r e — = (W) J;
7 P mp
T , 1 P+ v, w o[ F pAiw, WP
— ) =‘P(“P—;+—~—~*)+F(:ﬂ_:—“r—::- ,
# i M P ne .
(3.37)

LT . — Q- Do I : . . -
where oF = o*ty; fi; = 8=p,/H% A, = 177, is the dimensionless trans
verse Laplacian.

We now wish to investigate the system in (3.28). These equations con-
tain a number of terms that can lead to instabilities. These terms include the
following: the longitudinal electroen current (terms containing u); the
curvature of the lines of force, which provides an effective gravitational force
(the term containing a/R); the term conraining the gradient of the current
djo/dr; and, finally, the pressure gradient. The importance of the various insta-
bilities depends on which specific term plays the dominant role. Below we
shall consider small=scale oscillations, in which case it is possible to use the
semiclassical approximation, in which A[I and ¢, which characterize the devia-

tion from the equilibrium configuration, vary as exp {-— fwt -+ i 5 kdr +
imb — i f—} . It is reasonable to assume that these localized perturbations

will be primarily electrostaric oscillations, which do not distort the lines of
force. For this reason we shall first take Ai'l = 0; nonelectrostatic waves will
be considered later.

Taking A:l = 0, and using the fimst equation in (3.28), we obtain the fol-
lowing semiclassical dispersion equation:
L9, 3 g | . 0+ o)

. S B £ =0 (3.38)
w 2 v, Kk, 0
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or, using (3.36) and taking account of the finite Larmor radius:

1 — Wpe _ m'r___. (1 + i—3——u—" l- )_{_ ; w? [ @y -
w o 4 iyt e 2 v, Kk, ws w
2 2 2
w ktu
£ '
4 J (1 L 14f—"—) = 0. (3.38a)
Wy wv,
Here, we have introduced the notation
2
2a k [ORER
2 __ NG D | Paed]
w? = = ("R p? o =—1 T
g R ( P) / _Lp 3 J'Z_zj_ Ve

We shall classify the instabilities in terms of the region of localization,
going from instabilities characterized by a large localization region to smailer
scale instabilities.

Before actually studying the instabilities, it is instructive to make some
remarks with regard to the structure of these equations and to the method of
classification.

The dispersion relation (3.38a) contains the drift frequency w*, which is
a characteristic parameter in studies of the stability of an inhomogeneous
plasma. When the dissipative effects are sufficiently large, the characteristic
frequencies of the instabilities that derive from Eq. (3.38) are found to be
larger than w*. Hence, everywhere that the term 1 —w*/ w appears the sec-
ond term can be neglected compared with the first. In this approximation,
all of the instabilities are aperiodic. In this case, as we have noted in the In-
troduction, it is not meaningful to seck asymptotic (t — «) characteristic func-
tions of the linear approximation. It is found to be completely sufficient to
use the semiclassical (local) approach because, for large growth rates y > w,
the localization (spatial structure of the perturbation) is determined by the
nonlinearity.

As the temperature increases, dissipation is reduced and the character-
istic frequency w approaches the drift frequency. Under these conditions the
growth rate of the instability is diminished. As the temperature increases still
further, the frequency becomes the drift frequency and the growih rate be-
comes smaller than the frequency ¥ < w*. When this occurs, the nonlinear ef-
fects no longer localize the perturbation and it becomes meaningful 1o inves-
tigate the differential equations of the linear stability preblem in order o find

the characteristic functions, the characteristic values, and the stability criteria.

Even under these conditions it is possible to obtain an answer from the semi-
classical analysis, which is accurate to withinafactor of order unity. In this
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case (ci. below) the localization is usually determined by the ion inertia.
Hence, instabilities with high growth rates can be classified as inertialess in-
stabilities, whereas instabilities with small growth rates can be classified as
inertial instabilities.

3. Current— Convective Instability

When k“ — o, Eq. (3.38) yields the following ex pression for the frequency:

3 u I
2]

0= 1, - 7‘:7h}i.

*
T ¢ -
< Ca

(3.39)

This is the so-called current—-convective instability, which develops in the pres-
ence of a longitudinal current [20]. At small values of k, ~ x and small x,
the current-convective instabiliry becomes the gravitational instability:

W = imi/cos, (3.40)

which arises from the curvature of the lines of force.
We shall consider the first of these two instabilities in greater dezail.

It follows from Eq. (3.39) that the current-convective instability can be
obtained from the condition j' = 0, i.e., the ion inertia is not important for
this instabiiity. If account is taken of the finite Larmor radius, as well as ef-
fects due to thermal conductivity, which we have neglected for reasons of
simplicity up to this point, the dispersion equation for this instability is written

-

w . ] “);'
| —om —ne (1+]H_' " )_ . 2e —
@ Ug i1 %e mr‘r1}{.H.k“’.L‘“(*_lf"_’w

X(l-}-iaru—kl. ):0, (3.41)
Up “A'e
where o — 217 . dlng . i e longitudinal (electron) thermal
—1 s = N Il
d ]ﬂ T lJ- d ln A XH 1 11 gl pitedint eleciron Erma

conductivity and x | is the transverse thermal conductivity.

In a fully jonized plasma, « = %, while u is a small quantity (~%o
which arises as a consequence of the density dependence of the Coulomb log-
arithm. Hence, we first investigate the instability associated with tempera-
ture perturbations:

. . . cu - . lu T
CIJ—(.Dpe -I— l.G)Te 'n—}\'— *!" lﬂ)ne ?'I;‘T—ﬁ- l/.nk”. (3.42)
P e 1 7e
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In this expression we must assume that kl\ Ag < 1; if this condition is not
satisfied, the hydrodynamic approximation cannot be used.

The longitudinal thermal conductiviry allows the development of a tem-
perature perturbation for each pair of numbers m and n, but only over a nar-
row range of order

2 K xg=roz om0, (3.43)

where £ = Cz/mghfoz, w) = 4ne’ny/m,. If the density n, is reasonably large,
the quantity § <« 1, so that x4 <« 1,- At larger values of x the temperature
perturbations are stabilized. In this case, it is necessary to take account of the
weaker instability associated with the density perturbation. Because the locali-
zation range x ~ p; /0 for this instability can exceed the value given in (3.43),
it can be more important than the temperature instability. As the quantity
kyAe increases, the longitudinal electron viscosity begins to play a role; this

factor can be introduced in Eq. (3.42) by adding to p the quantity (k“)\e)z > 1.
When kyAo ~ 1, we find the transition to the collisionless damping, i.e., Lan-

dau damping. If (3.42) is compared with the corresponding expression for a
collisionless plasma [(3.103)], we find that therc is a continuous transition
from collisional dissipation to collisionless damping when k,Ae~ 1.

In order to obtain an expression for the characteristic growth rate in
terms of the system parameters we shall use the results of the nonlinear apaly-

"

au
sis ¥ = @, ——— from which it follows that the characteristic number m
e e

is of the following order of magnitude: m ~ Ya/,. Substituting in the ex-
pression for w, x ~ X4 and m ~ Ve /%, we find the following expressionfor y;

Ya
y~ 2L [Le]/ Ef‘_f_} , (3.44)
a | v, e a

and the corresponding value for the localization region is found to be

X, u 1 I e a®
= . — — pla .
o v, U m Aol

The drift frequency for this localization w* is given by

- ”
b V[ e gay /e (Zﬁ\“’i]/ (3.45)
a u ,/ me \ay, } a

Hence, the characterisiic {requency w ™~ y becomes of the order of the drift
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frequency, or smaller, when

3 i
Ve -l/@,«_.i " o
[ e 0 m; pj! at > 1 (3.46)

The current—convective instability being considered can be regarded as
inertia-free, since the transverse ion inertia does not play any role. The lo-
calization region, as we have noted above, is determined by the longitudinal
thermal conductivity and by nonlinear effects, i.e., essentially by the en-
hanced transverse thermal conductivity.

As the temperature is increased, the dissipation is reduced and the scale
size of the instability becomes smaller and smaller; the localization is then
determined by the ion inertia rather than the thermal conductivity. Under
these conditions, all three terms in Eq. (3.38) are of the same order of magni-
tude, so that

@~ iwf

~ 0. .
ek | e s (3.47)

This is the so~called inertia current—convective instability (or, in the termin-
ology of [19], the rippling mode). It is evident from Eq. (3.47) and the defini-
tion of wg that, in this case, the thermal conductivity does not play a role up
to values such that ki_,u2 ~ 1, since

oy g2 2
@ Lyl ~ vkl

When the finite Larmor radius is taken into account, it follows from
Eq. {3.36) that the differential equation for this instability is

o k2 of . Or,. 3 y
pz(i—j)Am-Huﬁ (luiﬂﬂﬁrﬁi—'—- “*’z)cp—o.

o
e w w < k 1Y%

(3.48)

Here we have omitted the ion viscosity terms and have assumed that the oscil-
lations are electrostatic: A, =0.

A simple substitution of variables in this equation leads to the familiar
equation for the quantum-mechanical oscillator (taking account of the fact
= kO .
that k ky x/a)

The fastest-growing characteristic value corresponds to the funection for
the ground state of the oscillator:

¢ = exp (— ax¥/p?). (3.49)
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The localization condition on the perturbarion implies that

Rea > 0. (3.50)

Substituting the funciion in Eq. (3.49) in Eq. (3.48), we obtain the following
equations for ¢ and w:

2 2
Lo 9 u N\ Y
2a |- Ief,p?—]—fu Y (.2 I L a—
w 16 \ v, o2 @t
pe

vo . (3.51)
.o My pa Wpe— @
4@_-_1__1’1.__Lﬁlmf" =0,
oW g 0, o
- dinT .
where we have assumed that T, = T;; @p; = mpe, Vo = Z_—Q Equation
n py

(3.51) and the ceondition in (3.50) determine the characteristic function and
the characteristic value w.

If it is assumed that w » w“ then Eq. (3.51) yields the result obtained
in [19] for the rippling mode:

. 4 3L
0= ione |{ 2N e [ Ye N3 e/ u N
pe {( 4 My ( (ﬂ;e 0% U ' (3.52)

As the temperature increases, the frequency is reduced, and when w <
u.;Ee, this instability is stabilized by the finite Larmor radius of the ions [21)].

Thus, in addition to the fact that this instability has a small range of
localization as compared with the inertialess instability [this result can be
established from (3.47), or directly from (3.49) and (3.51)], it is stabilized by
the finite Larmor radius when w < w} o- By substituting ia this inequality the
ex pression for the frequency (3.52), it is easy to show that the instability is es-
sentially stabilized for the values of temperature and density taken above.

When ion inertia is taken into account, we find an additional short-wave
instability, the so-called drift-dissipative instability.

4. Drift-Dissipative Instability

Using the dispersion relation (3.38a) and neglecting terms with wé, we

e,

obtain the following expression for the frequency when wy > Wre?
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b

m=w;c(1—kip2( ‘)—1/J.kkﬂ_'_

)
+iope o~ "")2(1+

2 .k "7\,,3 ) (3.53)
In the first term on the right side we have taken account of the small frequen-
cy correction due to the finite Larmor radius. It follows from Eq. (3.53) that
the current—convective instability becomes the drift--dissipative instabiliry
when
(0p)" o7t
w7 oty (3.54)

The condition in (3.54) can be rewritten in the form

m, =
x<p( — l ) . (3.55)

my

Let us consider a wave packet wluch is approximately a plane wave
with wave vector k. Ina time t ~ y~ L this packet is displaced by a distance
| o
v Ok

X ~

(3.56)

This quantity can be reégarded as the characteristic localization region for
the instability when y < w even if there are no localized solutions in the
linear approximation.

Using Eq. (3.56) and the expression for the frequency (3.53), we find

x<p) 8, (3.5T)
where

] 2
1 e @

mig? " Ao

1

while the growth rate [found by substitution of the localization region (3.57) in
Eq. (3.53)] is

Y~ "9, (3.58)

It is easy to show that solution for the characteristic values leads to pre-
cisely the same expressions [(3.57) and (3.58)].
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If m is replaced by the quantity mg = Ya/x, which corresponds to cell
overlapping, the width of the localization region (3.57) is found to be

r Y N L '-!“

o= b “ TN NI AT (3.59)
' g U2 folr 1 H

It follows from Eq. (3.59) that as the temperature increases the perturbations

fall in the region x < p, where Eq. (3.53) does not hold. In this case, the con-

dition kj_’pz < 1 is violated and the transverse motjon of the jons must be de-

scribed kinetically. As before, the longitudinal motion of the electrons can

still be described by the hydrodynamic equations, since the condition kll)\e <1

improves when x -» 0. Making use of kinetic theory, we can obtain the follow-

ing integral equation, which holds for an arbitrary ratie of x /p [22]:

(0 — o) fei S () di, (1 LT 1"@) |-

W == 15 2.

(o —op,) kj‘iz_

- i p = 0. (3.60)

wv, + i k‘i vf
Since the oscillations turn out to be aperiodic, it is sufficient to consider
the semiclassical approximation.

Assuming that w < w® z = k2p§ > 1, we obtain the following relation
from Eq. (3.60) [23]:
l — == L), (3.61)

i ki UE ’i B _l—— . 1 )
Wep ( “’;e VoYnz T4+ iviz/o
The effect of viscosity [the iy;iz term in Eq. (3.60)] has been introduced
by means of the kinetic equation with a Coulomb collision term. It is well
known that the Coulomb collision term is in the form of a differeniial operator
in velecity space. For this reason, for shortwave perturbations z = kip% >1
the effective collision frequency in the viscosity coefficient is of order

z . . . .
UikLPi, i.e., this frequency is larger than v; by a factor of z [24] This
feature leads to a strong stabilization of shortwave perturbations.

From Eq. (3.61) we find that

&2 v?
m:—iv”-z—,Li——l',-f-:_—.—(l—fZi G X))

v, V 22

It follows from this expression that the frequency wis of the order of the
growth rate ¥:
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Yo~ 0518, (3.63)

while, as before, the localization region is determined by (3.57), i.e., x
pY¥s. This same result can be obtained to within a factor of order unity by
solving Eq. (3.60). When z > 1, this procedue leads to a differential equa-
tion for the degenerate hypergeomertric function in k space.

We have neglected fon viscosity in the above. It is reasonable thart vis-
cosity will play an important role for inertia-type shortwave oscillations x ~ p;.
If the viscosity is introduced in the hydrodynamic region x > p (§> 1), we find
that these oscillations are stabilized when

02 > ‘/ ’:” (6> 1). (3.64)
— n;

In the kinetic region X < py, as follows from Eq. (3.62), the stabilization
criterion becomes

3 M, -
v ?,l/ m; 5 (0T (3.65)

Thus, viscosity inhibits the shortwave drift—dissipative oscillation; when
0 3 (me /mi)1/4, the instabijlity is stabilized completely.

5. Gravitational Dissipative Instability

We now wish 1o consider the effect of curvature of the lines of force on
plasma stability. In the hydrodynamic approximation the effect of curvature
is equivalent, in some sense, to a gravitational force g~ T/m;R, which is fre-
quently used to simulate curvarure. The instability due to the curvature of
the lines of force is then, for brevity, frequently called the gravitational (or
flute, or convective) instability.

Neglecting u in Eq. {3.38), we find

0?0 (i0, — 05) — | 0,05 + v; =0, (3.66)
where
2
: _oFy  TidtT, dinp,
(l)g — _ . -
i Run; dr

L
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From Eq. (3.66) we find
* w4 w(f R (um;i

W = @pe+ 1 - — 1 . (3.67)
Wy oy

There are two impertant variations of the gravitational instability. When
(wg > o ) we are concermned with an inerialess gravitational instability

o’

O Wp Y~ —, (3.68)
Wg
whose region of localization is given by
2 2 .
Rije /v, < Wpe. (3.69)

The meaning of this inequality is a simple one. When the inequality is not
satisfied, the electrons can successfully produce a Boltzmann equilibrium along
the lines of force and, in accordance with the more complete equation (3.38a),
we find that the instability is stabilized under these conditions. It is easy to
show, from Eqs. {3.68) and (3.69), that, for the inertialess instability w <« wy
(w ~ kJ_pl wg). Since the region of localization of this instability is also de-
temmined by (3.69), as is the case for the drift—dissipative instability, it will
play an important role if its growth rate is greater than the growth rate of the
drift—dissipative instability, i.c., for T, ™ Tj, if

2 *3
Wg > 20pe, (3.70)

since w?/w*? ~(a/R) (kJ_p)'z, the effect of the gravitational force is found to
be unimportant when k% gf > a/R. As is well known, the gravitational insta-
bility does not develop in a system characterized by a minimum in B, i.e., in
a system in which, on the average, the magnetic field increases in all direc-
tions going outward. In our terminology, this corresponds to the case K < 0.

As 1s evident from the foregoing, shortwave perturbations characterized by

K _Lp1 > a/R are not stabilized in minimum-B configurations.

The characteristic region of localization and the frequency of the iner-
tialess gravirational instability can be expressed in terms of the parameter §
[cf. Eq. (3.57)}:

/—_" * . a -
FOVOS 0 op Y T o G.m)

while the condition that must be satisfied if the gravitational instability is to
be more impertant than the drift instability ¢3.70) is of the form (a/R)§ > 1.
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If the dissipation is small, so that nonlinear effects are not in a position
to localize the perturbation, the lecalization is determined by the ion inertia
and the inertialess instability becomes the gravitational inertial instability {the
G mode In the terminology of [19]). In this casc all three terms in Eq. (3.67)
are of the same order of magnitude, i.e.,

G)N(l)gmﬁ)s. (3',‘,2)

Under these conditions, kznvé/ve < w, and the differential equation for

the inertial gravitational instability is of the following form, as follows from
Eq. (3.67):

;)2(1-—- ¢ )(1—1

A e__( g__":?z)(py_
SRR o " (3.73)

Here, we have taken account of the collisional ion viscosity (the vy
term) as well as the longitudinal electron inertia. It is easy to show from the
electron equation of motion that the longitudinal inertia can be intreduced in
Eq. (3.6 by making the substitution iv, - w + iv

+ N2
pzAL) Ap—2 _E (mi) ¢+

©

o

If viscosity is neglected in Eq. (3.73), then we obtain an equation simi-

lar to that for the quantum-mechanical oscillator. Taking the solution in the
form

¢ = exp (— aux*/ph), (3.74)

which corresponds to the largest growth rate, we obtain the following disper-
sion relation:

U) {,Ll; n ,:‘;L) ( . 1) 4___ (g)—)— l \i(.) iy

. Ggml,
] ) = - 7. 12
~ { 2 & k0t (m - 7;—2)} , (3.75)
. R ) e /!
where w = w/w o Vg = ve/w}’;e, and the localization condition for the per-

turbation is of the form

__M_] > 0. (3.76)
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We first consider the collisionless case Ve — 0, in which the role of the
finite conductivity is played by the electron inertia. Then, as follows from
Eq. (3.75), the plasma is stable when

P
2a Joom,

0=V w 310

We note that this instability is an extension of the flute instability to
the electrostatic case. If the Suydam criterion is satisfied, this criterion being
written in the following form in the planar-layer approximation:

@~ a
02 = = B, (3.78)

there develops a gravitational instability in which the electrons are no longer
"frozen, ™ because of their inertia [25]. In order to stabilize this instability we
require that (3.77) be satisfied; as is evident from comparison with (3.78), the
former is a weaker condition. However, even if (3.77) is satisfied, the intro-
duciion of dissipation (v, # 0) leads to the appearance of unstable solutions.
The following cases are possible [26]:

4. Vg > w > w*, in which case

] /;'_ m, 7‘_:12/‘;
1

N
g

; (3.79)
b. With increasing temperature we find ve — 0 and, at some point, the
inequalities w « w* and w « v, are satisfied. In this case,
= T, T, 4a* (3.80)
W=l —— + — i | .
pe T 0%, 2
In other words, the growth rate starts to drop rapidly with v. Hence
we can assume essential stabilization when w « w*, the stabilization criteri~
on being

(3.81)

1 my a® 0%m, 4q2 ( T; )b"’
my R LT,

m m, Aol

Let us now consider the order of magnitude of the localization region
for case (a) (w > w*):
Tiv. N i
20~ R 7 datmyv, 37 (3.82)
a k R2Q%m, )}
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This same result can be obtained from the condition in (3.72). The in-
ertial instability exhibits a localization region which is smaller than the in-
ertialess instabiliry.

6. Temperature Drifr Instability

As ky increases, we find that collisionless instabilities appear. The
characteristic region is given by ky ~ ky (kyx ~ 1) [27]. Dissipation does not
play a role in this case. As a matter of fact, we find kphe ™ kyy hefa ™

Oro/a > 1.

‘The introduction of a large shear 0> vmg/my (to be definite, below
in the calculations we will take 8 ~ 1079 simpiifies the classification of these
instabilitics greatly. For reasons of simplicity we shall first neglect effects
associated with curvature and inhomogeneity of the magnetic field zlong the
lines of force (trapped particles), as well as the longitudinal current, In this
case there are two mechanisms for excitation: (a) collisionless dissipation
(Landau damping) on the electrons, the maximum of which is reached at
u.;/k”vC ~ 1, and (b) dissipation due to the ions, which is 4 maximum when
w/ k“vi ~ 1.

We note that if the electrons and ions exhibit Boltzmann distributions
(in the formulation of the problem given here this corzesponds to the condition
w <« kvj, where vj is the thermal velocity for the appropriate particle spe-
¢ies) then no instability will arise. We assume that the existence of the insta-
bility is associated with the departure from electron equilibrium, i.e.,

w

> 1.

kyoe = (3.83)
Then, taking account of the fact that k = ky@x/a , and also that w < w*,
where w * is the drift frequency, and using Eq. (3.83), we obtain the character-
istic localization region for these oscillations:

Ko ™ Ao pielo' (3.84)
imn;

The subscript e means that this localization region is characteristic of insta-
s T [

bilities excited by electrons; p,-ezl —=£ . 5— is the ion Larmor radius

My i

for the specified electron temperature. From (3.84) and the inequality © >

Vme/my it follows that Xe/pi«< VT ¢/Ty, where p; is the ion Larmor radius,

i.e., when T, ~ Tj, the wavelength of the oscillations is smaller than the ion

Larmor radius. In these shortwave oscillations the ions can assume a Boltz-
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mann distribution., We are then led to the following conclusion: instabilities
that develop in a plasma with large shear, and which are due to a departure
from electron equilibrium, have a region of localization (3.84), and the ions
can be regarded as exhibiting a Beltzmana distribution for these instabilities.
Only one instability of this kind is known, the electron temperature instability
[28].

It is reasonable to ask whether there are oscillations characterized by a
larger localization region. If x > xg (w /k“ve > 1) the electrons can suc-
cessfully set up a Bolizmana distribution and the only remaining mechanism
for departure from equilibrium must be exhibited by the ions because for
these particles it is always tiue that w/kuvi 31 (§7). This condition gives
another possibility for the region of localizartion:

X~ 0,f0. {3.85)

When x » X3, the ions also can successfully achieve equilibrium [if there are

no other mechanisms which can prevent them, for example, particle trapping
(84)] and the oscillations become damped [27]. Thus, for this formulation of
the problem the localization (3.83) is the largest possible one and it remains
to be seen whether there is an instability in this range. It will be shown be-

low that the only instability of this kind is the electrostatic drifttemperature
instability.

In studying the instabilities we will apply the semiclassical local ap-
proximation, and since the growth rates are found to be of the order of the fre~
quency, this approximatjon can be regarded as sufficient.

We start with the drift-temperature instability, which has the largest re-
gion of localization, and which is thus most important. The electron tem-
perature instability is similar to the drift~temperature insrability in many re-
spects.

For reasons of simplicity, we first consider the case w » kyvi- The ion
longitudinal motion can be described by the hydrodynamic equation. Assum-
ing that the wavelength transverse to the magnetic field is larger than the ion
Larmor radius, we can neglect the transverse inertia of the ions. Then, using
the equation of continuity, we find

", By dn, . Ry

!
= — o= P . 3.86
n, Hon, dr P @ ( )

Using the expression for the perwrbation pressure

! kJ’C d.ﬂui
i — =
Huw dr
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we find the longitudinal ion velocity

o __{"’L By
U, = l——— o (3.87)
" W

and substitute this expression in Eq. (3.86). Finally, we obtain an expression
for the perturbation of the ion density:

-

: k, I’ .
M __i. drty ¢+ ke (1 _— i{’i) @, (3.88)

1y fHon, dx o m

. . * kye dpy; . .
where O Ryu; @p = — - is the ion drift frequency.
Hny  do

Equating {3.88) to the electron density, which exhibits a Boltzmann dis-
tribution, ni/ng = e¢/T,, we obtain the following dispersion relations [29]:

. . .
| Jen kf|7.€(1 . f‘?f‘)Z 0. (3.89)

o miw? w

k_\,cT(, ) dn,
elin, dr
from this relation that Eq. (3.89) is valid only when KT, <« myw?, so that it
can have solutions that differ from w = wi only when w « w*. Taking ac-

count of this faci, we obtain the following expression for the frequency from
(3.89):

Here, W = —

is the electron drift frequency. It follows

)
MiTe

@ - L+ ), (3.90)

iy

where
_dInT,

dlnn,

One of the roots indicates excitation. The condition on the applicability
W knvi indicates rhat this result hoids only when % » 1. Equation (3.90) re-
fers to the region of small ky ™ x. As kH increases, the second term in Eq.
{3.89) becomes unimportant and we cbtain a cubic equation for the frequency
{11]
K Te

o' = — o (33 1), (3.91)

m;

from which it is possible to find the frequency and growth rate of the unstable
oscillations.
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Equation (3.91) applies in the region of small k”. i.e., in the immediate
vicinity of the point at which k; = 0. Asx increases, a point is reached at
which the condition assumed above (w/kV; » 1) is violated and the oscilla-
tions fall in a region characterized by w ~ k,vi- The growth rate is reduced,
vanishes, and finally becomes negative at sufficiently large values of x. Evi-
dently the frequency region w ~ kvj must be treated by the kinetic equation.
A general integral equation for electrostatic oscillations can be written [29]
in the following form, which is symmetric with respect to the jons and electrons:

-

f ¢ g (k) [% [1 — 2 el )yt VR T (W) X

“ (lk_ mns+1r_f(zi_w_z_f_+¢_yg))] n
(1]

w NN 2

- [‘ T e ) g TV R €T ) 5 W (1) X
Ts )

« (1— W0 + (l)Te(Zc_ [1(29)?57 +_L__y§))j\_j_
© [ Iy ize) 2

k2 ]

detng |

dl, = 0. (3.92)

Here we have introduced the following notation:

wyj = i ki (j==c i) ;= LT dn
i sty dr 7 i mRjn, dr '
kT T 2
. RN 22 m . _ .
0, =—e,=¢ £ =—"07; f’LJ__Lx—}—(~ s Ry =mr;
m;QJT r

w 2T
i, = —— kg = ROx/G v, = l/ =1,
.)',t k” U i yUAfU, Uy n; [

I, and I; are the modified Bessel functicns:

¥
N —y3 2 *
W)=e |(l+ L_Se“dt .
Vo,
i
For the shortwave oscillations treated below, which are characterized by

a localization region x ~ pi/0 « ¢, the macroscopic quantities ng dTy/dr,
etc., can be regarded as being constant. Assuming that the localization re glon
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: T o

Fig. 6. The width of the localization region as a function
of wave number.

contains several nodes, we can express ¢ in the form of a semiclassical wave

function ¢ (x) = exp(x k. (x) dx) - Then, using Eq. (3.92), taking account

of the fact that w « kyve and zg << 1, we obtain the following dispersion
equation:

T O A Sl
1*.—*7::—7’0 L@Qyr+ilV=e IQ(Z)IJW(U){I“‘ 0:: -+

+ 2] (1= Ak T e

[00]

TN o T w, T oy
NEA L RO N

Here, all quantities without subscript refer to the ions.

An important parameter that characterizes the drift-temperature insta-
bility is the region of localization I, which can be taken to be the distance
from the point x = r—r¢ = 0 to the point at which the local growth rate van-
ishes. Actually, whenx > [, the growth rate becomes negative and the waves
are damped in this region, i.e., the waves are primarily concentrated in the
region in which y > 0. Taking account of the fact that where x = I, ¥ =
Imw = 0, and equating the real and imaginary pars of Eq. (3.93) to zero
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separately and then eliminating w from

L, f these two equations, we obtain the fol-
w,ﬂ i i) lowing ex pression for &
i /
{32 p
! —_—) = (e (z))* -
/ ( lo) T, & )
// Am 2/m A 22 {1 — I,/1,)
nsl ' y
%5 /fe) L TeiTe— 2y
S (3.94)
e
3 ; dinT
4 (1) where {, = Lo 2R s the char-
s () ? 20 dinr
’ acteristic region of localization of the
7 032 05 07 | k% clett g e
w? drifi1emperature instability 1 = - rL
nirn

Fig. 7. The local growth rate and
frequency as functions of x. 1)
=0.5;b=1.6;2)a =05b=
2;3)a = 0.2;b = 2.
"= dnT 2
dlnn I ~2z(1—1/1)

It is evident from Eq. (3.84) that
the instability being considered can
exist (1% > 0) when [30]

for m<C0. (3.95)

In the region of relatively largescale perturbations x ~ p;/0 (z < 1),
the criterion in {3.95) leads to the condition? > 2. The minimum value
1 = 0.95 obtained when z =~ 1.

The quantity I%% is shown as a function of z = (k} = k;,) p in Fig. 6
for various values of the parameter 7 for the case Tj = Te. As the tempera-
ture ratio Te/ Tj is reduced, the region of localizarion js reduced, and vice
versa. If To = Ty, 2 « 1, andn » 1, i.c,, if the case is realized that cor-
responds to the hydrodynamic analysis for small x at the beginning of this sub-
section, then I = I

Knowing the region of localization I, we can detennine how many
nodes the solution has for a specified value of & . As an approximartion we
find that the number of nodes is given by

"< kd a {n=-1,2..., (3.96)

o~ T

where n is the closest integer smaller than kel /7 ; ais a numerical factor of
order unity which need not be determined in the sermiclassical approximartion.
It kxl of T <1, then, in general, not even one level will exist. This relation
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then serves as the shear stabilization condition. A critical value of 8, can be
found by substituting ¢ in the relation kylot/m = 1 from Eq. {3.94). As a re-
sult, we obtain 0, as a function of ky. The maximum of this quantity with
respect 1o ky is denoted by 0,.. An approximate expression for this quantity
is

0.3 ¢ 0.95 \Y: .
0,0 = —a (1 = ) (T,=T). (3.97)
If To = Tj then
0.5 T 0,95 \ '
0,.~ v o " (1 L9 ) . (3.98)
n T\ 1]

Another important characteristic of the drifitemperature instability is
the growth 1ate. In the general case, Eq. (3.98) does not contain small param-
eters, so that numerical calculations are required. In Fig. 7, we show the
local growth rate and the frequency as functions of x for various values of the
parameters;

S R _LhENT.
a [2 . (1 w)”, L_(1+

¥

]T;' ) e*fo™ (2).

4

7. Collisionless Instabilities

Excited by Electrons

In the transition to oscillations characterized by localization smaller
than pi/e » the dissipation associated with the ions becomes ex ponentially
small and the excitation of the instabilities is then due to the electrons. These
are the so-called electron instabilities, and we shall begin our study with the
instabilities having the largest growth rate in this class, specifically the elec-
tron temperature instability [287.

My Pi

This instability is characterized by a localization X, = ] / 5
! g ¥

[cf. Eq. (3.84)]. The argument of the jon Bessel function is much greater than

i1

unity zj = szz ~m;/m,, 6% > 1 (since we take 0 >> and the
It iAle '

le
i
ions exhibkit a Boltzmann distribution). The dispersion relation for these oscil-
lations can be obtained from Eq. (3.92):

T ('er —z T VA
L e —Fe el () i+ 1V = €70y (2) 9 W (y,) >
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Using the criterion in (3.102), we find the stabilization condition
0> ufv,. (3.104)

In a plasma with cold ions T{ « T, it is also possible to have electron
excitation of ion-acoustic waves. When Tj << T, we obtain the following
dispersion relation from Eq. (3.92):

l_bw_:w ] Teki_ k:llee—f‘iV‘;r_ w (1_ c')n'e_l__;_ mTe):

ag
n2 .
W m‘.g‘? 0 Eyve w ®

(3.103)

Assuming that w is real, and equating the real and imaginary parts to
zero individually, we can obtain the following instability condition:

—(L=7,/2)1, >0, (3.106)

dInT,
where 1, = .
dlinn

The condition g < 0 corresponds to the case given above. Ion-acoustic
waves are excited whenn, > 2. In order not to complicate the calculations
unduly, we shall consider the case that is most unfavorable from the point of
view of stability 1, » 1 (i.e., §7 ng = 0 }. Using Eq. (3.105) we find

J e S
2 — L
k i Te : 1/ LS Me | 2 & It l' T,

@ = 1+
g l 2 m; [t k8 Tofm Q7

. {3.107)

This relationship shows that the maximum growth rate obrains when
X~ pije ~ ¥To/ mi} (pje is the ion radius given by the electron tempera~
ture) and y ~ u.n/me7m]-_. We then find from Eq. (3.102) that these oscilla-
tions are stabilized when € » Ymg/m;.

Thus, if © > Vm,/m;, essentially all of the instabilities excited by elec~
trons are found to be relatively unimportant.

8. Nonelectrostatic Instabilities

We now wish to consider the effect of nonelectrostatic small oscillations,
an effect which has been neglected up to now. When g = 81rp/H2 <« 1, the
plasma does not contain enough energy 1o cause compression or rarefaction of
the lines of force (more precisely, B, ™ BB, ) so that the magnetic lines of
force can be distorted only slightly, if at all. This distoriion of the curvature
corresponds to propagation of Alfvén waves and mathematically can be de-
scribed, as was done in §3, by the introduction of a single component of the
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vector potential A“ . Thus, Eq. (3.37), which takes account of nonelectro-
static effects, contains only one branch of the oscillations, the Alfvén wave.
The electrostatic approximation adopted in subsections 3-7 of §3, Ay = 0, cor-
responds to the condition w « kjc,- Whenw > k”c a» It is necessary to con-
sider the entire system. Using the condition w ~ kl ¢, Wwe can find the char-
acteristic region in which it is impertant to take account of nonelectrostatic
effects. Actually, when w > k; cp one cannot neglect the rigidity of the
lines of force in their distertion or curvature; on the other hand, since all of
the considered instabilities are characterized by w ™ w* then w* ~w > k“cA-
It then follows that nonelectrostatic effects are important when

x < —Zi VB, (3.108)

From the equilibrium condition (cf. subsection 1 of §2), B = (R/a)BZ. Hence,

nonelectrostatic efiects become evident when x ~ py, but in this case the hy-
drodynamic approximarion itself is violated and the transverse motion of the

ions must be described by a kinetic equation, as in subsecrion 4 of §3.

We note that the only dissipative instability that is importam when x ~
pi is the drift-dissipative instability. A semiclassical equation that general-
izes Eq. (3.60) to the nonelectrostatic case can be obtained by taking account
of the equarion for the vector potential [the second equation in (3.36)]. Asa
result, we find

2 2 LI
Ry fev, (1_ me)x

?’ (l—e_zfo)(l - _‘:)_) 4

i 2% u? w
P
4 {—=
v,
2 @, _ .-z
x [1— -2 (1__‘)*’ = h P, (3.109)
ke ¢ “

Assuming that x < py for simplicity we shall first consider the case
X« pis from Eq. (3.109) we find

2.2
‘l"Jl Ve 1

W= — - . (3.110)
Yo ¥ 212 kzu Uj

) T Ty
l—i— (1+—”~——- /92)
W, U T.l' Te ﬂ

Comparing Eqs. (3.110) and (3.62), we sec that the nonelectrostatic fecatures
lead to an unimportant change in the region of localization.

For the collisionless drift instabilities one expects that the nonelectro-
static features will be associated with the electron temperature instability,
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. N . 2 .,
which has the smallest localization. However, if 8 « 87, it can be shown that
the electrostatic approximation is adequate.

The condition in (3.108) is not satisfied for the temperature drift insta-
bility with a localization range x ~ p;/0; hence, in considering this insta~
bility we must also take account of the electrostatic coscillations. More pre-
cisely, the nonelectrostatic fearure encompasses only the heart of the per-
turbation, about a singular point of widthx ~ pj/0v 3.

Thus, the effect of nonelectrostaric features is found to be unimportant
for shortwave drift oscillations (A « a) in systems with sufficiently high shear
0% > B.

However, it is possible to have nonelectrostatic instabilities in the low-
est modes (m ~ 1). In ideal hydrodynamics this corresponds to the screw in-
stability. In §2 we have shown that this hydrodynamic instability does not de-
velop for a sufficiently smooth current distribution and a large stability mar-
gin ¢. But if account is taken of dissipation (or electron inertia), which destroys
the “frozen-in" properties of the plasma, it is possible that under certain con-
ditions the instabilities will develop in the lowest modes, although with rather
small growth rates. This resulis in the so—called tearing mode [20]. This
mode can encompass an appreciable part of the pinch and thus depends sensi-
tively on the distribution of current over the cross section and on the presence
of the chamber wall.

We now wish to obtain a dispersion equation for the tearing mode. As

we have shown in &3, dissipative processes and inertia appear only in the nar-
tow region k; = 0 (F = 0). The ideal hydrodynamics approximation holds
elsewhere, and the vector potential satisfies Eq. (3.32):

I " . G, .
" (') == (m* T T 'L—hg‘(.'-*FtJ )"n”

where

n (WFp) ~—"—. (3.111)

Here and below we will use the dimensionless variables introduced in §3.

The solution in Eq. (3.111) that satisfies the required boundary condi-
tions [that the vector potential vanish at the center (r = 0) and at the chamber
wall (r = b)] must be joined to the sclution of Eq. (3.30) that holds in the vi-
cinity of the singular point F(py) = 0. We shall write the solutions here, re-
taining only those terms which are important in what follows:
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! 11’” :q(L_*_mp__)_!_wai;

o
- e -~

2
i 2
g nm? J N

I ] Fi82 N |, F
m2 W = (—“_l_ + e ) - 15/3 - (3.112)
0 PN d

Since the width of the singular region in which Eq. (3.111) is inapplic-
able is much smaller than the characteristic dimensions of the plasma, within
the limits of this region we can regard the macroscopic quantities as being
constant. Fusthermore, for reasons of simplicity, we shall assume 7' = 0, and
also that w >> w*. The effect of the drift frequency will be considered later.
Furthermore, in Eq. (3.112)} we omit the derivative of the longitudinal current
dj, /di, since it can be shown that this term does not make any contribution to
the subsequent expressions [21].

The exact form of #(y) depends on the concrete form of the functions
Hy and Hy. Inwhat follows we shall only require an ex pression for the differ-
ence in the logarithmic derivatives

boodwe 1 4

Af == . .
Ya du LY dit ju=yp,

s (3.113)

which will be assurned to be specified. This quantity can be found if the quan-
tities Hy and Hg are known. Although the derivatives (1/¢)(d¢/dp) diverge
logarithmically when considered individually, the difference between the de-
rivatives remains finite as g — p,.

We shall also find it necessary to selve Eq. (3.112) under the condition
that W — 0 when p —2 =, while ¢ becomes the solution of Eq. (3.111). Actu-
ally, we join Al for the inner region with A® (3.113). The expression for ol
can be obtained from the first equation in (3.112):

[oe]

* 1 —
\ — ¢+ WFhdpn (3.119)
e

Aiwe B0V =4 (—o0y 1
Y P

In the vicinity of the point p = p,, the quantity ¥ can be regarded as a
constant as an approximatjon. Then the second of the equations can be solved
quite easily, for example, by expansion in Hermite functions or by converting
to the k representation [21]. The expression obtained for W is then substituted
in Eq. (3.114). Carrying out the integration [24], we find
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A = 32 (pn/aniSHFN)
m

(3.1185)

Writing Al = A®, we obtain a dispersion equation, from which it follows that

p = (%\l " (2mSEys. (3.116)

i

The characteristic localization range for this instability is found to be of order

N Ya
Ax ~a (___i__) ) (3.117)
dmPSE(F1 %

It follows from the frequency expression (3.116) that this instability arises
only when A% > 0.

This result holds for sufficiently small m ~ 1 because as m increases
the terms that have been dropped earlier in Eg. {3.12) become important.

When the effect of the finite Larmor radius is intioduced, the dispersion
equation (3.118) is complicated somewhat [21]:

o~ e, T e, T 4
3 [ p(p+imf)(p+1me)“n]

A= = (3.118)
- 48 (F7)2
1
Hence, when w* — =, we have
~ et 1 PO o s L
p=—ioe+—— % A‘) (4m2SE (F)4)"s, (3.119)
(‘.Zmez) !

i.e., the oscillations become oscillatory with ¥y < w*.

9. Instability in a Dense Plasma

In a dense plasma, i.e., one in which the mean free path A, is sufficient-
ly small, the width of the region in which the eleciron temperature is not
equalized along the magnetic field is increased and the perturbarion in elec-
tron temperature T must be taken into account in considering the drift oscil-
lations. As shown in [33], this effect leads to the possibility of an instability
in an inhomogeneous plasma, the instability appearing in the formation of
filaments that are stretched along the magnetic field. These filaments are
regions of increased and reduced. temperatures. We shall see below (cf. §10)
that this instability is not important, bui in order to obtain a complete picture
we shall consider it here.
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We assume for simplicity that there is no temperature gradient in the
equilibrium state (the presence of a temperature gradient does not lead to any
basically different results). Since it does not play any significant role in the
Instability being considered, we shall neglect the ion inertia, It then follows
from the condition divj" = 0 and the relation j* = 0 that the longitudinal
velocities of the ions vi and electrons v€ are the same (j* = 0), i.e., the term
containing the frictional force in the longitudinal component of the electron
equation of motion is zero. Thus, ne glecting the electron inertia, we can
write this equarion in the form

h/p,=—enly —sn b /T, (3.120)

where the second term on the tight represents the thermal force, and s = 0.71
[18].

For electrostatic waves [y = —(h y)¢. Integrating Eq. (3.120)
along the line of force, in the linear approximation we find

Ton' + (1 4 5) T;no —engp = 0, (3.121)

where n' is the density periurbation and T, is the perturbation in electron tem-
perature.

The localization width for this instability will generally not exceed the
maximum width of any of the drift instabilities pj/0; in practice, as we shall
see below, it is actually much smaller. Furthermore, the growth rate and fre-
quency are always smaller than k) v; < w*. Hence, in the linearized equa-
tion of continuity for either the electrons or ions (these coincide in the present
case} we find

. 1] . o (4
e e
iy 0

+—ikye, =0 (3.122)

where the first and second terms are negligibly small; in the zeroth approxi-
mation in w/w* we find ¢ = 0, i.e., in accordance with Eq. (3.121):

(1 L 8)ngTe + Ton' = 0- (3.123)

In order to obtain a complete description of the oscillation it is neces-
sary to consider the ion equation of motion

—lomngy == — iky 1Ty - n T} -+ 2T,n") (3.124)

and the heat-balance equations for the electrons and the ions
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0T, 2 ko — ATy — v (To—= T
_ IU)Tg == ——3—Tolf€“d” — LR e ¥ e e (3.125)
A . 2 - (T' T’)
_]UJTL-:—*-?TD]J?”U”——V c— del, (3126)

where the term containing v ~ vs{mg/my) takes account of the heat exchange
between the electrons and ions. We neglect the lengitudinal thermal conduct-

tivity of the ions, since x; < Xe-

Using Egs. (3.123)43.126), we have

o = - R for A ko (3.127)
3
w=-1/ 2 ko4 i~ (B.S D ) for 7,k > Fuds
e 3 0 90\ 3 Kf_, / (3.128)

Substituting the numerical values for xo and v from [18], we find that the fre-

quency (3.128) corresponds to damped oscillations, so that the instability can
3 4 -

occur only in the region characterized by Xek“ < k”vi, ie.,

:

e
Aoy < ‘/ . (3.129)

iy
The localization width for this region of x can be found from (3.129):

X == pi 1 / m"’, (3.130)
] mS]/

iy

z : .
where m is the azimuthal mode number; § = Agpj/a”. It is evident that when
S »Vmg/m; the localization region for thi§ ins't.:a.bi]ity is much smaller than
pife; thus our assumption that w <« w* is justified.

According to Eq. (3.127), the growth rate for small perturbations is less
than v/ xg ~ (me/my)ve.

We note further that the temperature drift instability considered in sub-
section 6 of §3 exists, but it is somewhat modified in a dense plasma, in
which the mean free path is small (kA < 1) [34].

In obtaining the dispersion equation (for the case k“.?x < 1) we stal.rt with
the equations for two<fluid hydrodynamics [18]. Perturbations characterized
by ki % w® (i.e., x £ p;/8) in cases in which the shear is not too large
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(0 « 1) will exhibit a characteristic localization region X, which is appre-
ciably greater than p;. In this case, we can neglect the jon inertia in the
equations for the uansvesse velocity components; as a result, we obtain the fol-
lowing equations:

-

vi=p [ (T L” Py

= = T P
H en T on [h’ (V(P l] (3.131)

where

Now, substituting the expression for vﬂ_ in the jon equation of continuity
and in the equations for longirudinal motion and rthermal conductivity, we
finally have

dn ¢ o i
— %, -~ h\; 3| _% h\ 3 = () 3,
Py . g ~n o'y =0 (3.132)
(?U'.“ i N1 c L ey i o .
Mn (*g'“ +4 v Wiy - n thyol /v) o —hyp, —enh>/qs
(3.133)
oT; S —— S - P _i
=LA el T, e hTT ST Y = 0. (3.130)

The term containing the friction oj“ doecs not appear in Eq. (3.133). This
result follows because in using the neutrality condition divj = 0, -Eq.
(3.131) and the assumption that we have made earlier that there is no equilib-
rium current, we have automatically assumed that j” = 0. Furthermore, Eq.
(3.133) does not contain a term corzesponding to the lengitudinal ion viscosity,
while EQ. (3.134) does not contain a term with the longitudinal thermal con-
ductivity. These relations are valid if w » K’ x! (w is the oscillation fre-
quency, and xlil is the longitudinal ion thermal conductivity [23]). We note
that in the cases of interest here, where w ~ k“vi, this inequality coincides
with the condition for applicability of collisional hydrodynamics k”K < 1. The
system in Eqs. (3.132)<3.134) must be supplemented by a further equation for
the electrons,for which we take the following:

—h37p,-enhSjg =0; T, = const. (3.135)

Here it is assumed that the elections can set up a Beltzmann distriburion
along the lines of force. This condition is indicated by the inequality w <«
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~ is i i i i orm kA »
kﬁvé/ve; when « ™~ kv, this inequality can be written in the f

AL/2
(m /mi)l/ZA Thus, the analysis given here is valid when 1 > kA > (me/mj) 7,
e

Linearizing the system in (3.132)<3.134), and writing the perturbation

— i -l vLtik_z . . .
ities in the form ¢ = ¢ (x)e ik, vk, , we obtain the dispersion
quantiries in p

relation
] One iz"i | — Bt B e T (1 — _Lf'*_*f__) =0, (3.130)
B 1w m 3w o)
where \
. ckyT, dn “ cky dp;i o,
('3:12 = — ye B — , U)p; _ —T‘ N ]\. ;; - (h k)
eHn dx eHn dx

It follows from this equation that the instability can arise only when
X . s . ..
kvi € w'f,i. with w 2 w@;. For simplicity we consider the c.ase knvi < Whi
w « w®; using Eq. (3.136), we obtain the following expression for the fre-
i

quency:
l'»"“ Ti g o
w2 e bt (_/ — 1]) R
"y 3
where
dinT;
=L (3.137)

Thus, the oscillations are excited if 7 > %,. 1t will be found that the
maximum growth rate is of order

Yo~ @~ Ry, (3.138)
It then follows, as in the case of the drifttemperature instabiiity for a
collision-free plasma, that the characteristic localization region is of order

x~p;/0. (3.139)

Using the estimate in (3.138), we find the condition for the applicabil-
ity of the preceding analysis kA < 1, which can be written in terms of the

ho¢
collision parameter S = -;—f TSl
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§4. TRAPPED-PARTICLE INSTABILITY

1. Collision-Free Instability

Everywhere above in our investigation of dissipative instabilities the to-
roidal geometry of the system has been found to be unimportant in praciice.
We now wish 1o investigate instabilities that derive specifically from the to-
roidal geometry. We first consider the case of a collision-free plasma and as-
sume that the oscillations are electrostatic, so that the distortion of the ma g-
nctic ficld can be neglected. In this case, the kinetic equation (for small
oscillations) is written

of’

O v Tp ey 2 2
at Vv rit N o dv + me [v H] av

] , @
=Ly L up
m dv
Here, f is the equilibrium {(unperturbed) distribution function, which sarisfies
the equarion
A/ Ry S S i 2L —o, (4.2)
" dv mic av

where ¢ is the unperturbed potential for the electric field and ¢ is the per-
turbation; H is the unperturbed ma gnetic field; f° is the perturbation in the
distribution function. In the equilibrium state ¢y 1s a function of the mag-
netic surface, i.e., of the variable r. We now convert 1o a coordinate system
that moves along ¢ and assume that \/¢, vanishes. For the localized per-
turbations being treated here it can be assumed that the transport velocity is
inde pendent of r, so that the term containing \/ ¢y in Eqs. (4.1} and (4.2)
can be omitted.

We assume further that the equilibrium distribution function f is ap-
proximately a Maxwellian f; in which the density n and temperature depend
onr. Then, to first-order accuracy in S'Z[“{1 » using Eq. (4.2) we find

fic

ool ——1hvivf, (4.3)
where h = H/H.
From Eq. (4.1) we have
f
— i_ Tt af dt’
f " j‘ v P dv ’ (4'4)

where the integration is carried out over the unperturbed trajectory r' = 1(t)
which, at time t, passes through the point of observation, r and v. The motion
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of a charged particle along the trajectory is specified by the expression
r I 1 UJ. i’ U,L H L
v =r (') +n—=—cosa +b—=sina’, (4,5)
Qy H

where ¢ (t) is the trajectory of the guiding center; m is the normal; b is the bi-
normal to the line of force of the magnetic field; v N is the transverse velocity
component; oof = oy~ &y ("~ ty is the azimuthal angle in velocity space.
Since we are interested in oscillations characterized by frequencies much be-
low the cyclotron frequency, it is necessary to carry oul an averaging process
over the fast oscillations at frequency @y under the integral sign in Eq. (4.4).
Thus,

i
fo L 5 Froe 2ar (4.42)
I av

Here, F' is an operator that acts on ¢'; in the k representation this operator is
given simply by F' = Jo(k'v, /@n), where ] is the Bessel function of zero
order while the integration in Eq. (4.4a) is camried out over the trajectory of
the guiding center.

Since we have assurnied that the function f, is approximately a Max-
wellian, in accordance with Eq. (4.3) we have

a mv
v F+e

me

= (hfol. (4.6)

Actually, because of the magnetic drift of the particles, the function f,
is somewhar different from a Maxwellian; however, this difference can be
neglected when p;/a <« 1. '

de’ __ O’
Tdr o
and writing the dependence of ¢" on 1" in the form ex piwt?), we have

Assuming that f is independent of t', and that av' V¢’ =

R A AL

—00

In the first term we have neglected the weak dependence of T on t' due
w the deviation of the guiding center from the magpetic surface in the drift
motion (taking account of this effect would mean replacing T by some mean
value as obtained for a nearby magnetic surface).
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Since ¢ and ¥ are both periodic, the functions ¢' and f' can be written
in the form
" == exp(—iwd + imd — iU ¢ {r, ),
{4.8)

where ¢(r, 8) is a periodic function of & upon which we can impose the re-
quirement that it have a minimum number of nodes in &. Isolating the expo-
nential factor analogous to (4.8) in f', and proceeding in the same way, we
obtain an expression for the density perturbations by integrating over v:

o= - "(P n -4 s FF exp[—io!" + im0 —®) —{l{L —L)] =

X [— e fop -+ —=— [1 (mhg - lho) @ + by J o }di dv .
T Vet o (4.9)

Here, n is the unperturbed density; the second operator under the integral sign
F arises in taking the average over azimuth o in velocity space; h; and h; are
covariant components of the vector b = H/H. In the integration over ra-
jectories, to accuracy of order pi/a we can assume that f; and T are con-
stani. Thus, the density expression (4.9) differs from the correspending expres-
sion in cylindrical geometry only in the more complicated nature of the par-
ticle motion along the unperturbed trajectory.

Using the neutrality condition, i.e., the condition that the perturbations
in the electrons and ion densities be the same, we can obtain a dispersion
equation for the frequency w:

,_, I B —0) — if -t
[ m= M eI
¢

=i e

iw : , d Jf .
l fﬂjp —h(—lffg p-li (!?IhJ-T" th )q'J - h_q —aﬁw'—} *’d*:*} di’dv .
(4.10)

Here, the summaticn on the right side is carried out over the electrons and
ion, in which case e = e, e, = —e. The relation in (4.10) is a homogeneous
integral equation in which w appears as the characteristic value. In order to
write Eq. (4.10) in explicit form we must now make use of the expressions
for the panticle diift trajectories in a torus that have been developed in §1.

As we have indicated in §1, the most important characteristic feature of
particle motion in a torus is the fact that particles can be trapped. The pres-
ence of trapped paricles leads o the possible development of flute instabilities
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associated with the trapped particles. The point here is that the trapped par-
ticles in a force tube between magnetic mirrors can be completely isolated
from other regions in the plasma; consequently, they are completely analogous
to trapped particles in a conventional mirror system. In general, these par-
ticles will execute an unfavorable magnetic drift in the magnetic ficld that
falls off to the periphery, as in a convemtional magnetic trap. Thus, a small
flutetype perturbation leads to a polarization or separation of the charges,
which in turn amplifies the initial perturbation. The only distinction from a
conventional open-ended mirror device is the fact that in the toroidal geom-
etry the flutes associated with the trapped particles are immersed in a plasma
coniaining the transiting particles which, because of their own high longitudi-
nal dielectric constant ¢ = 1 + 8‘n’ne2/kﬁT » 1, will, to a considerable degree,
neutralize the charges of the trapped particles. However, since ¢ # =, com-
plete neutralization cannot be achieved. Thus, the plasma will always be
subject to highly retarded flute instabilities associated with the trapped par-
ticles.

In order to investigate this instability we now tum to the equation that
desciibes the potential (4.10). In terms of macroscopic effects, the most dan-
gerous perturbations are the large-scale perturbations. Hence, we shall assume
that the range of localization of perturbations in r is appreciably greater than
Ar, the excursion of the particles in the radial direction in their unperturbed
drift. In this approximation, we can neglect the dependence of ¢ on 1 on the
right side of Eq. (4.10}. Speaking more precisely, by ¢(r) we are to under-
stand a function that has a narrow range of localization compared with g, so
that w = w(r) represent some local value for the characteristic frequency; how-

ever, the localization with @(r) exceeds Ar appreciably. In this approximation,
Fi = F; =1.

Furthermore, in Eq. (4.10)}, in the factor under the integral sign that
multiplies d f/dr we neglect small terms of order a / Rg. It is also assumed
that m >» 1, so that we can neglect the derivative d¢ /0 9* compared with it

me. Inthis approximation, under the assumption that T; = Tes we find that
Eq. (4.10) can be written in the form

D - *
T - \,“ ‘ oot im (0 — 0} it (3 ~3) ( ieof o; -
a—d
i —x
clm  dfy
L'I'Hr dr

)q.»’dt’dv. (4.11)

We first consider the integral over t* for the transiting particles. For

these particles, ' — % = v\t"/Rq, {'—¢ = q(9'— §) and, consequently, the
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integral over t* gives a factor of the form i{w — (m— lq)v“/qR}"l. For the
oscillations being treated here (drift oscillations characterized by frequency
w~w, ™ mpivi/az), when m — I q ~ 1 this factor is appreciably smaller
than w, even for the ions. Consequently, the coniribution of the transiting
particles in the integral in Eq. {4.11) can be neglected compared with the fac-
tor 2¢ on the left side.

In computing the integral over t* for the trapped particles, we shall as-
sume ¢! —¢& = q(®] — &) + £'. Then, the exponential that multiplies &% — %
will contain a facter (m— &&g). The number m is as yet unspecified. It is evi-
dent that for any given value of I we can always choose a value of m such
that the difference m—1q is much smaller than one-half. This choice
of m means that ¢ is a function with a minimum number of nodes in 9.
We shall first consider the simpler case m — {q « %. Then, the term (m— Iy -
(¢ — 9), whichisaperiodicfunction of t' of order m—1q, is to be neglected
for the trapped particles. Furthermore, neglecting the quantity i€ over one
period of the oscillation, we can carry out the averaging of gj over the period
of oscillation T and take E]f = v;t'. Under these conditions, Eq. (4.11) is

J
simplified to

0

y A ! — J— et . fﬁ@!;) 1 ﬂdv 4.12

2iup == }‘5— ¥ (mfw et o j ¢ - . (4.12)
i

W= Ue
s —1

Here, the integration over t' is ieplac_e,d by an integration over the angle 97,
it being assumed that | g = VIR di'ft = (232 —1 — cos &) —"/=d¥’.
Furthermore, dv for trapped particles and & « 1 is of the form dv = 2mvidv -
dy g, where yg = /2~ ¥ is the angle in velocity space at the point &. By
conservation of the tiansverse adiabatic invariant we find

vj_/u2 = cos?yp = cos?y(l -+ e{l - cos ¥)), (4.13)

where ¥ is an angle we have introduced earlier in velocity space at the poiznt
$ =, ie,y= ¥, Inaccordance withEq. (4.13), for small ¢ we find ¥y =

yz—'g(l + cos$). Thus,

N ydy. Ve dy? B
Vo Yo Vo1 —costh (@14

Substituting the expression obtained for dt' and dyg and the expression (1.50)
for T in Eq. {4.12), we obtain an integral equation for the potential ¢:
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° o 2n Ve otdo mcT diyi \
¢ (1) = j—;—;——( ofor — 01)"
- V2 niwo vgl) reiH dr
i
! n
4 p (0')dd’
. j . (4.15)

KV T —T—cos g VEI—T—cos ¥

t4-cos @
2

where %4 = arccos (2x2 —1).

In the case being considered here (equal temperatures) the drift veloci-
ties of the electrons and jons vze and vy are opposite in sign but equal in ab=
solute magnitude for a given energy mjvz/Z. This feature leads to a consider-
able simplification of the equation. Assuming that T = const, we can write
the equation in the form

o) = j‘ o Vel (07 ol ) : dy? b
V2n(w — 120.5_ ) 1ibosd K V22 —Tcos
k 8')d0-
had (%) . (4.16)
V242 —1—cos{’
L
where ot — __mel | dn
reHn dr

Since Eq. (4.16) depends on the square of w, in the presence of an insta- -

bility, it is natural to take w® as being a real quantity, i.e., w =iy. In this
case the denominator @*—/%v% = — (v2+%0%) becomes a monotonically
Increasing function of y. We now recall that v, is a small quantity of order
&. Since Eq. (4.16) contains the small factor Y& on the right, it can be of the
order unity only if the denomlnator i+ iy g becomes sufficiently small. In
this case we neglect y in the numerator comipared with w* Lvps. Thus, in
order-of-magnitude terms, from Eq. (4.16) we have

1 ~ 7V e ew*3(y? - 2a*)=1,
It is then evident that yir urlg 32, Neglecting the quantity szz ~
2

¢“w*? compared with y* in the denominator and carrying out the integration
over v%, we reduce Eq. (4.16) to the form
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1 a

() = == R 47°G (7) j __qid)dd
. ‘ KV 232 —1—cos 8¢ 122 —1 — s 0

' (4.17)

l-}-::osﬁ
2

where G(x) is a function that is given by Eq. (1.57) and arises as a resulr of the
substitution of the explicit value for vy, & -= 4% V2x/3Vew, o ®,, =

2 lqecTielir*=> 2meT/eflrR,. Since v¢ is proportional 1o v¥, for the case
dinp
dlinn
it is convenient 1o make use of a Fourier representation, expanding the quan-

tity ¢ (9 in a series in cos&. For this purpose we write

g (8) = Y e g, (4.18)

]

VT 50 by w* we are 10 understand 0], = o* In solving Eq. (4.17)

where ¢ and ¢ are real coefficients. Substituting this expression in Eq.
(4.17), multiplying it by ¢159, and integrating over &, we have

A'(1 - 650) Ps = 2: FSS'[PS'? (4.19)
o

where

557

Fur = Pio 4 L P

o i
0, (/) = cos s -
/ '> Vi (a.21)

The characteristic value A is found by setting the determinant of the matrix
corresponding to equations (4.19) equal to zero. The values of the martrjx ele-
ments ng. forss' = 2 are given in the table.

It is evident that Fés- diminishes rapidly as s increases. Hence, in com-
puting the largest value of A, which corresponds to the most unstable oscilla-
tion, it will be sufficient to bound the system to finite order, assuming that
¢ = 0 for some value of s larger than the critical value s;. Confining our-
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-1 2

‘Lss’ !‘sc'
H 5" =10 s =1 §f = 2 s 5f =0 st =1 s = 2
0 0,681 | 0,543 0.011 0 ‘ 0.888 | —0,1456 | —0,18%
1 —0.543 0,380 | —0,151 1 —0.145 0,128 | —0,029
2 0.6L1 ! —0.151 0.161 2 L —0.189 0,029 0,091

¥
T 7 ~%7 g

Fig. 8. The amplitude of the oscillations
of the potential ¢ as a function of the
angle J.

selves to a system of equations of second order, for the case 9" = 0, we find
A = 0.74. The second root is approximately equal to zero and lies at essen~
tially the limits of applicability of the present analysis. Recalling the defini-
tion of A, and making use of the numerical value that has been obtained, we
find

2 VE

—_— (.l)..
V=, Oa®e (4.22)

Taking accoumt of the third equation in {(4.19) we can find the first three terms
in the Fourier expansion of ¢{(8). When q' = 0, the solution for ¢ ($) is of the
form

e(0) =1 —1,4cos? - 0,4cos 2.
(4.23)

The function ¢($) is shown graphically in Fig. 8, and is localized in the re-
gion & =~ w, in which the particles execute unfaverable drift motion. In other
words, the oscillations develop primarily in the external region of the rorus; the
oscillation amplitude is very small in the region | 8| < 7/ 2.
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We now wish to consider the effect of changing q' on the instability. We
have already noted that increasing ' leads to a stronger instability, and that
when ' < 0 there is some sitabilization associated with the reduction of the
length of the line of force between the turning points in the outward motion.
By writing A = 0 we can easily find the critical value for the parameter @'t/ q
(below which stability obtains). This value is found ro be —1.5, so that the
following condition is the stabilization criterion for the trapped-particle insta-
bilities:

d g 3
— . — ¥, (4,24
dinr B )

We now wish to consider Eq {4.18) We recall the ransition to the
simpler equation (4.17) means neglecting the quantity lzvéi, which is
of order ¢ compared with y* ~ & 3/2, However, since v is proportional to
dn/dr, while vy is independent of density, this procedure is not always valid
even for small values of &. Since y?/vE at best ~ &, the conversion from
Eq. (4.16) to {4.17) can be questionable even if the density gradient is reason-~
ably large. It will be evident that a reduction in |[dn/dr| leads to a reduction
in the growth rate y, and that for some critical value dn/dr the quantity y
vanishes alrogether. In order to find this critical value of the gradient we
write w = 0 in Eq. {4¢.16) and then carry out the Fourjer analysis. As a resul,
for the case T = const we find

il 4 S s == 3 Poyor (4.25)
Hete,
10 .dy?
L N - 5_5__’_ (4.26)
V 2wt .“ Ka)

where the integral over x” is to be understood in the sense of the principal
value.

The minimum value of w* corresponds to the maximum root for p.
When 1q/q — « the matrix elements Pt (and consequently the rooss of 4) are
both reduced. On the other hand, when q* < 0, the quantity G(x) can change
sign and the matrix elements Py become smaller for this reason than for the
case ' > 0. Thus, the largest value of y corresponds to the value 1q/q" ~ 1.
We have carricd out a numerical calculation of the roots of u forrq'/q = Y.
For these values, Pog = 11.8, P = 2.02, Py = 2.24, whence we find that y,
6.5 and p, = 1.7. Taking the larger value of 1) and substituting in Eq. (4.26)
for p, we find the stability condition
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_dinn < s l/ T (4.27)
dlnr 3 R,
(We recall that in this case the temperature T is assumed to be constant over
the cross section.)

In practice this condition can only be realized in isclated narrow ranges
of r.

It will be recalled that in deriving the integral equation for ¢ we have
assumed that m~— Iq « 1. It would appear that this inequality can be satisfied
for values of g close to an integer. Fowever, as an approximation it can be
assumed that m = Iq even wlen iq is not equal to an integer. This feature
foliows because because we have neglected the transiting particles entirely.
As a result, as is evident from Eq. (4.16), when & — 0 the function (&) also
tends to vanish (this can be seen in Fig. § for the particular case ¢ = 0).
Hence, in a complete solution of the form ¢ = exp{im®% — @L)@(H), it is ad-
missible 1o have an arbitrary phrase discontinuity through the point & = 0, so
that the number m must necessarily be an integer, and we can set it equal to
1q. It will be evident that m cannot be equal to iq precisely because it would
then be impossible to neglect the contribution to the density given by the
transiting particles, which is of order wRq/v, (m—1q). But when wRgfvy ~

9707 | the difference m— Iq can be taken as equal to zero with a high
-

degree of accuracy. Thus, by assuming that m = Ig, where [ is an integer in
the solution obtained above, we can extend the solution to the case of arbitrary
r. By taking account of the small terms due to the displacement of particles
in the radial direction Ar, in principle we could consider the problem of lo-
calization of the characteristic functions of the linear approximation in the
radial direction. However, in practice, this is not required, as we shall see in
our investigation of nonlinear oscillations.

In concluding this subsection, we shall consider briefly the instability of
a nonisothermal plasma (T, = T;). In the Fourier representation the appropri-
ate equation is

N [V Bl BT )
(Pa = s j‘ . (P-“' N
e n K ()

H

a

~, UF
. (A — 1} — Awpw* _26(7“)
U{- o

5 L : d* (4.28)
o2 vrye
0? - 0onG(y) — @ —1)—A ( G (1) —-—2-)
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where

o Ticm dfy; . 2
mr— 2 RN T A= T T s wl e 2T i,
eHrfy, dr ‘ enar T / &

while the remaining notation is the same as given above.

When & = 0 the right side of Eq. {4.28) contains terms that are linear
inw and these can lead 1o a stabilization of the instability. In order to ex-
amine this feature we average Eq. (4.28) over %, and write

ATy )T 2T A, (4.29)

&3 =

I+

where by @* and 'Z.um we are o understand certain effective values which can
differ by numerical factors of order unity from the values computed earlier for
w* and wy,. It is evident from Eq. (4.29) that the instability can oceur only
within the interval defined by the expression

O I T, 1= o
Om e Te cqye 8
:* 4 ﬁ T: ;;m (4.30)

The plasma s stable outside this interval. Since & /&* ~ ¢, the instability
range (4.30) is extreinely broad.

2. Dissipative Instabilities Due to

Trapped Particles

Since instabilities due to trapped particles in a finite system are associ-
ated with the marked differences in particle motion, one expects that these
instabilities will be very sensitive to collisions. The point hete is that by vir-
tue of collisions trapped particles can be expelled into the “transit cone™ in
velocity space, i.e., the perturbaiion can be damped ai a frequency v,g-
When ¢ « 1, the angle ¥, in velocity space, which separates the region of
trapped particles from transiting particles, is of order Ve. The fraction of
trapped particles is correspondingly small. Hence, in the Landau collision
term for the trapped particles we need retain only the term with the second
derivative of the distribution function. Thus, as an approximation we can
write the diffusion form

~~ 2 r
st == viALF, (4.31)

where Ay is the Laplacian in velocity space, ¥ j is the collisien frequency for

particles of species j, V;‘ = 2Tj/mj‘ In the collision term the largest factor is
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the one that contains the second derivative in y and is of order st ~ —v]-/]fg ~
v]-/.s . In other words, Vg = ¥/e. If we consider the effect of collisions on
f'in (4.1) and write a collision term of the form vppf", it will be evident
from the earlier calculations that collisions can be introduced into the disper-
sion equation {4.12) by replacing w by w = iv¥.¢ in the denominators of the
integrands. In a reasonably dense plasima the transiting particles can be as-
sumed to exhibit a Boltzmann distribution when collisions are introduced.
Hence, as an approximation the dispersion relation can be writien in the form

9. 1'.—; ||.J . ‘Im' _ l/fgf W_(l{ ‘i (J)*I ‘ (4‘32)
o iV E -ty 4 iV, E 4 Wy
Here, the terms on the right, which take account of the contribution of trapped
particles, contain the factor ¥e, which is equal to the fraction of trapped par-
ticles; w o, is the frequency associated with the magnetic drift and the factor
1/e that multiplies the frequencies v; and v, takes account of the diffusional
nature of Coulomb collisions.

For reasons of simplicity we shall limit ourselves to the case Ty = Tj.
In Eq. (4.32) we can neglect w as compared with w* in the numerator; further-
more, in general we can neglect the magnetic drift wy,. In the last term we
then have only the teim with ive/ ¢ in the denominator. With these approxi-
mations, we find

w* | .
2 4 v, £ © (4.33)

It will be evident that an instability appears when ¥l < (e%/ Dw*?; it is also
evident that this instability does not depend on the sign of the curvature of the
lines ot force, i.e., wy,. It is natural to call this a dissipative trapped-particle

¥
3% h fm AU ¢
w*e 1w e
e g _4)
Z |71,

Fig. 9. The growth rate as a function of the collision
frequency.
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instability. As Ve is reduced, the growth rate increases, reaching a maximum
value ¥y ~ Ve w* when v ~ £%/%w =, beyond which it is reduced. The
qualitative dependence of ihe growrh rate on frequency v is shown in Fig. 9,
from which it follows that the dissipative trapped-particle instability is stabil-
ized by lon=-ion collisions when ¥, increases.

3. Instability Associated with

Finite Orbits

The excitaton of drift waves by electrons is formally due to the fact
that the oscillation frequency w is smaller than the drift frequency w*. Using
the expression for the energy absorbed per unit volume of plasma W = Ej and
the expression for the longitudinal electron cwrent j (3.217), we find

. N
W — SR (l o TL) : {4.34)
eV w
It then follows that W changes sign when w = w3, i.e., the wave damping be-
comes wave excitation. Equation (4.34) is valid for a collisional plasma, but
a similar result obtains when the dissipation is associated with resonant par-
ticles. Thus, any effect that reduces w can lead to the excitation of oscilla-
tions. One such effect is the transverse ion inertia; when the transvesse ion
inertia is introduced, the drift {requency becomes w = w* (lﬂkip%) < w*,
where p; is the ion Larmor radius. The reduction in w is a result of the fact
that the ions gyrate over a finite orbit in the magnetic field. As a result, the
particles do not "see” the field at a given point; rather they see an average of
the field over an orkit, which is smaller than the true field, and this means a
reduction in frequency. It follows from Eq. (4.34) and the expression for w
that this effect becomes larger, the larger the dimensions of the orbit, i.e.,
the larger the value of p;.

In the inhomogeneous magnetic field in a trapping system the particles
not only gyrate in cyclotron orbirs, but also traverse a rather complicated tra-
jectory (cf. Fig. 3) with characteristic dimensions A . In a circular rorus the
dimensions of the orbit A are found to be of order pjYR/a {(cf. §1) and in the
stellarator this dimension can be equal to the transverse dimensions of the sys-
tem [36]. In these oscillations a particie can traverse an otbit several times
and the possibility exists that an averaging process occurs in this gyration (in
precisely the same way as the averaging over the cyclotron gyration). Asa
result, the frequency of the drift oscillations is now found to be given by the
expression w = w*(1 —kipz"' kiAz) = w¥1 —kiAz), since A » p. Thus, in the
case being considered, the particle drift in the inhomogeneous magpetic field
plays a role analogous to that of the transverse ion inertia. For this reason,
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the instability that arises might be called the finite-orbit instability. Quali-
tatively the appropriate dispersion relarion for this instability can be obtained
from the dispersion equation for the inertial drift instability by making the
substitution g; —> A in the inertia term [37] (the same applies for the more com-
plete equation). For example, in the drift dissipative instability, to take ac-
count of finite-orbits we can write the equation

0? -+ o (o, —w} — oo, 0, (4.35)

wheret;s = ws{j\/pi)z. It follows from this equartion that taking account of
finite-orbits means that the maximum growth rate y ~ w* ~ & is now reached
for longer wavelength,stx ~ MA/py)?. It will be shown in §10 that this effect
can lead 1o a significant increase in the effect of diffusion.

It now remains to compute the characteristic dimension of the orbit A.

The basic mechanism that causes the drift of guiding centers in toroidal
systems is the inhomogeneity of the magnetic field. For example, for a circu-~
lar torus such as Tokomak, the magnetic field at the inner region of the cham-
ber is stronger than at the outer suiface because of the toroidal geometry. As
a result, in the motion along the line of force the absolute magnitude of the
total field is found to be a variable quantity. This is equivalent 1o an effective
bumpiness of the longitudinal magnetic field. Similarly, in toroidal systems
such as the stellarator the bumpiness arises by virtue of the existence of wind-
ings which provide the rotatrional transform, In order to consider these effects
qualitatively the longitudinal magnetic field in systems of this kind is usually
written in the form [cf. Eq. (1.3)]:

r 2
cos — . (4.36)
7 °)

ff;:ffo(l—

no
Here, ¢ is a coordinate measured along the line of force, Ry is the char-
acteristic scale size, and Ly is the period of corrugarjon of the field. Using
the drift equations we can show quite easily that, in the field described by Eq.
{4.36) the maximum displacement of a particle from a given magneric swrface
is of order Ag ~ Lpvi/ Roc®j. However, it is not this quantity that appears in
the dispersion relation, bur rather the displacement over the period of ihe oscil-
lation t = 27/w, which is equal to A = Afwp/w), where wg = 2v;/Lp is the
inverse transit time for the distance between "bumps.”

An exact calculation carried out by means of the kinetic equation [37]

leads to the value
A y/ T Lr _f_’f_) (LR) (4.37)
9 8 Ry w

This expression holds when w > wR.
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§5. HIGH-FREQUENCY INSTABILITIES

1. Drift Cyclotron Instabilities

When the density gradient is increased the development of a drift insta-
bility at harmonics of the cyclotron frequency w ~ nQ; becomes possible. We
first consider the collisionless case and then take account of collision.

A general dispersion relarion thar describes the electrostatic oscillations
of a plasma ar arbitrary frequencies is given in [29]. For frequencies close 10
n{j (and the contribution in the density perturbation trom other harmenics can
be neglected), we find

7 . Ty m; . — o) o — nkd; —z
!e"dfa.wf?fr( ——)lVﬂWlb(— —-)e I (2) +

@ kv

LT o, \ .- R
+ (I )ll«lan/( @ )e “Ioz) =0, (5.1)
\

Te w k I Ye k Ve
where
* kyTic dn * kT
w; = Seiaio. — - W0y = — i e R dit :

etn dr efin dr
2 2

, kT, — KTe T,

L= et = s d; =
mQ; I.'IE.QE 4ne’n

Since the drift cyclotron oscillations are characterized by extremely short
wavelengrhs (k, p; > 1), it can be assumed that shear will not have an im-
portant effect on these oscillations.

We first consider waves characterized by K, =0 (w/ kyve > 1). An esti-
mate of the argument of the electron W function shows that this case can actu-
ally be realized. For small k, = 0 we can use the earlier expansion of ky =
kyex/ro, in which case :

R @ O IRLTIANE
fe v, kyOxfrgve  pb \ my )

(here we assume that w ~ @ and ky ~ x™), but this quantity remains large.
For this reason, we can neglect exponentially small imaginary terms in the
electron part of the Eq. (5.1); thus, kll = 0. The argument of the jon W-func-
tion can be assumed to be rather large, w—nQ; >> kv; (this assumprion is
verified by the results).




336 B. B. KADOMTSEV AND O. P, POGUTSE

We also assume thae the instability requires the condition w* > w —nfy
orkypj > fu/Pii we can ithen make use of the asymptotic expansion for the
Bessel function I{z). As a result of all ot these simplifications, Eq. (5.1) now

becomes

—

=]
=1
™

2.9, \ T . . ﬂr_) @ .
ki +1+ (1 w/l o—al V

It is a simple matier to find the {ollowing instability criterion from Eq. (5.2)

[13]:

piirg > 2!1( e ) - (5.3)

m;

. . . ab/2
However, since we have assumed that the inverse inequality p,/ro <(mg/m;)
is satisfied, cyclotron oscillations characterized by k“ = 0 cannot be supported.

The situation is somewhar different for waves characterized by k, = 0
(f_.u/kuve € 1), We fimst consider the case (J.J/k"v(3 <« 1, wl‘n this case, the only
change is in the electron part of Eq. (5.2): Ti; ] — u: ) R - ﬁg—
¢ "l,(z,). Itisasimple mawer ro find an expression for the frequency and
growth rate from the equation that has been obtained. We note that the insta-
bility with k; = 0 is also a threshold type, i.e., it can develop only if the
Larmor radius is sufficiently large. On the other hand, for this instability we
have satisfied the inequalities & — n2; ~ ki%fifw >R, e, > eo~9,
combining these we find k, p; < v,/ v on the orher hand, w ™~ 2 < w*, i.e.,
k,p> r(,/p-. Thus, oscillations characterized by k|| # 0 are unstable if
pylo > (me mi)1 2, and since it is assumed that the inverse inequality holds,

this instability will not develop.

The oscillarions being treated are characterized by extremely shoit
wavelengths. For example, as soon as the inequality in (5.3) is satisfied, the
wavelength turns out to be of the order of the electron Larmor radius, It Is ‘
then natural to assume that these shortwave instabilities can be highly sensitive
to the shortwave ion viscosity [22, 27]. Qualitatively (forthe case /T =0)
this can be shown by making the substiturion w - w ivyz in Eq. (5.2). I? the
viscosity is small, this leads 10 an instability for the cyclotron waves [38]. How-
ever, if - - : - ,l_ - ; < 1, then, as followsfrom

’ w — nld;-Liviz J 2nz vz V ¢nz
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Eq. (5.2}, the cyclotron waves are nor unstable. Assuming RJ_.D > In/p. we
conclude that the cyclotron waves will be stabilized by collisions if § is not
very large [22, 27]:

S = hpila® < ajp,.
(5.4)

It is clear that this criterion is independent of the assumption <7 T = 0.

2. Ton Acoustic Instability

If the ion temperature Ty is appreciably lower than the electron tem-
perature Tg, the presence of a longitudinal cuirent in the plasma can lead to
the development of a shorwave ion-acoustic instability. In order for the insta-
bility to be excited it is necessary that the longitudinal (current) velocity of
the electrons u = i/en exceed the acoustic velocity ¢g = VTe/my. Since the
Joule heating perelectron j*/on = (u®/ vé) (To/Tg) is greater than the energy
transferred from the eleciron to the ion (me/ m;¥Te —Ti}/Te, the condition
u > ¢g is self-consistent. The electron temperature must "run away" from the
fon remperatuse (i-e., propagation of the ion-acoustic wave must be possible)
and the damping due to the electrons must be smaller than the electron excita -
tion,

In the absence of a magneric field, or in the presence of a weak mag-
netic field, the ion-acoustic inszability leads to the development of oscillations
of relatively small amplitude which propagates at various angles with respece
to the current [3i]. In the case being considered (strong magperic field) all of
the waves characterized by kde<< 1 (dg = Te/4we’n is the Debye radius at
the electron temperature) have the same phase velocity along the magneric
field, this velocity being cgi hence, the nature of the development of the in-
stability is modified to some extent.

Let us consider the electron distribution funcrion that characterizes the
longitudinal velocities f(v“) {Fig. 10). In the presence of a longitudinai cur-
rent, the peak of this function is shifted with respect to the origin by an amount
ug of order u (for Coulomb collisions ug * 0,5u). For reasons of simplicity we
shall assume rhat u, and, consequently ug, are considerably greater than cz. As
is well known, the fon-acoustic inseability develops as a result of a resonance
inwracrion between the waves and electrons that move with velocity equal to
the phase velocity of the wave. In the case of the jon-acoustic wave the phase
velocity vp diminishes with k from ¢5 when kde <« 1, to zero when k — o,
Hence, the resonance interacrion with low- amplitude waves oceurs in the re-
gion from 0 to ¢g {cf. Fig. 10) and all the waves in this Iegion $Iart 1o increase
with time when ug > cg the maximum growth rare corresponding to the condi-
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Fig. 10. The electuren distribution funcrion in
the presence of a current flow.

tion kd, ™~ 1. As the perturbation grows, the nature of the interaction with the
electrons can be modified, Specifically, if the perturbarion in the potential
reaches a finite amplitude ¢, then all the electrons whose longitudinal velo-
cities differ from vp by an amount =v2e¢ /m, will be trapped by the wave
and the distribution funciion will exhibit a plateau (shown in Fig. 10 by the
dashed line). The width of this plateau is of order 2VZ2c¢/me. The presence
of a plateau means that all waves {aside from tne one being considered) that
have phase velocities within the plateau will be damped. The pertusbation of
finite amplitude continues to grow, since the collisions are continually de-
forming the distribution function in such a way that the parricles trapped by
the wave appear to have a mean directed velociry. The growth rate is deter-

mined by the rate at which the distribution funcrion is restored, specifically
ut
by the relation V-~ — -,

'3

vy Te

the wave reaches a quaﬁtity of order e¢ ~ Te, in which case some ol the ions
are reflected from the "hills" associated with the ion-acousric wave. Under
these conditions there is a strong transfer of energy to the ions. When ep ™~ Te
an appreciable fraction of the electrons (about half) are trapped by the wave,
so that the effective conductivityo = e nre/me is reduced as a consequence
of the reduction in the number of carriers n. In other words, the ion acoustic
instability in a strong magnetic field leads 1o an anomalous resistance which
is of the order of the normal resistance. The Joule heat generated in the
anomalous resistance is transferred to the wave and then directly to the jons
by virue of reflection of ions from the poteatial hills and subsequent ion col-
lisions. Theeffect can be introduced by introducing a term similar to the
Joule heating term in the ion hear-balance eduarion.

This growth continues until tne amplitude of

The picture presented here refers to a plasma in a uniform magnetic
field. In a toroidal geometry characierized by A > a electrons with small
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longitudinal velocities will be trapped so that, in general, the electron func-
tion will exhibit a plateau even in the absence of oscillations. Under these
cenditions, the exciration of the ion-acoustic wave at low amplitude can oc-
cur only within the inner region of the toms, where there are no trapped par-
ticles, and then only for a rather large amplitude e > 1T, /Ry, in which case
the effect of trapped parricles is unimportant, It is reasonable 1o assume that
the ion-acoustic waves will exhibit "hard"™ excitation because of this effect.
For small perwurbations to grow, the quantity u must be appreciably greate:
than a value ~cg required for the excitatien of waves of finite amplitude. Trap-

ping of particles in hills in the longwave drift oscillations can lead to a similar
effecr.

§6. HELICAL MAGNETIC CELLS

We shall start our investigation of nonlinear effects with an analysis of
the helical perturbations of the magnetic field that can develop as a result of
the hydredynamic screw instability or the dissipative screw instability, It has
been established in $2 and 3 that the screw instability is stabilized if the sta-
bility margin ¢ is large enough. However, {rom the point of view of achiev-
ing the maxunum shear @ and from the point of view of increasing the Joule
heating j /o it is sometimes necessary to increase the azimuthal magnetic
field Hg., i.e., it is somerimes necessary to reduce q to values at which the
screw Inmstapility can be excited. Hence, an analysis of the macroscopic ef-
fects due to the screw instability is extremely important,

Since the toroidal features of the geomelry are not essential in the anal-
ysis of the screw instability, we shall consider a cylinder of leagth L = 2R,

and radivs a. As is well known [39], for the case of helical symnetry the mag-
netic field can be specified by two functions I and ¢ :

PR 6.2
r Jt
R oy
g s — - m—— -k :
o k rd ol m-( dr “’,1 ’ (6-2)
1 iNg
H,o = — ‘
R LT RRTR AN dgr g [) ’ (6-3)

where { = kz —mé; I =1(r, £); ¥ = ¥{1, {).

It is easy to show that H 7 = 0 andcurl HY// = 0. Thas, the re-
lation § = const represenis the equation of the magnetic surface, while the re-

lation I = const represents the equation for the current surface,
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In order to find the perturbation of the magnetic field, we make use of
the equation

mn 2 p = L h), (6.4)
df ¢

which is the sum of the equarions of morion for the electrons and ions with
small viscosity terms neglected.

For drift waves the transverse inertia term is appreciably smaller than
the pressure gradient; specifically, it is a {raction "‘p%/az of the latrer. Hence,
the transverse inertia can be neglected and the inertia term can be written in
the form of a product FH. Multiplying Eq. (6.4) by H, we find

FH:=— L D(p, W), - (6.5)
r -
where IXp, ¥) is the Jacobian:
. dp v  ap . oW
Dip My=om = 5 (6.6)

Taking account of Eq. (6.5) we can write Eq. (6.4} in the form

H X T = (6.7)
i Dp¥)+ Vp . (iHI.

This equarion differs from the usual magnetohydrodynamic equilibrium equa-
tion in that the longitudinal inertia has been taken into account. The com-
penent of the equarion along H is automatically satisfied, so that we need only
consider the two transverse comnponents.

Multiplying Eq. (6,7) by the quantity curl H and taking account of
Egs. (6.1)<6.3), we find
n (curl HH

) ,
D ¥y =0.
i », ¥) 6.8

Dp, 1)
In similar fashion, muliplying Eq. (6.7) by S/, we obtan an equarion that
expresses the equilibrium along 7

hem |  4r VpTp f VIivy
—i_ i m—— B —_—

- =0
RN (V) B2 Cmt (T ' (6.9)

NP+ :

where

L I A L( r_ 0_‘1’) (6.10)

rk —022 r ar ket - mt or
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For permirbations characterized by w « k“, i.¢., localization x » p;/6,
the pressure can be equilibrated along the lines of force and D(p, ¥), =0, i.e.,
p = pl@). Under these conditions, it follows from Eq. (6.8) that D{p, I} = 0
and I = I(¥) in which case Eq. (6.9) leads 10 the well-known equartion for
equilibrium in helical symmerry [39]. However, in the case of perturbations
that are highly elongated along H, the surfaces p = const, I = const, and P =
const no longer coincide. In order to find these surfaces, ir is now necessary
to introduce an additionat equation, this equation being Ohm's law along H,
i.c., the longitudinal component of the electron equation of metion, In the
coordinate system in which the cells are at rest and in which E = —\
this equation is of the form

HY p, = enH\y g + e jtl —enHE, . (6.11)

£%¢

It then follows that

EE;
Heul H= =% fHE, — L D (¢, v) -+ D p,, ) CRE
c l r i

2 . .
where 0 = e’n7¢/mg is the plasma conductivity.

On the other hand, making use of Egs. (6.1)6.3), we can derive the ex-
pression

HcuriH - I IA:&‘I,]JH;- %} _ I . i . ﬂ —_
| (k2r® -t 2y re at o
—— b0 A (6.13
P2 omt o o dr Y

We now write ¢ inthe form ¢ = ¢, + #", where ¥4 is the unperturbed
function, which corresponds to the unperturbed magnetic field and which is
defined, in accordance with Egs. (8.2) and (6.3), by the relaiion

dlr“— =mily —krH,. (6.14)
On the cylindrical surface, ¢ = ry where mHg—kiH, = 0, i.e., the point ar
which the pitch of the perturbation coincides with the pitch of the unperturbed
lines of force, we find dyy/dr = 0. On this surface the linearized equation
(6.9) exhihits a singularity and the nonlinear equarion requires special analysis,
since the third and fourth terms can, in principle, lead to singularities. How-
ever, this cannot be the case under steady-state conditions. Actually, it the
sum of the third and fourth terms were very laige when < — 0 then the
sum of the first and second terms would also be large, as would & *p. Com-
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paring Eqs. (6.9) and (6.13)}, we see that under these conditions there must be
a large perurbation in the longitudinal current density, i.e., Hcusl H. On
the other hand, it follows from Eq. (6.12) that

L Hemd BN, = 2 HE 4+ L D (Y
Qg HewtH B o = B (1., 11)/!;, (6.15)
where the averaging is carried our in the r, £, plane along the line ¢ = const.

It is then evidenr that the perturbation in the longitudinal current den-
sity is related to the perturbation in the temperature and eleciron density. All
other perturbarions of the longitudinal current in a hydrodynamically stable
plasma must decay in a "skin rime," as can be shown by Eq. (6.11), if it is not
assumed that the perturbed elecuric field is electrostatic [cf. £Eq. (6.25)].

We shall first consider small -scale perturbations,
Since the relative perturbation in conductivity ~%xm/a, where xp is the

o . . He . .
localizationzegion, while [ = m——=z mJ{ at the point r = 1y then, in

: . H
order-of-magnitude terms the quantity A*y does not exceed L T
n « a
Thus, when x < a/m, we find
L
W< =T Hy, (6.16)
o~

while the unperturbed function #9 varies in the range ~Xmq by an amount
9

X
~m —2 Fy 3> 4. Thus, when m > L, the pertusbation of the magnetic
a

surfaces can be neglected; consequently, in treating small-scale perturbations
it is valid to carry out the analysis neglecting the distortion of the lines of
farce.

We now wish to consider in greatzer detail perturbations characterized by
low values of m, In order to aveid complicating the calculations, we shall
make explicit use of the cenditionHg <« H, and neglect small terms of order
HZS/H; where these are not important. It is evident from Eq. (6.3) that in the
zeroth approximation I = Iy = mHg, where H, is the uniform magpertic field
outside the plasma. Taking account of this feature, and neglecting K% com-
pared with m?, we can now write Eq. (6.9} in the form

A -+ 2RH, + dmt PV 4 VYL g (6.17)
b 2Rl A G T
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where
[A.llf S --1--— - irﬂ .Ll-_ . _a‘IIL .
ar ar r? oLt

Ii is then evident that I can be written in the foim

4
=Ty — :r;::p + Iy (6.18)

in which case Eq, (6.17) can be transformedto read

A+ 26H - mH, Y g .
i o+ LR (6.19)

Thus, in this approximation the pressure p does not appear in the equilib-
2

. , i
fium equation. If we were 1o retain rerms ~ £%r2/m? ~ —2', the complere
H

. 0
compensation of the pressure gradient would not be possible when Eq. (6,18} is
substitured in Eq. (6,17); in particalar, this would lead to the possibilicy of a
local convective instability when the Suydam criterion is violated.
42
. i
However, if aq'/q ™~ 1 and [ <-~2~ this criterion is well satisfied and
~H

o . 0
it is completely appropriate 10 neglect the proper small terms. When these
small terms are neglected, the exact relation

‘ 2 -
H curl H .- [;\*:-w —I— _ﬂ_ m;__l_. . i . _ro_‘g —
(RE2 - ?)? re Js a
S S - U
B2 4 ot Or or (6.20)

can be replaced by the simpler relarion

] ki1
H curl Hox oo A o 2200 (6.21)
1 1
Comparing this relation withEq. (6.19), we see that
BRI 5]
Heurl H == — Hj A AL (6.22)

(V)

We now copsider the second equilibrium equation (6.8), in which H? can
be replaced by HE.

In the appreximanon being used here, the derivative 8/0% can be re-
placed by (1/ m}{d/3 &), so that when Eq. (6.22) is taken into account,
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Fig. 11. The quantities ¢ diy/dr, and ;4 as functions of .

Eq. (6.8) can be written in the form
— TRy
Vi, —
[\7;9, (e
It then follows that if Y/p has a component directed along \/P, then the
vector //, must be directed along V1, i.e., I} = L,{$). In other words,
the surface I; = const must coincide with the magnetic surface ¥ = const and
the equilibrium equation (6.19) assumes the form

/q;] 0. (6.23)

Mp b 2kH v mil, A g (6.24)
dp

It is evident from this equation that equilibrium is possible only if Ay
is a function of ¥. We shall assume that this condition is actually satisfied,
i.e., we shall be dealing with configurations in which all oscillations associ-
ated with nonequilibrium injtial conditions have alieady decayed (however,
the possibility of reaching this state for arbitrary initial conditions is not ob-
vious).

We now return to the longitudinal component of the electron equation
of motion (6.12), which replaces Ohm's law. In order to be general, we shall
not assume that the electric field is electrostatic, assuming that £ can be

a0
somewhat different from — \/y . From the equation -— o~ A -
at 45
(Vo -+ E,) 1aking account of Eq. (6.21) we find that L= — 9
1% . Thus,
me of
O _em Dy, . P = — mcky
At rH,
L

(mp + QkHO). (6.25)
(8]
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Fig. 12. The potential U and the quantity ¢'
as funcrions of r.

We note that in the case being considered here, Hg <«<H,, the term
cur
oD N —
i {1y )
magnetic surfaces. It essentially derives from the condition that Ay must al-
ways be a function of ¥ .

V¢l /Y describes the "convection® of the

We now assume that the localization region x > gY3m™/3, In this
case, the temperature T can be assumed 10 be constant along the lines of
force, i.€., 0 = o(¥), D{(pes ¥) = TeD(n, ). Taking ¢=(T./e)lnn + ¢, in
place of Eq. (6.25) we now find

a cm N
el S - ~f< L s -
o iy Do, ) = —mely + o (A - 20 ). (6.286)

The perturbation of the magnetic field is small far from the singular point

r = 1y and for this reason ¥ can be written in the form ¢, + ¢', where ¢, is the
part of P that is independent of {, while #° is the perturbation; where ¢ ' << ¢y
Similarly, I; = Ij¢ + Ij. Inthe linear approximation, taking * ~ exp(yt + ig)
and using (6.24) and (6.26), we find

1 d dfy, . 4un . di difg V- 1
LA e opy — — —miH, ‘0-(-—-9,) ;
r dr dr T ? ¢ To ' dr dr (6.27)
1 d day’ m? 410,, om di,
—_— r — = " [ —
r dr dr r? v (\ b+ rH, ¢ dr ) '
,anfy, da, ( dpg ),, . d:um d;,, Olﬂ, -,
e e e — mmr—— v 6.28
¢ dr dr ¢ dar ( dr ) ‘l ¢ )
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We note thar these equations also apply to the case of a current j, which varies
slowly in time {consequently, also ¥g), i.e., in the presence of skin effects. In
this case, by Ey we are to understand jo/0,.

In the derivation of Eq. (6.28)} we have taken account of the fact that ¢
and dI;/ dy are functions of § so that in the perwrbation of ¢, o varies by an
amount Mooy o 4% '&)_l VP’ ; a similar change appears in dI;/dy

d, dr ( dr ' e
If a4(r) is & function of r thatr diminishes monotonically, in accordance with
Eq. (6.27), the qualitative dependence of ¢, and I;; on r should be of the form
shown in Fig. 11 (we have chosen the arbitrary constant ia ¥4 in such a way
that 4 vanishes at r = 0).

It will be evident that ¥4 and T;, exhibit extrema at the singular point
I = 1y at which

Mo ity — ke, = 0.
dr

We now wish to consider the equations in (6.28). One of these can be
conveniently written in the form

L4 Ay ,
L gy =g
roodr dar b ’ :
where ;
U o dmm djy f dg AT (6.29) |
e ¢ dr dr |

The dependence of the "potential” U on r when dj,/ dr < 0 is shown gqualitative-
ly in Fig. 12. The cuve has a well near the singular point whent < 1. If ;
this well is broad enough, then the solution of (6.29), ¥1 thar satisfics the
boundary condition () = 0 in the range 0 <1 <1y can have medes. In this
case, the plasma is unstable even when 6 = « [40]. Since the width of the
well diminishes as the index m increases, at large d, i.e., large longitudinal
magneiic field Hy, it may tum out that the well can exist only at large values
of m (we recall that at the singular point q = m/n € m). However, at these
values an ideal plasma is stable in the magnetohydrodynamic sense. In this
case, ¥ ; does not vanish in the range ¢ <r < 1y and has the form shown in
Fig. 12. Inthe same figure we have shown the gualitative solution ¥ ; of Eq.
{6.29) for r > ry that satisfies the boundary conditions on an ideally conducting
chamber of zadius $3 = 0. When ${(rg) = #3(1g), the derivatives dpi/ dr and
dgy/dr will not generally be equal at the point r = rq, so that ¥ and g3 de oo
give solutions of the linearized equations over the entire range 0 <1< b. As
is evident from Eq. (6.28), the second linear equation reduces to the condition
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that the lines of force be frozen: YY" =
e [0) A g thus, this equation
rH, dr B
cannot be used to find the complete linear
solution ¥'. Within the framework of the
linear approximation this paradox can be re-~
solved by taking account of inertial effects
in the vicinity of the singular point. The
appropriate analysis is carried out in [20]
(cf. also § 3) and shows that when

( ;o diy 1 dy 0
R <
iF 4 Py r

Fig. 13. Destruction of mag-

netic surfaces.

r=ry

the plasma can exhibit a finite -conductivity screw instability (the "tearing”
mode in the terminology of [20]y when

only the current-convective and gravitational (actnally the drift inertial) in-
stabilities remain.* It will be shown below that the nonlinear analysis with
inertia neglected leads to the same resuli.

Tt will be evident that the nonlinearity should be taken into account
primarily near the singular point. Since ¥4 reaches a maximum atr = 1y, and
thus varies rather slowly in the vicinity of r = ry, evena small perturbation ¢*
leads to a marked change in the magnetic surfaces. Specifically, the surface
¥ = const is broken up near r = ry, as shown for the case m = 4 in Fig, 13,
where the point D cormresponds to ¢ = max, while the point E is a saddle point.
The width of the region bounded by the separatiix, i.e., the surface passing

. T dPg, \—t
through the saddle points, is of order X ~ i (%) ; in other words,
2
it is explicitly a nonlinear function of ¢". The linear approximation is mean-
ingful only at distances sufficiently removed from the boundaries of the cell

*We note that the derivatives d¢}/dr and dgj/dr diverge logarithmically at the
di dy,
singular point; however, the difference L e —1,— . —£ remains
\pl dr Py dr
finite,
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where P <« P4(1) ~¥olrgl. Since the difference yo(r) —§q{ry) increases quad-
ratically with 1 —ry, the region of applicability of the linear analysis starts at
distances removed from the separatrix by an amount of the order of half the
cell width.

We now consider Eq. (6.26) inside the cell. The second term on the left
side of this equation describes the transport of lines of force that are frozen in
the plasma. Since the corresponding flow is incompressible, by itself it can-
not change the area bounded by the surfaces ¢ = const; however, the shape of
the area can be changed slightly, so that, in the final analysis, the width of
the cell is determined by the diffusion of the magnetic field, which is de-
scribed by the term (c?/ dmo) Ag.

We now wish to trace the variation of § along the radius OA which
passes through the center of an individual cell {cf. Fig. 13). In doing this we
shall assume that the quantity Ay is a constant on the surface ¢ = const. It
will be evident that if Ay and the conductivity o are both constant, then the
difference in ¢ at the points D and C in the presence of cells will be smaller
than in the absence of cells (because of diffusion of field in the azimuthal di-
rection). In other words, # will have a greater slope at the center of the cell
than is the case when there is no cell. It then follows that in the stationary
case the perturbation ¥' must increase somewhat in both directions going
away from the center of the cell. If this increase is sufficiently large, then,
at the center of the cell, ¢ will increase in time, i.e., 0%/8t > 0, and, con-
sequently, the dimensions of the cell will be increased; in the opposite case
the perturbation will be damped in a skin time. Thus, cells develop only so
long as there is a finite-conducrivity screw instability, that is, when

1o dy 1 diy
1[_,; dr -4,; dr
the rate of expansion of the cell is determined by the skin time t =

2 . . e ;
(ara/cHx% For sufficiently large values of x this time is appreciably greater
than the transit time a/ vy, and ion inertia becomes unimporntant. In order-of-

) <0 in the linear approximation, in which
rasry

magnitude terms this condition leadsto the relation x> = / ( Te )%,—a—.
wy m;g Me
The width of the cell can be determined in the linear approximation since the
region of applicability of the linear approximation starts very close 10 the
separatrix. The width of the cell will obviously not exceed the quantity
Iy =1y where r, is the point at which dy]/dr = 0 (cf. Fig. 12). This width is
not greater than the region ry—1y, where U < 0, which, in accordance with
Eq. (6.29), is of order a/mz. and is not very sensitive to dj,/dr because near
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di; de
the singular point —dll—q-— = x—dﬂ;"
r r

is also proportional to djp/dr.

d2
, while the second derivative ( by
dr* r=r,

In the case at hand it is not difficult to include the effect of excitation
of the cells by extemal perturbations. For this purpose it issufficient to add
to the solution of the lincar cquation given above ¥3, a solution which is equal
to the external perturbation at the chamber (at r = b), and which falls off ex-
ponentially inside the plasma.

It is evident that an external perturbation will lead to a small spreading
of the magnetic surfaces even in the case in which the screw instability is sta-
bilized. As m increases the perturbation inside the plasma falls off exponen-
tially, so that the corresponding macroscopic effect is small.

For sufficiently large values of m and with & # 0, the screw instability
is stabilized and #' = 0. In this case, as is evident from Eq. (6.26), the per-
turbation of the conductivity is balanced by convection [the second term in
the left side of Eq. {6.26}], which will be treated in the following section.
There is no perturbation ¢ in this case in spite of the periurbation of the pres-
sure p' because the pressure, in accordance with Eq. (6.18), is balanced by
the perturbation of the longitudinal magnetic field in the approximation used
here, {-{i} <« l-iﬁ“ Thus, the perturbation $* for thermal inertialess convection
is a factor E[i}/}lﬁ smaller than the quantity given in (6.16), i.e., it is negli-
gibly small.

§7. THERMAL CONVECTION OF A CURRENT-CARRYING PLASMA

1. Basic Equations

We now wish to consider the nonlinear plasma convection that develops
as & consequence of the current-convective (screw) instability. For simplicity
we shall assume that the density is constant, although this limitation is not im-
portant. Under these conditions the heat4ransport equation for incompressible
flow can be written in the form

aT —_ 2

Sy T — - -
Y IT =0 VAT b ln T, (1.1)
wheze x| and x, are the lengitudinal and transverse thermal conductivities;
these can be regarded as constant in the region of the highly localized con-
vection cells that are considered below.
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The flow that develops as a consequence of the currentconvective in-
stability can be regarded as inertialess, and if the inhomogeneiry of the mag-
netic field is disregarded the flow can also be regarded as incampressible, so
that

I/l gy, = 0,
H, " (7.2)

Vo=

On the other hand, the longitudinal velocity v, can be neglected for a
highly localized perturbation (as shown in §3, it is sufficient that the localiza-
tion width of the perturbation be smaller than p;/0).

Furthermore, since the motion is inertialess, the current density in the
plasma is essentially unperturbed and the longitudinal current can be regarded
as constant:

iy = const == g k2,

(7.3)
where we have provisionally introduced the unperturbed electric field E;. Al-
though all of the results that are obiained below are valid for a slowly varying
current distribution (i.e., in the presence of relaxation effects), in this case by
E, we shall simply understand ju/ G g

For reasons of simplicity, in Eqgs. (7.1) and (7.3} we assume the ion and
the electron temperatures to be equal. In a dense plasma, it is true that Ty =
Te3 however, as the collision frequency is reduced the equilibrium between
the electrons and the ions may not be established in convection. However, by
neglecting the change in x due to the change in the heat capacity we can
still case Eq (7.1), understanding T to be the electron temperature, In this
case Eq. (7.1), which describes the heat transfer by electrons, still applies for
localization of a perturbation comparable with, or smaller than pj, in which
case the ions will generally not participate in the convection. Consequently,
convection is to be associated only with an effective electron thermal con-
ductivity.

We shall first consider the case of an individual convection cell, ie.,
we assume that the plasma exhibits a flow in which all quantities are periodic
functions of the variable m&—ng, where § = z/2nR;. In this case, close to
the point r = 1, where ¢ = m/n, the derivative along the magnetic field

= e 9 Y9 can be written in the form
rily 90 ' 92
Hag' ) d

IR — (1.4)

4

x—
grif, an
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where q' = dq/dr; x = r— 5. Thus, for flow close to the singular point, Eq.
(7.1) assumes the form of two-dimensional convection

: R T
ﬂA—t--vTT:m?a_\'z(_‘ﬁ-;f . (1.5)
ot it ooxt
where
o=y By =mi,
{7.6)

where 0 is the shear, given by 0 = rq'll‘(}/ql-ln. It should be recalled that y is
a dimensionless quantity.

In Eg. (7.5) we have neglected the cylindrical nature of the geometry
s 2
and the term —;] : g\—;— , assuming that the region of localization satisfies
r e
the condition Xxm <« 1.

We now consider £q. (7.3). For reasons of simplicity we take Ohm's
law in the form jy = oE = ¢(Eo— V1 ¢). I the remperature perturba-
tion is small, as is actually the case in highly localized cells, Eq. {7.3) can be
linearized, and we find

da,
E " 7" _ghuo=0
04T, Goltv =" 1.7

where T' is the temperature perturbation. Then

,\'L‘x = AT', (7.8)
where
Ao 8L 4o
q'HﬁUﬂ dT, (1.9)

We note that taking account of the electron pressure term in Ohm's law would
lead to a modification of the velocity v in the form of a term which, in the
imation Hy = H, = const is given by V ¢, 9T < T
approximation = = const is given EEy e,
PP Z ! & ¥ a { mreH, QJdy  eH, 0x )
It is evident, however, that div vy =0 and vg~/T = 0, so that this flow_
will have no effect on the convection; it simply leads to a slippage of the cell
¢ dT
with respect to the material (with a velocity -~ . E—‘-’ ). Forahighde-
efy dx
gree of localizarion we can also neglect the distortion of the cell which
arises by virtue of the variation of dTy/dx with the variable x. Any inhomo-

geneity in the plasma density would lead to precisely the same kind of simple
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slippage of the cell, as can be seen from the linear dispersion relation. Equa-
tion (1.8) can also be written in the form

W/p=—uxuve + ATe,, (7.10}

whete e is a unit vector directed along the radius, while p is an arbiirary func-
tion of r and 9. It follows from the azimuthal component of (7.10) that

Op/94% = 0; averaging the radial component and taking account of the fact
that fv,d® = q, by virtue of the incompressibility we find dp/dr = AT, where

. d¢
To=|T o Taking account of this feature, it is easy to see that Eqs.
n
{7.8) and {7.10) are equivalent.

Equation (7.10) can be regarded as the equation of motion of an inertia-
less fluid (with density py = 0} which experiences a fiiction xvy in the radial
direction, and which is subject to a gravitaticnal force AT proportional to the
temperature. Thus, Eqs. (7.5), (7.6), and (7.10) describe the thermal convec-
tion of a peculiar fluid with an antistropic thermal conductivity and an anti-
stropic friction force in a fixed (porous} medium,

2, Convecrion in an Individual Cell

We now consider convection in an individual cell, neglecting the trans-
verse thermal conductivity for the time being (x| = (). In the linear approxi-
mation, using Eqs. (7.5) and (7.8), we find

A ar,
v=Imo=——. —% —mla?. (7.11)
x dr
When A > 0 and dTy/dr < 0, an instability occurs if x > 0. The width of the
localization region for the instability xm is determined by the condition
¥ = 0. From Eq. (7.11) we have

ASy \Ye i s
X == — a ia
" ( fiizted ) feim (7.12)
where S, = —dT/dr is the unperturbed temperature gradient and £ = ASy/r%o.
Assuming that 7| = A@e = T.0 7, and G = €%lgTe/NN,, we can
. c? H
make an estimate for § ~ —— - We shall assume that £ «< 1 and,
2,2 2
mfj}“c f"ﬂ

consequently, even when m = 1, we find xmy << 1. {For example, in Tokomak,
c/wg ™~ 0.1, Hy/Hg ~ 10, Ao ~ 10%10% so that § ~ 107-107),

The convection that develops as a result of the instability leads to heat
transport and to a change in the profile of the average temperature Ty We
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shall first consider the stationary problem in the quasilinear approximation,
agsuming that the temperature perturbation is small (specifically, that T" «
xmSy. In this approximation the temperature perturbation can be written in

the form T' = Tpcosmi = Ty cosy.

Averaging Eq. (7.5) over & and taking account of Eq. (7.8), we find

2
ar I ) AT, L AT,
= — s —— 1 Gy Q= —7 7.13
dt r ar T4 dr 2x L dr ( )

Here, qp is the thermal flux, which is cqual to the sum of the convective-flux
< vT> and the conrductivity-flux x ,(dT,/dr). The coefficient in the first
term in the expression for gp in Eq. (7.13) arises by virtue of the averaging
{cos mO)z. If xn <« 1, the thermal flux q within the confines of a given con-
vective cell can be regarded as constant.

The stationary state appears when the deformation of the temperature
profile T, reaches a magnitude such that the growth rate for the small per-
turbation vanishes. Using this condition and neglecting x , in the expression
fory, i.e., using Eq. (1.1), we find

dar, mia o So x4
= — =7 — 20 .~ 7.14
" y x, T,=T, . 3 0<x<x,, {7.14)

m
where Ty = Tolx = 0).

Substituting the value that has been found for T, in Eq. (7.13), we have

Atk X .
LS e = a1 =715
whence
2 2x x3 (7 15)
Th=—"—"—(1—— qr. .
A -’*’?n

It is evident that for a small transverse thermal conductivity x| the ampli-

tude of the temperature perturbation is also small, so that the quasilinear ap-

proximation is valid over a large portion of the 1ange 0 < X < X;y;. However,
22

when x—0, vl = — ™ .50 and, consequently, it is necessary to in-
xz

troduce appropriate corrections for the nonlinear terms and the heat transport
Eq. (7.5).

In order to find an approximate solution for nonlinear equatien (7.5)
we can exploit the following situation.
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The perturbation in temperature
develops in the basic part of the cell,
where an important role is played by
the longitudinal thermal conductivity,
the laiter being described by the first
term on the right side of Eq. (7.5).
This term leads 1o a damping of all
higher harmonics, so that over most of
the range of values x only the funda-
mental mode is important. However,
at small values of x the term contain-

Fig. 14. Flow in a convection cell.

ing the longitudinal thermal conduc-
tivity becomes negligibly small, so
that there is a possibility that the second and higher harmonics of the form
sinny can develop. The amplitudes of these harmonics will then be deter-
mined by the nonlinear term V%7, which describes the convective transport
of heat without dissipation. We shall use the symbol %y to denote the bound-
ary of the region at which the longitudinal thermal conductivity no longer
dominates and the convection becomes essentially nonlinear. In this region,
i.e., inthe region x < X, the rising flux transports the temperature Ty =
Ty(x = 0} essentially without dissipation, while the falling flux transports the
temperature of the point X = x;,y- Since the mean temperature T, jalls off
with x, the perturbation of temperature in the falling flux T is equal to the
difference in the temperature at the point and the mean temperature T, and
increases as x is reduced. The velocity associated with the flux v_= T /Ax
increases still more sharply, and by virtue of the incompressibility the trans-
verse dimension of the jet must approach zero when x — 0. In other words,
the falling flux converges at the point y = 7, x = 0 (Fig. 14} so long as the
transverse thermal conductivity does not play a role; the latter leads to a re-
duction of T and, consequently, a reduction of v . Since the flow is incom-
pressible, a thin boundary layer spreads out along the boundary x = 0 and ab-
sorbs heat from the region X < 0. This heat exchange leads to some perturba-
tion of the temperature in the stable region x < 0, but to avoid complicaiing
the analysis we shall neglect this perturbation.

In view of the considerations given above, we now seck an approximate
solution in the form

T = Tyoos 2 0<y - S

3

Tv:T_cos% -%<y<r:. (7.16)
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In other words, as before, we assume thart the profile of T' in both the rising
and the falling fluxes is a cosine function but with width proportional, respec-
tively, to ! and 1~ !; it isthusa function of x. When! =%, T = —T, , we
cbtain the solution of the finearized equation.

Substituting Eq. (7.16) and (7.5}, and takingy = 0 and y = m, we obtain
two approximate equations for determining T, and T :

AT o , o . d* .
— - — T))=— 2 -+ Ay — + 7Ty .
; o (To-+T4) = BT+ 74 T (Ty+T2) (7.17)
AT d eLni? . d?
(T, T V= " x*T L7/, T 7).
PRt ) i—1p s Tk T
{7.18)
Furthermore, it follows from the condition f T'dy = 0 that
TALT_(1—1)=0, (7.19)
whence
Ty=(0-—-0T, T. =T, (7.20)

where T =T, —T.

In the presence of a perturbation of the form in Eq. (7.16) the expres-
sion for the heat flux (7.13) is replaced by the following:

- dT A 7 - dT| A
qr=—17, =0 + L ML+ (0 =0T =—"r d"_Tx_T‘*T“'
dr 2x r - (:—1.21)
Equaticens (7.17) and (7.18), together with the relations in Eqs. (7.19) and (7.21),
can be used to find an approximate solution for the linearized problem.

We shall simplify the problem by assuming the transverse thermal con-
ducrivity to be small, writing x , = 0 in Eqs. {7.17), (7.18), and (7.19). Can-
celling T+ from Eq. (7.17) and T . from Eq. (7.18) and subtracting one from
the other, we have

2,3 — 2
_ri_’[_‘~=_ amx® 1 -2 =—Mx(i—2i)7"‘. (7.29)
dx 44 2l — iy 15(],:;’, ‘

Furthermore, from Eq. (7.21) we have 121+ ZCLTX/ATZ =0, whence, by virtue
of the considerations givenabove, whichindicatethat7 — 1 when x =+ 0, we have

[ = .é_ + 'l// % — 2qrx/AT? (7.23)
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For small values of x we can make the approximation [ = 1;1it then follows
from Eq. (7.22) that \
T__-3 + 3am A xS — Tc—a, (7.24)

where T s the value of T= T, —T_atx= 0.

The required solution must be such that for sufficiently large x > X;m
the quantity ! assumes the value I = Y/ starting at this value of x we must
have

= —x. (7.25)

20
Tpo=—T_ =1 i
2 A

iIf we replace T in Eq. (7.22) by the value given in Eq. {1.25), then

doum®

2A—1 = (7.26)

It is evident from this relation thar the quantity 2 — 1 increases rapidly
as x is reduced. Hence, the position of the point at which the two solurions
(7.24) and (7.25) are matched, X = Xy, €20 be found with the required accu-
racy by making the simple assumption that ¢ = 1 in Eq. (7.26):

Aq e
xlm";‘f( r ) . (7.27)

8amd

In Eq. (7.24) we now substitute this value for xyp, and the value of T from Eq.

{"7.25), so that
i 8q
T¢’=‘“<—?—) Ty2=0. 83m. (7.28)

where T is the value of T at the point x = Xyp:

Thus, the quantity T remains essentially constant over the range 0 <
X < Xy the total variation is less than 20% We now wish to detexmine T,.
Neglecting the term comtaining x in Eq. (7.17), we find
dT 2
LIS o (1.29)
dx de 424
Since [ varies from /2 to 1, where it is equal to unity only for very small
values of X, as an approximation in Eq. (7.29) we can write { = Y, Thus, us-
ing Eq. (7.29), we obtain the approximate relation

T Ty M, (7.30)
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Using Egs. (7.25) and {7.29) at x > Xy, we now find

dro __om® [y x?’; ) (1.31)
Lo~ , ) 3
dx A \ RS
When x -» 0, by virtue of the fact that T, = (1~ OT = 2q7x/ AT, we have
dr, - 2y o f T \Y am? 3
de Jeen AT, — S\ % ) a4 X*im- (7.32)

Thus, when Xqy << X the total dependence of dTy/dx on x can be approxi-
mated roughly as follows:

dTﬂ anm? [ 3 3 3 A%
— = X7 4 200 — 2x0p, =

dx A B

m

3 3 3

dr X3 Xim Xim _)L_H

=1 2 ———2—= 4 (7.33)

L "'m *m xm g

The approximare solution that has been found is valid only if the conductivity
is small, in which case X, << X, where x is the boundary of the convec-
tion cell, while X is the boundary of its highly nonlinear part. Actually,
however, the ratio X,/ Xm. as can be seen from Eqs. (7.12) and (7.27) and

the relation
Ve zwl/ B
m;

is found to be of order

2 *y it
Xim Wl )“’ ( P 1y ) '
—_— ] ——— =~  — —~ 1
. ( 5 _” e , (7.34)
where the parameter 1] == o ~pET m; p = 8rp/H?
shat e

is the ratio of the plasma psessure to the pressuze of the magnetic field; mj is
the ion mass; me is the electron mass; ] = eH/mje; T is the mean ion—ion
collision time.

As is evident from Eq. (7.34), the ratio Xym/Xm is a very weak function
of 8, m, and £, and for this reason it is almost always a quantity of order
unity. This result means that the transverse thermal conductivity must be
taken into account.

We now eliminate the derivaiive dT,/dx from Eqgs. (7.17) and (7.18) by
means of the solution (7.21), in which case the two equations become
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AT, (dT A 2
+ -+ | am?
—_— —_—V —_—V T T.__- - — X T, —
X { dx ar 2x T az T
AT T_ _@eT
g (_J:__) ey (1.35)
dx 2x dxt
AT dT_ .
- { gy — A T,;,T_l S -
x dx 2 } 41— 2
4 g ATT N ET
dx <___2x R e (7.36)

where I = ~T_(T, =T)™5 (1= 1) = T, (T4 —T)™ v = x]-

In order to avoid complications we neglect the perturbation of the tem-
perature due to rhe thermal conductivity in the regionx < 0, taking T, =
T =0whenx =0.

We shall first consider the linear equation, for exampile, for T

42T Aqr+t ’
vy A (1__}‘3_)71%:0. (1.3

dx? X
157:

This equation has a nontrivial solution when g = AdT v, = @y where a
is the characteristic value of the equation

AV 4 ag (1 — )V = 0. (7.38)
A numerical calculation with the boundary condition V(0) = 0 yields the value
a, = 2.9.

Using Eq. (7.12) for xm, we write the stability condition gm =
Aqpvxpy > @ inthe form*

gn-ti — m’f’:]’i =8 ( Yim )7 < aﬂ—‘, (7.39)

Xm

*We note that the st#bility condition has been written under the assumption
that  , is determined by the ion thermal conductivity, i.e., under the as-
sumption that Tj and T are equal. Actually, when S = Aepi /a® >¥mg/m;,
the heat exchange between the electrons and ions is not able to provide an
equilibrium, since w* > meVe/ my. Hence, the instability, and, consegquent-
ly, thermal convection appear even when gm < - However, the effects are
much smaller than those associated with the classical thermal conductivity
of the ions, and can be neglected.
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where

P T
:

11 ne—

i

i
— L nr—*l
N=\|—— = ,uE -
( Ara, ) V iy (7.40)

According to Eq. (7.39} the instability will occur only for perturbations charac-
terized by

m < m, = (Nag)—"/. (7.41)

—

. ety Ao
whenay =1, ie, f >ap 'c, fag o e ,» all modes are stable including the
my

one characterized by m = 1. Furthermore, if méxmC <r, i.e., Nay >§1/5, the
individual convection celis do not overlap and can be treated separately.

We shall assume that g is not much greater than the critical value
gm = ap- Then I can be assumed to be equal to %, so that T4 = —T . In this
approximarion, using Eq. (7.35), we have

d=v
dr?

+ oYy Loy .
Em ( : t )V v 1% (1 -+ V), (7.42)
where t = /x5 V = AT, .

I gm is slightly greater than ag Eq. (7.42) can be solved by perturbation
theory, by taking V = BV, where V, is the solution of Eq. (7.38), while B is
an unknown amplitude which can be found from the orthogonality condition,
i.e., by multiplying Eq. (7.42) by V; and then integrating with respect to x.
Neglecting the quantity V on the right side of Eq. (7.42) as compared with
unity, we find

B = 2L)O (gm_ao)s (7 43)

where

8

o«
3 l ol -
D, == 5 (T —xz) vide!| vie .
0 o
The quantity Vg is normalized in such a way that Dy = 1.

When gm > ag the first term on the left side of Eq. (7.42) is small com-
pared with the second and can be replaced approximately by ag(1/t—t9V, i.e.,
by the value that it assumes at small values of gm —ay. In this approximation
we find

V2V =2(g,—a)t{l —13). (7.44)
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Fig. 15. The function V2/t near the sta-

bility threshold. 1) y = (DV)*/1: 2) y =
t(1-tH

In what follows, we will use the approximate solution (7.44) for both large and
small values of (g —ag)« As shown in Fig. 15, for small values of (gn, —ag)
the solution in (7.44) and V = BV, lead to values of V°/t that are not very dif-
ferent and which determine the contribution to the thermal flux

dar A po dT, ar V2
== ¥ LT = — 7 —" 4 — . (1.45)
ar - dx + 2x + L dx i 2¢m
It follows from Eq. (7.45) that
dx X 2om 1
If we neglect V compared with viin Eqgs. (7.44), then in Eq. (7.46)
_ AT _ 37 [ta P — ts)]. (T.47)"
dx th i Bm
When gm » @gwe can use Eq. (7.33) which, by virtue of the relation
Xym/ ¥m = (1/8gm)1/7, can be written approximately in the form
—8Ton I s gt (1 — o)), (7.48)
dx %L L n ]

It is evident that Eq. {(7.47) becomes (7.48), roughly speaking, only when g >
ao = 8; hence, in practice it is sufficient to make use of the solution in {7.47)

3. Heat Flux in the Presence of Convection

The convection which develops as a result of the instability leads to an
additional heat flux.
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We shall first consider the case of nonoverlapping cells, in which case

-moxmc <1, i.e., in accordance with the cendition in (7.41)

[3>]/ gl (7.49)
mny

We must now find the relation between the mean value of the remperature gra-~

dient Sy = — < iif"— > and the heat flux ¢p. The quantity Sy = qrv -

oy

Y 1
2‘ OmXin [ Y( a7, ) dt —qr v} where pr is the density of convection
m 6 dx [m

cells denoted by subscript i, i.e., the number of such cells per unit length,
dT

while (ﬁi) is the value found above from (7.47) and (7.48) for the gra-
ax m

dient inside the convection cell. The quantity pm can be found as follows.
nt

N

n-

Let ¢ =m/n. When n changes by An, the quantity q varies by \g = —

5 A
A= —g* —~ | But Aq = ¢*Ax and, consequently, the number of fractions
Hi
: . A
of the form m/n per unit length is equal io L\” = —fil— ¢'. However, of the
ARy

fractions of the form m/n, some are reducible, i.e, they represent the higher
harmonics of the basic modes in each convective cell. Let P; be the proba-
bility for the appearance of a nonreducible fraction, Py the probability that
the fraction is divisible by a factor of two, etc. It is evident that the proba-
bility Pg = (1/s) P, i.e., this probability is equal to the product of the proba-
bility 1/s* (the numerator and the denominator divided by s) muliiplied by Py,
the probability that after reduction by s there will remain a nonreducible frac-

COT % ! 2

tion. From the normalization condition \ P.=P : il Py=1
) ol &
1 s=1

we find P; = 6/7%. Thus,

P = —g— el it (7.50)

and, conseduently,

A g [ ASaVENY o (V] dT
S — Gy ,[\r_ e Q_ r (—“ e 0 ) d.’.‘— vl . (7.51)
’ v 6 & ) Z 1\ ( X S ar j
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daT
Now replacing (T; ]m everywhere by the values found above in (7.47) and

{1.48), replacing the summation over m by integration, and taking account of
gm = aolme/ m)?/%, we find

" 1

E'ﬂ * 7 dT 1 3w a  A%qNSr r4507
L:n'fa{B (w-—"-) dt -Q7-‘JJ o~ g -t == r (__E) .

X 8 8 af—) ot
wl=1 U
Whence

Sye=qrv — . I A s A

16 Qzﬂf) o
ie,
S,= - T M qr (7.52)
dr |4 n: gl A

i6 qzaf,x_ioc

This formula can onty be used when the second term in the denominator is
smaller than unity. If this requirement is not sarisfied we must take account
of overlapping of the convection cells and the rolc of the transverse thermal
conductivity for the larger cells will be played by the convection in the smali-
er cells. Equation (7.52) indicates that for increasing v = 1/y, (a reduction

in the transverse thermal conduciivity) the temperature gradient Sy for a
given flux g first increases with v. Then, when the second term in the de-
nominator becomes of order unity, the temperature gradient starts to fall off
rapidly. This reduction is clearly not physical and is due to the fact that we
have not taken acceunt of the interaction between cells.

We now consider in greater detail the interaciion between overlapping
cells. Let us first consider a group of cells with a specified azimuthal number
m. The cells in this group interact with both large-scale (m' < m) and small-
scale (m' > m) perturbations. The interaction with perturbations appreciably
smaller than those being considered, ie., m' » m, obviousty leads to an in-
crease in the thermal conductivity; for these perturbations the perturbation be-
ing considered plays the role of a background, i.e., it does not differ from the
average distribution Ty. In tum, the effect of perturbations characterized by
m on m', and also m' « m on m, leads to a macroscopic flow with a veloeity
vy which, as an approximation, can be regarded as a constant within the limits
of the cell being considered. Thus, if we neglect the change in the naiure of
the interaction of the perturbations for m’ ~ m, taking account of the inter-
action, Eq. (7.17) fora cell specified by the number m can be written in the form
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ATm d . d . daT
_— A —_— — 242 - el N
x dx (TOm [ Tm) amsx Tm -+ dx (lnz dx ]
N ar dT
+ xnz __d_""l) — Vo ﬁdﬁ?“ ' (1.53)

where Ty = Ty xm 18 the effective thermal conductivity, which is deter-
mined by all perturbations with m' > m; vy, is the effective convection flow
rate, due to perturbations characterized by m' < m; Tym is the mean tem-
perature close to the cell being considered [in Eq. (7.53) as an approximation
we write I = '/, so that T, = —T ). To simplify the analysis we neglect
thermal conductivity along y although this conductivity actually makes a con-
tribution of the same order as the thermal conductivity alongx.

Let us first consider the linear approximation

ATwm  dTom 2.2 d /., dTp ., 4Ty, dTm
T S e am® BT, —— Y, — T L, ) — g, ——
x dx m + dx ( " + no gy ) O dx
{7.54)
The thermal flux g can be written in the form
. dTy L WV -, dT
Qr=—"4 ﬁdx."_ e L T UpT = — "y —&% +
i
Y] 1
-+ \ e U T + e T, (7.55)

it

where x m is the effective thermal conductivity which is determined by the
higher (m"' > m) convective cells. In general, the quantity x , Is & rapidly
varying function of x. However, Eqs. (7.54) and {(7.85) can be averaged over
x (i.e., over the fast fluctuations). In this case, we find the mean values

/7 dTm\ and/7 gﬂi\

but it is obvious from Eq. (7.55) that

\ Wi dx / \ m d.’{ / b
g ATam . . .
‘m — 7 does not contain a part that oscillates rapidly in x. A similar

4l

statement can be made for the quantity 7, , as can be established by

integration of Eq. (7.54) over x. Consequently,

dT, — -/;l /»/m dTm : al'ym — l,—;l e Ym ATom N\

dx N dx dx AN de
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Averaging these relations, we obtain < £ d;‘:‘ > = o7
daT
<Tx”£_> and a similar expression for —2™- | Thus, in Eq. (7.54) and

X

(7.55) all quantities can be taken to be the values as averaged over the small-
scale fluctuations (m' >» m) and, under these conditions, X i can be under-
stood to be the mean value in the sense ¢ %, ' > .

In Eq. (7.55) the sum over the large-scale fluctuations (m" < m) can be

dTom
dx

In a linear approximation this term can be neglected. Carry-

re garded 2a,s approximately constant and in Eq. (7.54) we replace '/(m

m

b
Y 2x
ing out the further substitution of variables

L =xjx,; V() = Alm' T = Zu () exp (—Ugj—*_ t) . (7.56)

m

we reduce Eq. (7.54) to the form

a2z 1
= En (T N tz) Zn— by =0, (7.57)

where

dT g
dx

i by = VimXi! 47,

g = Axln/;l m

Neglecting the fluctuations, by dTgm/ dx and vom we shall understand the
values as averaged over the large-scale cells. Now let us consider the quanti-
ties gy and by, The effective thermal conductivity ¥ 1, is obviously a mono-
tonically diminishing function of m which approaches some limiting value

¥ o form — . The quantity x, also diminishes with m; on the other hand,

vim increases with m.

We now assume that gy, is large. Then the ground state of Eq. (7.57)
corresponds to a funetion which is localized in the region t < gl}n, s0 that we
can neglect t? compared with t in the second term; Eq. (7.57) then assumes
the form of a Schrodmger equation for the hydrogen atom. The ground state
obtains when by, = gm/4 and it is only when Yby; < gm/2 that the insta-
bility appears. Substituting the values for gm, and by, that have been obtained
above, we can write the condition for the onset of convection in the form

Vom < A LLom (7.58)
dx

This condition is independent of both x ;;, and x,;
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If Eq. (7.58) is satisfied the quantity gm 1is still not determined. In
order to determine this quantity we must find a relation, independent of Eq.
(7.57), that establishes a link berween gy and bm. We note that the contribu-
tion to the convectlvc flux of a cell denoted by subscript m is proportional to
Pme, [ X~ V) /X, SO that it must diminish with m; on the other hand,
the quantity m7oa A,,il increases with m, so that Vi must diminish with in-
creasing m. It then follows that perturbations characterized by a high value
of m are only slightly beyond threshold.

We note further that for large values of g the characteristic solution

if[”:’ | Xm f\

Zp of Eq. {11.57) goes as exp (-—— ) for 1/gm < t < 1; consequent-

“m
ly, when vym < 0, in accordance with Eq. (7.58), the function Vi is localized
in the regiont ~ 81-111‘ when vy > 0 it is localized in the region t ~ 1. Con-
sequently, when voy, > 0 the ampliwde of the perturbation characterized by
subscript m must be smaller than for vy < 0. Without dwelling in detail on
this difference, to be definite we shall take vy > 0. In this case, the locali-
zation region t ~ 1 and, to simplify the calculation, in whar follows we shall
assume some definite profile for Vi (the main problem lies in finding the
amplitude of the fluctuations and not the amplitude profile). If it is assumed
that gp, is close to the critical value g§ for which only that instability arises,
then, as in the conversion from Eq. (7.42) to Eq. (7.44), as an approximation
we replace the linear part by (g~ gm}Vm(1/t—1®, in which case Eq. (7.53)
assumes exactly the same form as Eq. (7.44); specifically,

vtl '.“ Vm =2 (t,n - {an) H ([ - 13), (7.59)

where g.n * @q and is related 1o g, by a relation which can be approximated
as follows: bmp = /4g,m(gm ao) When by — 0, we find g =a, and when
gm > @ we have by = (gm/ 2"

We now express ¥ m and vy in terms of Vi:

]
o Yoo (' 2 dt
UV == fhne ‘—f'!,— Vi T (7.60)
Q'\‘Hl t"
0

MmO R

i
) o
\ fs A

meU - 2 lme “ V:-u' —I - (761)

94

n'_m
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If we take V.. 1o be described by some profile which is independent of m',
I

1
. terdt Yoo di
we can write | V. = dy \ Vi i where dg is a constant of order
0 b
unity. In this case,
|
. PRI 2
S d/.m _ /'m V;‘ dt . -\'mdn _E""ELTL
® dm ™94 P A . dm (7.62)

For values of m that are reasonably small the quantity vgm is small and we
can use the earlier solution (7.44) according to which the approximation
V?n = ngt(l‘“t'g') holds when g > a,. Thus, assuming that g, = ASX/ Xm»
we have
di a Trslis .
— .8 r"‘ﬁ IREW {1.63)

N m
q

a1}

dm

cc

If we introduce the trapsverse thermal conductivity in approximate fashion by
replacing g by g — e Eq- (7.63) is replaced by

d¥ 2 "t o W,

S L M LA S m's (1 — @tlt "y . (7.64)
dm 8 g* ASyre'ls M

In terims of the varga}blczQ u = 820G /m V 64 rE ASyr, T = (m/my)'s,

where my* = 32¢";3n"qg r£, we obtain the equation

A =—ul{l —u)7).
dy

The substitution u = we™ reduces this equation to the form dw/dr = yre Tt

and we have

0= i ) (7.65)

T
1 —w, s' ¥t e dt
0

The only solution that goes as 'r—i/2 as T — % is obtained when

Wy = \ Vie “dv= =2
B

=g {T ]/:E e‘fdt}"l. (7.66}

T
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. ‘/B?Eq’_; ASyr

Thus, 7, = | . Now, making the substitutions aq = 2.9;
o
. ’ 2 3 j
E = ASgfar®;, o =4 ( 9'fy ) A= S _Fh_ . upg recalling
grify 2 q'HyT o,
that q = 21TIHZ/ LHg, we obtain the approximate expression
I */z i ¥z
R iy e S L) I (.67
a q z V X i TDf[{)U[) dr

This is the expression that we have been seeking for the coefficient of turbu-
lent thermal conductivity. We note thar Eq. (7.67) can be written in the form

2 e Lo\ ] L dT, 2
Ay = —q(q— (—) —( - ——") (7.68)
3 \q'r 2n X” H,T, dr

which is very similar to the rough estimate that has been given earlier [20]

N L\t 1 E, dT, \2
&0""10(—'—) _(____C . "““*‘D> .
20 ) %y \ H.Ty dr
It is evident that the estimate is valid wheng~ 1, q'r~ 1, £~ 102

We now wish ro estimate the quantity vgy, using the relation in (7.62)
for this purpose. We substitute in this expression the value obtained above for
X 4nd integrate with respect to m, writing vem = 0 when m = 05 thus we
have

T

AS?
Upy = —— g LESETrs (1.69)

doay P
0

where T = (m/mo)éfs.

It is then evident that when m ~ my the quantity vey, is of order AS,,
i.e., this quantity is of the same order as the convection flow rate inside a
small-scale cell. This means that when m ~ my, the small-scale cells have
an effect on the flow in the large cells. For this reason the nature of the con-
vection becomes highly complicated when m > mg.

However, this complication has essentially no effect on cells of the
basic scale size m ~ my; as soon as these cells overlap, the depression of the
small cells by the large cells can be neglected because the oveslap region is
so smail. On the other hand, the effect of the smallscale fluctuation can be
taken into account by introducing a macroscopic coefficient of turbulent
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thermal conductivity ¥ mp- The coefficient X gy that corresponds to the value
m = m, does not differ from x, by more than a factor of 2.

An analysis of the pattern we have been studying leads to the following
simple methed for approximate evaluation of the coefficients of turbulent
transport. At the outset we introduce into the equation of motion effective
reansport coefficients which take account of the smali-scale fluctuations; the
values of these coefficients are chosen to make the growth rates vanish for the
instabilities with largest localization.

The values of the transport coefficients obtained in this way are approxi-
mately equal to the true values since they take account of contributions from
all cells, except the very largest. This method is the basis of the analysis in
the sequel.

For simplicity we have taken n = const above. In the presence of a den-
sity gradient the thermal convection and ihe heat transport also produce diffu-
sion. Further, since a current-convective insiability can develop on the density
gradient, the density gradient leads to an additional cenvection with large~
cell localization (we recall that the localization of the density perturbation
can be of order pi/@). However, for values of O that are reasonably large, and
for sufficiently high temperature T, the diffusion effect is not large and we
shall defer the analysis to $10.

In concluding this subsection we note further that the mean value is used
for the density of the cell p,,- Close to the singular points corresponding to
smali values of m, cells with higher values of m’ are crowded together. Asa
result the effective density ppy near these points can be appreciably different
from the mean value, and this leads to a regular variation of ¥, close to the
singular points with small m. This has been called the "magic-number” effect
[41]. We shall not dwell on this question here.

§8. TRANSPORT OF PARTICLES AND HEAT BY THE
TEMPERATURE DRIFT INSTABILITY

1. Turbulent Thermal Conducrtivity

We now wish to investigate the anomalous thermal conductivity that re-
sults from the temperature drift instability. This instability has already been
considered in the linear approximation in §3.

For reasons of simplicity we start with the case in which the density is
constant in the equilibrium state (ng = const), in which there is only a tem-
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perature gradient. We assume, furthermore, that pp <« Ba, so that the indi-
vidual cells of the drift oscillations are highly localized, in which case the
gradient of the mean temperature can be assumed to be copstant within a cell.
The density is written in the form n = ny + n'. When p; « 0a, the density
perturbation is small (n' « ng and the longitudinal resistance and resonance
electrons can be neglected, and we have

P = (8.1)

e g

When © < 1, the width of the convective cells is appreciably greater than pj.
In this case, to which we iimit oursclves here, the effect of the finite Larmor

radius can be neglected and we can use the drift approximation of the kinetic
equation for the ions:

0 7 T(’ h ’
of d-oghf 4 TV o p hyp-2 f—o0. (8.2)
m du

elny, !

Here we have taken account of Eq. (8.1).

We now write the distribution function fin the form
f=Fh+F=f+n", (8.3)

where f,is the Maxwellian equilibrium functiony while the function P(v) is
normalized to unity Sudy = 1.

The problem lies in the analysis of the nonlinear oscillations that de-
velop as a consequence of the instability. In order to carry out the analysis
we must first direct attention to the essential difference between the process
being studied here and the convection process studied in §7. This difference
appears in the linear approximation: in the current-convective instability the
growth rate for small perturbations is a weak function of wave number k (more
precisely, m and nj; in the temperature instability, however, the growth rate
Y is proportional o k (and is of the order of the frequency w).

In other words, in the temperature instability the small-scale oscillations
are the first ones to develop. Furthermoze, since [P 71-<1' since the charac-
teristic time for a significant change in the amplitude of a perturbation of
scale size k is smaller than the time for distortion of a large-scale perturbation,
the trapping of small perrurbations by the large perturbations, which leads to
an ordered flow pattern in each cell in the current-convective instability,does
not operate in the present case. Hence, a chaotic turbuient motion must re-
suli. The maximum scale for the turbulent fluctuations is determined by the
localization width of the perturbation, and is of order Amax = A ™ £i/6.
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The perturbations in temperature T and density n' corresponding to this scale
are obviously determined by the variation of T and n in a length A, ie.,

T;\ ~ Tx,/a and ni ~ nhe/a. Perturbations on the smaller scale A can grow
by Virue of temperat[{lre gradients assoclated with large-scale perturbations as
well as the mean temperature gradient.

Thus, for any given scale size A perturbations of larger wavelength play
the role of a source, while perturbations of smaller wavelength, which are fed
from the A perturbations, provide damping. In other words, in the turbulence
being considered here, as in the usual turbulence of an incempressible fluid,
there is a flow along the spectrum into the region of small A . If the motion
of the plasma were incompressible, and if there were no damping, the integral
szdr would remain constant, i.e., it would be analogous to the total energy
of the turbulent fluid, which is conserved in the absence of viscosity. In this
case, the magnitude of the fluctuatior in ’I‘i on scale A can be found from
the following considerations.

Since the quantity Ti remains constant in moving along the spectrum
in the direction of smaller A, there must be a constant flux (l/T}\)Ti, where
T, is the characteristic time for defermation of Ty . But the quantity T, is
proportional to the product of the wave number and the gradient for fluctua-
tions of somewhat larger scale, i.e., it is proporticnal to Ty /AR Thus,

z 2 dk
Ty ~n" o Tpdle~—-- (8.4}

H
& fs

i.e., the spectrum falls off rapidly with k.

Actually, the oscillations are characteristic of a compressible medium.
However, since there is no systematic compression or rarefaction in the motion
along k, on the average the compressibility does not affect the spectrum. The
damping is a more important factor. The nonlinear interaction between
waves leads to a flux inte the region of waves with short wavelength in the
direction of the magnetic field, in which case ion Landau damping can be-
come important; for this reason, the spectrum falls off more rapidly than is
indicated by the relation in (8.4). The damping due to the ions is ther evi-
dently the basic mechanism for the dissipation of rhe shonest wavelength per-
turbations of scale size A € py-

Our problem lies not so much with determining the fluctuatjon spectrum
as in the determination of the effective thermal conductivity x. In finding ¥
we shall make use of an analogy with the current-convective instability by
proceeding in the following manner. To Egq. (8.2) we add a term which takes
account of the damping due to smaller-scale fluctuations:
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T [hs7n’] ,7]__(; hv(p__r; ;e div (lef,).
eling - in d‘-'éf

(8.5)

<L oy +

The quantity y is different for different scale sizes and increases with
increasing wavelength. We now choose x in such a way that all perturbations
aside from the perturbations characterized by maximum scale length will pro-
vide damping. The value of ¥ found in this way can be regarded as an appioxi-
mate macroscopic coefficient of thermal conductivity. The point here is that
we have taken account of the effect of all perturbarions except those of maxj-
mum size. It is also possible te consider the contrjbution from these large-
scale perturbations, for example, by using a quasilinear theory. Bur if yis
chosen in such a way that the growth rate for these perturbations vanishes, then
the amplitudes of these perturbations will be negligibly small and, in effect,
we have treated all the perturbations. Since the amplitudes of the large-scale
perturbations are small, we can replace f by f,in the third term in Eq. (8.5)
and, as a result, we obtain a lirear equation which can be solved approximately.

It should be noted that the form of the term on the right side of Eq. (8.5)
which we have chosen is not valid in a strict semse. The point here is that the
oscillations in question have a longitudinal phase velocity w/ y ~ vy w V-
Hence, the electrons must set up a Boltzmana distribution along the lines of
force. But in the presence of magnetic surfaces, the Boltzmann distribution
must obtain over the entire magnetic surface and, from the equilibrium equa-
tion for the electrons,

VP, =—onJo— % {vH] (8.6)

it follows that the component of the electron velocity normal to the magnpetic
surface must vanish. In other words if electron inertia, the resonance-clectron
interaction with the waves, and ion friction are neglected, there can be no dif-
fusion across the magnetic field. Hence, the nonlinear terms, the effect of
which appear in the term on the left side of Eq. (8.5), can only give rise to a
heat flux in the x direction (and other higher moments of the distribution func-
tion), bur not 4 density flux. Thus, a more precise x component for the fiux
would be written in the form -~ ¢n’ %/, rather than — % V[

In these oscillations the relative change in the velocity distribution is
of the order of the relative change in the density; hence, we can neglect this
anisotropy cffect. We are then to understand that in the approximation being
nsed here the oscillations do not cause diffusion of plasma acress magnetic
surfaces.
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In Eq. (8.5) we substitute the perturbatien f'in the form f' exp(™iwt +
ikyy + ikzz), replace §f by f,, and integrate the entire equation with respect to
v,, which appears only as a parameter; thus,

2
-+i(w—kuﬁfﬁ)f'-l-ikyvufo(nw" _"L) G R )

2T 2] ng
T. n' afy d2f’
T AL L S A .
+ lk il m PR v 0 in di? + (8 7)
where Uy = _(’H— - Z—T is the drift velocity.
C, X

We wish to find that value of x for which only one solution corresponds
to the condition Imw = 0, while all other solutions are damped. In order 10
simplify the calcularions we shall make use of an approximate method which
is reminiscent of the method of separation of variables. To the left- and right-
hand sides of Eq. (8.7) we add a term xJ_u(x)_f’. choosing it in such a way that
the right side becomes small. Then, in the zeroth approximation, we have

mu? 1 ’ .
. ’ . | n 2
Ho—kyuy) [ — ik,usfo (—27[— — | — Xk +
A T n' afu
' ’__]k _"_.-7*.-_-—:0_ .
+hyuf’ - iky w m do, (8.8)

If we express f° everywhere in terms of n' by means of the relation Fr=

I e . T 2
(A/B)ﬂ', where A := kyt'l)fl)( - s and B = o — kHU" - lﬁl_ky —

9
iX;u, and make use of the relation J'f‘dv“ = n', we obtain a dispersion re-
latjon for determining w in the linear approximation. We shall use the sym-
bols ¥ and wy to denote the "local™ growth rate arnd frequency of the drift
waves in the semiclassical approximation (i.e., ky = 0). We have

@ - 4o ks — Xy u = ag - iy (8.9)

The quantities wyx) and y,(x) have been given earlier (cf. Fig. 7. Thus, Eq.
(8.9) determines the function u(x);

u(x):ki_—"“—;i’l +o= (8.10)
41 4.

In order to find the next approximation f Ei) we must solve an equation such as
(8.8) with a right side:
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, . % d2F°
fx—%”u)z-—f{uf'“ d; } , (8.11)
where A and B are the functions introduced above. If Eq. (8.11) is integrated
with respect to vy taking account of the dispersion relation in (8.9} we obtain
a zero on the left-hand side. This integral relation is the condition that must
be satisfied in order to obtain a solution, and is the conventional ope that ap-
pear$ when perturbation theory is used. As an approximation we shall assume
that B = const and take it out from under the integral (in accordance with the
accuracy we have used above in which we have neglected the anisotropy in
transport along the magnetic surfaces and across the magnetic surfaces). In
this approximation,

d?n’
dx?

—u@x)n’ =0 (8.12)

or, in another form,
dan’
dx?

LN — k¥ yn" 4 (yo + iwg)n” = ion . {(8.13)

It is evident that we have effectively added the quantity x, &, to the local
growth rate, and that we must now choose x| in such a way that the resulting
frequency w is real.

We now conveit to dimensionless variables in Eq. (8.13):

i kv, Ao; i — k2% R
E ||. LIV el X; vr= »* L ;v = (YO + lmo)/kva
or av, koyy
Qu; \?2
A= ( av; ) [k

and write this equation in the form
papii 4 wgtt’ = v’
de? ¢ . (8.14)
However, from the analysis of instability carried out in the linear approxima-
tion it follows that ¥ can be approximated roughly by the function

i I .
Vo oo e — — 1 (8.15
o= — LB+ il )
(cf. Fig. 7). Substituting this expression in Eq. (8.14), and introducing the new
—v 4174
1

__-—J._i

variable t = £ + &, where £, = » we reduce this equation to the
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form (assuming§ > 0)

din’
di*

b= (—% + i)}.“’.

The solution of Eq. (8.16) which decays as £ — « can be expressed in

+ bfn” = (. (8.16)

Here,

o0
terms of the Airy function (D (x) = L \ Cos (ux+ = ) du
Ve, 3,
Q
n =0/ D) (8.17)

Since the function V4 is an even function of §, the solution over the entire §
axis must be either even or odd with respect to §. This means that n' must
have either a maximum or must vanish when § = 0. We shall be interested in
the solution which has a minimuwm number of nedes aleng the & axis. For this
reason we choose the solution that exhibits the first maximum of the function
{8.17) at the point § = 0. The first maximum of the Airy function &(x) occurs
at the point x = 5 = —1.0%.

R
Thus, 176 % = s and, consequently,

iV — a3
7\.’: Vg '\) . (8.18)

(5 - 1;’2.‘2 &

Converting to the usual variables we find

i 2 1 [ i 3
( i) ) kv I (——z’ey—'L— — ) . (8.19)
G, 3 (i-ﬁ Jg)ﬂ 4 Ty kyoy

The quantity w is found from the condition that x1, must be real and is found
R,
to be © == 0‘86"egvﬂ (ﬁlr e ) . Substituring this value for w in Eq.
LS To /

%

i
-

(8.19), and then finding the maximum y, with respect to ky, we have

2
. i avy

L= —- . (8.20)
40 Ui'-"‘
This is the quantity we have been seeking, the turbulent thermal conductiviry
e ar . 2T
for ny = const. We recall that ¢, = T e v = Z;
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d : d
e aq S The corresponding oprimum value k,, =
L dr Rg*  dr 7

vo/16x, ~ w/Ax, where &x ~ p;/6€ isthelocalization width of the cell. In

this case, io = —38— . _lr_ozsﬂ , and the solution in (8.17) assumes the
—2i
form
= (s E‘i + s) ~ @5+ 4,25 (1 — 0.4) &), (8.21)
11

In the presence of a density gradient the growth rate and the effective

din? -0.95, the
dlnn

growth rate will geneially be equal to zero, and when —1 < 1 < 0, the growth
rate is exponentially small. This feature can be introduced in an approximate

way by the use of a factor F in Eq. (8.20), this factor being defined by

thermal conductivity x are both reduced; if ¢ < ==

1 for |m|>2,
Fm=4lInl—1 for 1 <|[n]<2,
0 for [n]=<C1.

2. Interaction Between Cells

{(Quasi-Modes)

Everywhere above, in considering the thermal conductivity in the larg-
est celis we have investigated convection in an individual large cell. This
approach is valid only if the large cells are statistically independent, i.e., if
the cenvection in any one cell is not correlated with the convection in neigh-
boring cells. Actually, however, if the cells are sinall a resonance coupling
between cells can appear, and in this case the interaction between cells can-
not be neglected. The possibility of a coupling of this kind was first con-
sidered by Roberts and Taylor [42]. The authors showed that even in the lin-
ear approximatjon thete is a possibility of obtaining a perturbation with a large
region of localization in x if a solution is taken in the form of a quasi-mode,
i.e., a superposition of highly localized solutions with the same azimuthal
number m but different k. This solution has different localization points, and
thus can be constructed in a series along r by joining one solution to another.

ik 2t it
Let @, ==y {r —rp) € 224 be one of the localized solutions. Then a

quasi-mode, a solution with a large region of localization, can be formed
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by writing
¢ @) = [ A(ro) o1 (r — ro) e TG (5.22)

where A(rg) is some smoothly varying function of ry for example, A (rp) =
Ao~ where 1 is the localization width of the quasi-mode while
Iyo is the center of lecalization.

Since the point rq is determined from the condition ky = 0, ie.,
(m/rHg ~kgHe = 0, then the quamity 14 is related to ky by k; = (m/Ry) -
[1/q(re}], and Eq. (8.17) can be written in the form of a superposition of solu-
tions with different k. Assuming that I «a, we get k, = kg~ ky(ﬂ/ a) "
(ry ™ Ioo)s Where k; corresponds to the localization point rg. Then Eq. (8.22)
assumes the form

— fz"ko 2.2 —ik ik
o{r) = Sq)l (r—ro) Bee (e Z) e 1 dk ., (8.23)

where B, = const, L=a%0 k;; T, roo—(Ruqzlmq')(kZ—'k%).

It is then obvious that when I increases the localization width of the
quasi-mode at the point z = ( also increases but that there is also a reduction
in the localization length L along the magnetic field over which the phases of
the localized perturbations are approximaitely the same.

In a toroidal geometry, ky, = n/Ry can only assume discrete values and
hence the quasi-medes can only be constructed by a superposition of cells with
different values of n. Since ¢ = m/n, then §x, the distance between neighbor-
ing (6n = 1) cells characterized by the same azimurhal number m, is deter-
mined by the elation

" 1 i 2 N
q'ox = — on~—gq* ie, = i; m—1
I m q

Evidently, when q'/q =~ 1/a, §x ~ qa/m = qk'l, ie. 6X > k)",l"“ p/€. In
other words, cells with the same azimuthal number m are separated by a dis-
tance $x which exceeds the localization distance ~p;/9.

However, this result does not mean that a resonance interaction cannot
operate between cells in a toroidal geometry. The point is that the interac-
tion between cells is essentially nonlinear and cannot be described within a
linear theory.

A nonlinear flow represents a superposition of many modes, and if two
or more cells with somewhat different m and n are close together, it might be
assumed that these cells would add constructively in the regjons of 4 and ¢
where their phases [m®— (n/Rg{] are approximately the same.
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In other words, a given cell can comain a "mixture” of a neighboring
cell, and thus reinforce the neighboring cell. It is obvious that this resonance
capture of one cell by another can occur only when the values of 4 and £ are
such that the phases m9—(n/Rg)¢ are approximately the same in the cells,
i.e., the difference in the azimurhal phases m —m' and the longitudinal num-
bers o~ r' must be much smaller than m and n. Since the number of cells
with azimuthal numbers smaller than or of the order of m (and, consequently,
n~ m/q} is proportional to m’, the mean distance between cells for any m
and n not exceeding the given values is of order §x ~q'/ m°. Coensequently,
the distance between zescnance cells is alwaysmuch larger 8x —q'/ m® ~
1l/a 2. It then follows that the resonance interaction can oecur only when

pi/8>» a/ki,a2 or aky = m >»Vp; /aB.

The existence of a resonance coupling means that the most effective
heat transfer will be realized by coupled cells with effective transverse dimen-
sionx ~ 1/k, < a¥pi/a8. This dimension can be appreciably greater than
the localization of an individual isolated cell pi/ 0 burt, as we have seen, not
by more than a factor vBa/p. In other words, even when Ba/p ~ 10 the ef-
fect of resonance coupling increases the coefficient in (8.20) by less than a
factor of ten.

3. Turbulent Diffusion

In analyzing the thermal conductivity we have assumed that the elec-
trons maintain a Boltzmann distribution and we have neglected electron dif-
fusion. In addition to meodifying the thermal conductivity, however, the oscil-
lations also cause electron diffusion. In order to find the appropriate diffusion
coefficient we assume that the oscillations in the potential that develep ¢

T
are of order —— xfa ~ Lpi/ﬁa, where x is the localization width of the
e e

cell. Hence, electrons with longirudinal velocities oy < 1// LI
m,

U, ]/&— fall into ap essentially nonlinear region, since they can be
[#1

trapped by potential wells in the drift waves. On the other hand, in the region

LTSS pi/0a the clectrons can pass freely through the potential barriers in

¢ and the diffusion arises only by virtue of resonance interaction of electrons

with waves whose phase velocity coincides with the electron velocity. Since

s : T

the oscillation amplitude ¢ ~ ~—- P
e 8a

with T/e, in desciibing diffusion of resonance electrons we can use a quasi-

is taken to be small compared

linear approximation. In the quasi-linear approximation, in the expression for
the particle flux
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ditg
dx

q, =—D —_ .. <n'v_;> = \fdv -——\ (8.24)

H 7
the perturbation - is expressed in terms of the linear approximation:

fio = i (Ofg , ol Uik | cEyx
©—kyoy, +i0 {0y T ky ) H

(8.25)

where fi{ is the Fourier component of f', and Ey is the Fourier component of
the electric field. From Eqs. (8.24) and (8.25) we can obtain the very approXi-
mate relation

D ~ §vind (@ — kyvy) fofnodvdk, (8.26)

cE
! } is the spectral function of the velocity vy.
k
2

We now take accoumt of the fact that % ~ u ‘o~ ————dk and that
W

2
where U, = (

the waves are concentrated in the region of phase velocities w/k ~ v;. Us-
ing Eq. {8.26), we find

ro2

vidk 1 klg

D_‘,j k Nx_tf_lnﬂ’ (8.27)
Uk I U I | min

where ve is the mean thermal velocity of the electrons, vy is the mean ther-
malvelocity of the ions, ky njn ~ w/ve corresponds to the longitudinal phase
velocity of order ve, while kiyay comesponds to the phase velocity ve¥p; /0a
below which the nonlinear region is found. Thus, the resonance-electron con-
tribution to the diffusion iz smaller than

m B Oa

—~ ,(" m, 1 —— (8.28)

Pi
Ag far as the electrons trapped by the potential wells are concerned, we note
thar since the fraction of such electrons (compared with the total number) is
less than Vpi/9 @, the corresponding contribution to the diffusion coefficient
cannot exceed xVp;/0a; when collisions are taken into account, these colli-
sions tending to restore the Maxwellian velocity distribution of the electrons,
this contribution becomes smaller still [by the factor $(5+ ¥ me/m1) where
S = ?\.epi/az]. The total coefficient D is then given in order-of-magnitude
terms by
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]/‘]X (8.29)
n'?lt
s ]/

M,

/ mg E—
VoV e T T
Pi

Thus, the diffusion coefficient associated with the temperature drift in-
stability is appreciably smaller (approximately by one order of magnitude)
than the thermal conductivity, as is the case for ordinary Coulomb collisions.
The quantity D is small because the electrons try to maintain a Boltzmann dis-
tribution and that it is difficult for electrons to be displaced from the magnetic
surfaces. However, if the magnetic surfaces are disturbed, then the diffusion of

particles will proceed simultaneously with the transport of heat and the coeffi-
cient D will be of order y.

§9. ANOMALOUS DIFFUSION DUE TO TRAPPED PARTICLES

As the plasma temperature is increased or as the densjry is reduced, the
frequency of ion—ion collisions is reduced and the instability due to trapped
particies can become important. The first instability to appear is the dissipa-
tive instability associated with electron cellisjons. In considering the non-
linear oscillations that develop by virtue of the trapped-particle instability it
is convenient to simplify the problem by averaging along the lines of force;
we make use of the following simplified two~dimensional equations:

9y | iyl Ihw] L\ D (9.1)
ot
__‘)ﬁ:_“-_ﬁ!ﬂ(ﬁ_vn T - (9.2)
a  H VT o e

Here, n, is the density of trapped ions; n_is the density of tzapped electrons;
& is the fraction of trapped particles in the equilibrium state (in an axially
symmetric torus this fraction is given by Ve = ¥1/Ry). The right side of Eq.
(9.2} takes account of the conversion of trapped particles into transiting par-
ticles by virtue of collisions, where vogr = v/ 8% is the effective collision
frequency. We assume that n,, n, and ¢ are functions of the two variables ¢
and & only, so that Eqs. (9.1) and (9.2) describe the nonlinear oscillations of
the trapped particles. The potential that appears in Eqs. (9.1) and (9.2) is de-
termined from the neutrality condition

e e
L= —I iy = H_. -~ —— A, 2.3
: 7 o 7 Mo (9.3)
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in which we have taken account of both the trapped particles and the transic~
ing particies, which exhibit a Boltzmann distribution. We note that terms of
the form vy, \/ 1, (associated with magnetic drift) have been neglected in
Egs. (9.1) and (9.2).

In the case being considered here, a dissipative instability, the frequen-
¢y Ve has been assumed to be large, so that we can neglect the time deriva-
tive of n_in Eq. (9.2); furthermore, in the left side of Eq. (9.2) we replace n_
by its cquilibrium value §ny. Thus,

8% c[hyy] 6.

H_ = (SHD — H (9.4)

€

If we substitute this expression in Eq. (9.3) and express ¢ in terms of n, and
n_, using an expansion in 1/ve, then, by means of the expression that has been
obtained for ¢ [and Eq. (9.1)], we obtain the following nonlinear equation for
Il_',_ = 0,760

an’y. i 6n;_ Uféz 62.'1;_ v arz_'l_ azn_’}_ (Jn;_ ézn_'__")
ot Cu dy - N, dy? dx dy? dy  dxdy
where (9.5)
T d cTu, 5%
Uy = ——— €% 8ny N =
e, dr i’eh’né\‘ .

Equation (9.5) is written in the plane-layer approximation, which is
valid for small-scale instabilities; specifically, we have introduced the coordi-
nates X and y in place of r and &, and have neglected terms that contain
f)zno/rilx2 and (anolax)z.

As is evident from Eq. (9.8}, in the linear approximation we are dealing
with a diffusion equation, but with a negative diffusion coefficient. Since the
growth rate y ~ k2, at first glance we see that perturbations with short wave-
lengths will grow, and this leads to an effective diffusion with respect to the
longwave perturbations.

In tum, the longwave perturbations appear as a supplementary mecha-
nism for driving the shortwave instabilities. This feature can be seen directly
from the structure of the nonlinear term. If we consider a longwave perturba-
tion ' j, in which the second derivative can be neglected and the first deriva-
tive can be taken as a constant, for a shortwave ’nenurbation'nj,z (plane wave)

on 1 on +1
i — ks
dx dy

the nonlinear term assumes the form &, | £ fis. When
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6n_'H
oy
ways find a perturbation n*; that grows by virtue of Vn'y,.

== () the sign of this expression is not determined, so that we can al-

The feeding of shortwave perturbations by longwave perturbations leads
to chaotic turbulent motion. In this case, the small-scale perturbations play
the role of a diffusion mechanism with respect to the large-scale perturbations
and their effect can be taken into account by an additional term of the form
DiAn'y on the right side of Eq. (9.5). The quantity Dy, the coefficient of
thermal diffusion of the trapped particles, is determined from the condition
that the large-=scale perturbations be stationary. We assume that because of
the strong rapdomness the motion will be isotropic, i.e., k; w5 ki ithus, by
comparison with Eq. {9.5), we have

Di=——- (9.6)

Evidently, D; does not depend on k% On the other hand, it is clear that
D, must increase as k’ is reduced, because waves of larger and larger scale
participate in the effective transport of matter. A self-consistent pattern can
be obtained only under the assumption that Dy is determined by perturbations
of the minimum scale size. At this scale size the transition from the dissi-
paiive trapped particle instability (to the collisionless trapped-particle insta-
bility) occurs, i.e., at the value of ky determined by the relation ve/az =W s
w, 8 3/,

All of the perturbations of larger scale size are not excited. The effec~
tive coefficient for these D; is found to be somewhat larger than the critical
value (9.6), so that these decay in time. We can take the value given by Eq.
{9.6) for the effective diffusion coefficient D;. Assuming thar Dy derives only
from the trapped paricles, we can now write the total effective diffusion co-
efficient:

27283 w2
D=28D, = _ony (i- ﬁn(,J .
SeQHQngve dr / (9.7)

For a circular torus with an axis of symmetry we take & = V1/Ry; as an ap-
proximation we remove & from the differentiation sign, thereby obtaining
D= P e LI __dny )2

Se?HQvejo’ g dr (9-8)

In addition to causing the transport of density, the trapped-particle oscillations
also cause a heat transfer. $ince these oscillations represent an interchange
of "tubes® of rrapped particles, i.e., a convection of what are essentially in-
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compressible plasma tubes, the coefficient of thermal conductivity both for
the electrons ¥, and the ions x; must be approximately equal o D:

202 3, ;o1 dng 2
N e .9

2572 3! n dr
8e” Hv, R;? L

Since vg ™ T3/2, the coefficients in (9.8) and {9.9) increase very rapidly with
temperature. For a sufficiently high temperature, where Ve /& becomes
smaller than the oscillation frequency w = w*s? z {corresponding to perturba-
tions with the maximum possible localization m = g)

Sz e >V& g '8 "= 102, (9.10)
a? Mg

the dissipative trapped-particle instability becomes a collisionless instability
and the magnetic drift must be introduced into Egs. (9.1) and {9.2). Under
these conditions,the perturbations are no longer localized, and it is not mean-
ingful to introduce the notion of a local diffusion coefficient. We can only
make an estimate of an effective diffusion coefficient D, which is averaged
over the entire volume, to describe the convection of charged particles. Since
the growth rate y = eq p;ivi/a %, while the localization width for the convec-
tive cells js of order a, then

a e

D =& = (—) gou;,
R

v

Ty Ky =

&

{9.11})

i.e., this coefficient is of the same order as the Bohm diffusion coefficient
Dy == LI . Convection due to trapped particles leads to the loss of

16 ef
tiapped particles. However, the Goulomb collisions can fill the trapped-par-
ticle cone rather rapidly with transiting particles; moreover, if the distribution
function has marked "bumps, " it is reasonable to expect a rapid filling as a re-
sult of high-frequency electrostatic oscillations.*

Equations {9.3) and (9.9) have been obtained under the assumption that
T; =T = T. Retuming to Eqs. {8.3)19.5) we see that if T; # T, we must
replace 1/T by 1/T; + 1/ T in Eq. (9.5) and in Eqs. (9.8) and (9.9). In other
words,

T ( 1 dny )2

e f 26 v, (T; 4 Tg)ZR:,"’ g dr

(8.12)

*In addition, for fluctuations on the scale A ~ a, the fluctuations in the po-
tential ¢ can convert trapped pariicles into transiting particles, and vice
versa.
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Here, the factor (r/Ru)s/2 represents &°, where § is the fraction of trapped par-
ticles. In traps with an inhomogeneous magnetic field (for example, if there
are helical windings) the quantity § can be of order unity.

We note that in a highly nonisothermal rarefied plasma (in which colli-
sions are unimportant) the trapped-particle instability is easily siabilized, as
can be seen from Eq. (4.30).

§10. DIFFUSION IN SMALL-SHEAR SYSTEMS

1. Drift-Dissipative Instability

It has been assumed in the foregoing that the shear © ~ 10 » vmg/m;.
If the shear is reduced, the macroscopic effects due to all instabilities be-
come stranger. In particular, the thermal conductivity due to the tempera-
ture drift instability (for 7 > 1) increases. Thus, it a piasma that is not too
dense, we can assume 1 = 1, in which case the temperature drift instability
does not develop. Furthermore, for very small values of @ those instabilities
become important which are either stabilized when  ~ 107, or which have
very narrow localization ranges. This statement pertains to the collisionless
drift instability, the dissipative drift instability, and the finite-orbit instability,
which is closcly related to these two; a peculiar kind of “smearing viscosity™
is important in this latter instability. This viscosity derives from the devia-
tion of the ions from the line of force in the drift motion. We shall start our
analysis with the drift~dissipative instability.

When the localization of an Instability is smaller than, or of the order
of, the ion Larmor radius the effect of the instability is always weak; thus, we
need only consider the case pj << X, for which the ma gnetohydrodynamic
equations can be used. Furthermore, for reasons of simplicity we shall assume
that the fon temperature is zero (according to the linear theory, increasing the
temperature from T; = 0to Tj = T does not increase the growth rate by
more than a factor of 2). The starting equations will be the equation of con-
tinuity

dn :
- T divav =0, (10.1)

the sum of the equations of motion for the electrons and ions

dv 1. (10.2)
mn — -+ Vo= pagtle
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and the longitudinal component of the equation of motion for the electrons, in
which we neglect the inertia term:

en .
h\Vp, = enhVo +—J; - (10.3)

In the instability at hand the effect of any inhomogeneity in the mag-
netic field is unimportant, so that we can write H = Hy = const. It then fol-
lows from the transverse component of the ion equation of motion that if iner-
tia is ncglected, the transverse velocity v, is

vy = LVEL {h;?ﬂ , ‘ {10.4)

s0 that the transverse motion is incompressible.

Now, applying the operation curl; to Eq. {10.2),andtakingn = const in
the inertia term, we find

H,

ar _ ar - e
— =t v/I'=— div j, = divj, =
dt a v chyg L CHity I
B wyijy, (10.5)
oty
¢
where I = (cul), v = R Ao,
a .
ling that | ORI - Y. ———, and taking account of (10.3),
Recalling that h §/ 0 Y e g
we write (10.5) in the form
ar . H,0%x%0 . a [ 1 . e dp ] . (10.6)
df crimng Jt | en at b

We [irst consider the oscillations under the assumption that the electron tem-
perature is constant along the lines of force. Then T, and ¢ can be regarded
as independent of & . Furthermore, since dpy/04 = 0, and by virtue of the
smallness of the region of localization, the perturbation p' = n"Ty is small,
and the factor 1/en in front of dp, A% in the square brackets in Eq. (10.6) can
also be taken as constant. Thus, for perturbations of the form exp(im9), Eq.
(10.6) can be written

ar _ar Ton’
_:M__;_vvr:MBXZ( —cp>, (10.7)
dt at en,

mtH 020

isassumed io be constant withina given cell.
crd

where the quantity B =
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In the linear approximation, Eqs. (10.1)~(10.3) describe the drift dissipa-
tive instability, in which the growth rate is proportional to the wave number
k, = m/r. This means that shortwave perturbations develop first and that the
development of the instability must lead to chaatic turbulent motion. In
order to determine the coefficient of turbulent diffusion D we again use an ap-
proximation methed, introducing into the equation of continuity (10.1) for the
large=scale cells a diffusion term which takes account of the effects due to
small-scale perturbations:

an
B = DA n.
o TV + (10.8)

Here, the term DA | n represents an average, over the small perturbations, of
the nonlinear term v\/n. The same form of the nonlinear term v/ [ ap-
pears in Eq. (10.7) for the vorticity I' since the same small-scale fluctuations
that cause the diffusion also lead to a mixing of regions with different values
of I. These fluctuations must then cause the diffusion of T, which is equiva-
lent to the appearance of a term with a viscosity vA | T on the right side of
Eq. (10.7):

: o

a

L4
Ten

cny

4y yT = Bx?( 0.9

— rp) -=vAL T

Since the nonlinear terms associated with viscosity and diffusion are identical
we can write ¥ = D. The value of the effective diffusion D can again be
found from the requirement that perturbations of maximum scale size must be
neutrally stable. Now, taking I' = (¢/Hp A, ¢, in the linear approximarion we
have

— lwn’ 4 io*agp = DA | n'; (10.10)
— oA p— Boxz( = q;) = DA A, (10.11)
(]
. H20%m% 252
where w* is the drift frequency; ) = . By= -1 — EmE 2L,
Ty g r4

L2
We note that Bx’= — w0, where o, = «{J’— 22,7,. InEq. (10.11) we
fg“l

have replaced v by the equivalent quantity D.

We note that (10.10) and (10.11) do not have localized solutions when
D = 0. Localization is produced by terms on the right side, i.e., nonlinear ef-
fects which are taken into account by the introduction of viscosity and diffu-
sjion.
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The effective diffusion coefficient is found from the condition that
there be no imaginary part in the characteristic frequency w associated with
(10.10) and (10.11). We now convert to a Fourier representation, making the
substitutions &) — —kg,— kz, ¥ —-—d%/dk® Then, the new variable, ¥ =
{w=iDA - w*) is govened by the second-order equation

X P (B2 8N [ 3 1D (k2 2 29)]?
ey )] ipl )| 10.12)
dk? By lo 1D (k) + %) — o*
It will be convenient to convert to dimensionless variables in this equa-
tion:
= kik,; A = oDk} Ly = o*DI}.
Then,
2. P L En [—ih - (] -7
M S PV Ll ] e e U 1. (10.13)
digt (L +E)—i{d—Ahy)
N - Dki B Dt
wherE B T T T,

This second-order equation with a "complex well” (10.13) contains
two real parameters, A and p. These parameters must be chosen in such a
way that y represents a characteristic function that decays asx - =.

We note that the quantity X does not depend on ky = m/x, being pro-
portional to D™ Since we are interested in the solution with the largest pos-
sible D, the free parameter A in Eq. (10.13) must be chosen in such a way
that pA? reaches a maximum value.

We now divide the potential U on the right side of Eq. (10.13) into real
and imaginary parts U = Uy + iUy, where

lzp—ﬂi— [(1 - 8 4 a2 —23); (10.14)
(14 &
Uy = - U“")” (@A, — ) (I 2P —a (b, — ], (10.15)
-+

while c¢ = A, ~A.

Multiplying Eq. (10.13) by the complex conjugate x* and integrating
over £, we have

o\gullﬂd

l!
!
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\ Uy [Pd3 = (10.17)

It follows from Eqs. (10.14) and (10.16) that A cannot be a small quantity, i.e.,
)\* =1 + of. Since we are interested {n the minimum possible value of h_ we
must take A, ~ 1. It is evident from Eq. (10.15) and (10. 1'?) that @ ~ 1, so
that y ~ 1. Thus, the minimum value of the parameter A% o 1: which we will
denote by s, is of order uaity: s = mmk4 ~ 1. Whence, recallmg the ex-
pressions for A, and p, in terms of D and w* we have

p—"<T. ____1_._[ vt g1 dny o)™ (10.18)
el (1) | 0%\ g, dr ) ’ )
where pi, = T mifi, s ~ 1. In order-of-magnitude terms,
Pie e /e &
D~ ST [ Die \Ys o L=
~— Qr) " {10.19)

Even with the existing parameters in toroidal devices, the quantity Q.7 is ex-
tremely large, being of order 10% thus, even when 6 ~ 109107 the diffusion
coefficient in (10.19) is relatively small and need not be considered.

We have assumed above that there is no perturbation of electron tem-
peratuze. But, as we have shown in subsection 9 of §3, when kAo < Ymg/m;
an instability associated with perturbations in the electrons temperature can
arise. Since the growth rate of this instability cannct exceed the quantity
(me/mj) Ve, while the localization width x < pi/ev'mxlfs), the effective
diffusion coefficient D ~ yx® cannot exceed the value D, — e 028 , where D,

MgVa 2

—m— Pi is the classical diffusion coelficient. I S is reasonably large
:

the coefficient D due to this instability can also be neglected.

2. Finite-Orbit Instability

The diffusion coefficient (10.19) due to the drift dissipative instability
can be found from the following simple estimates. It follows from the disper~
sion equation in the semiclassical approximation (3.38a} that the maximum
growth rate y = w* is reached when w* ~ = (k“/k )Q;Q.7, . Taking

i*e'e
~ kg ™k ~x, we find the width of the localization region x ~

(api/GQQeTe) Ys ;then, D ~ \,_,52 A~ ¥ xT o~ piU (p?/azezgﬂe) /a

In the presence of drift motion in an inhoemo geneous magnetic field, as

we have estabiished in subsection 3 of §4, there is an enhanced viscosity be-
cause of "mixing, " i.e., the departure of ions from the lines of force becuase
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of the magnetic drift. This effect can be taken into account roughly if we re-

duce wg by a factor p?/p%, where A is the mean-square value of the jon devia-

tion from the magnetic surface due to the drift motion. There is a correspond-
ing increase in the diffusion coefficient and the latter is found to be given ap-

proximately by

D =>pu, (A%a%0%Q,7,) /1. (10.20)

In the Model-C Stellarator, for example, the quantity Acanreacha value
~a, and the diffusion coefficient (10.28) can approach the Bohm value Dy~
10"1pivi. The estimate in (10.20) obviously no longer applies if it gives a
value larger than Dp; this means that the localization width of the perturba-
tion region becomes of order a.

3. Drift Instability

The drift instability is intimately related to the drift-dissipative insta-
bility; in essence these are two aspects of the same instability, the one appear-
ing in the collision-free regime and the other in the collision-dominated re-
gime. Hence, limiting ourselves to the simplified case T; = 0, which does not
differ qualitatively from the general case, we again use Eq. (10.5) and the
equation of continuity for the ions. Now, however, in place of Ohm's law we
make use of a relation which can be obtained from the collisionless kinetic
equation for the electrons in the drift approximation:

e
dt

af
du, -
|

roghyf M G e py 0. @o.21)
H* 1,

Considering the perturbation corresponding to the cell of the largest
scale size, we again take account of the small-scale perturbations by replacing
w by w- iDAJ_ - In this case, for simplicity, we shall assume in Eq. (10.21)
that the average function f, is essentially a Maxwelliap shifted by an amount
corresponding to the velocity of the current u. Actually, the drift oscillations
will distort the longitudinal velocity distribution function to some extent, but
if the plasma is not too rarefied, i.e., if § = Ay pj/a ~ 1, this distortion is ze-
moved to some degree by collisions. Neglecting the quasi-linear distortion of
fq increases the effective coefficient D to some extent.

We now use the linearized equation (10.21) to determine the longitudi-
nal component of the electron current jI o» and also take account of the ion
longitudinal current; then the system in {16.10) and (10.11) is replaced by the
following two equations:

(w-— DA = a*ngy; {10.22)
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(@ — DA L) pieA 1 =

w— & —l-k”u kgu’[‘e

— ) Yoo (10.23)

ve iy | M

<o)-— iDA| — o*+i V7w

It is evident that in this formulation Eq. (10.23) for ¢ is independent of
the density equation (10.22) and, consequently, the quantity D can be found
from the condition that the characteristic value w of Eq. (10.23) be real. When
0« v'—me/mi. 8 « p;/a, we can assume the magnetic field to be uniform and
we can assume that k, is an arhitrary quantity that does not depend on x (but

k]'gmin 2 —) . Inthe case u = 0 and B8 > mg/m;y, we then obtain
w [41]

from Eq. (10.23) the same result that is obtained in the weak-turbulence ap-
proximation [16]:

2.,
n, (LAY

D~ — . (10.24)
;P u

In the presence of a longitudinal current u > vy it is possible to excite drift
waves with a transverse wavelength of order ¢ and the diffusion coefficient
can reach values of the order D~ (u/ve)Dp ~ (u/velpivi [43].

if the magnitude of the current velocity u is large encugh, drift waves
can be excited even when © is not very small. The ion inertia does not play
a role in these oscillations, so that the left side of Eq. (10.23) can be neglected.
If we assume, furthermore, that the oscillation frequency is close to w ¥, and
if we write w = w* + A, where A « w*, the fellowing equation is obtained:

I b o kQT

. — . Ryt

DA - [ ih—Vrer = —

AT \ 1 |f¢‘: R m ¥
i

) Pp=10. (10.25)

T i:f,T,_,ﬂﬁ

Thus, in orderof-magnitude terms we find D/v* ~ & ~ o’ X2,

Ue miw*a®
which yields the following estimate for the diffusion coefficient:

2.
o o Me DY

Drwk (10.26)

Uy Oa

When u/ve ~ lO‘L, this diffusion coefficient can reach a value of the
crder of the thermal-diffusion coefficient due to the temperature drift insta-
bility (8.20). It should be kept in mind, however, that if u/ Ve < 0, this insta-
biliry is stabilized.
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§11. SUMMARY OF FORMULAS

The above analysis of macroscopic effects such as enhanced diffusion
and enhanced thermal conductivity allows us to set up a system of equations
that describes the behavior of turbulent plasma in toreidal systems. We have
treated the individual instabilities separately. Under actual conditions, how-
ever, several different interacting oscillations can develop; forexample, oscii-
lations of one kind can feed oscillations of another kind. But since the macro-
scopic effects arc determined by perturbations with the largest localization, it
is not reasonable to anticipate stabilization of the most dangerous perturbations
by the less dangerous oscillations. In other words, for any combinarion of in-
stabilities the most dangerous must be considered before the others. Hence,
in the equarions that describe the macroscopic large-scale motion of the plas-
ma, we can simply sum all of the coefficients of thermal conductivity and dif-
fusion that have been found above, thus assuming that the equations themselves
will pick out the largest of these.

The coefficient for anomalous thermal conductivity appears in the heat-
transport equation in precisely the same way as the usual coefficient and the
generalization of this equation does not represent any great difficulty. The dif-
fusion coefficient can be introduced into the equations of motion for the ions
and electrons in the form of a supplementary transverse frictional force, i.c.,
as an effective reduction in the transverse conductivity. However, in incom-
pressible convection flow the diffusion flux is proporticnal to the density gradi-
ent and not to the pressure gradient, as is the case in ordinary diffusion. It
would appear therefore that a comresponding change should be made in the
transverse thermai force. But there is no particular advantage in introducing
the effective diffusion in this complicated way. The point is that the equations
with the averaged effect of the instability only apply for slow flows, in which
case it is possible to establish a stationary spectrum of turbulent fluctuations.
Since the time required to establish this condition is determined by the growth
rate- ¥ (for the drift instabilities this time does not exceed the transit time
vi/ @), the equations for the averaged flow apply only for inertialess motion.
Under these conditions the equation of continuity and the thermal-conductivity
equation suffice.

Since the expressions found above for D and ¥ contain certain numerical
factors and are rather complicated functions of temperature, density, etc., in
practical applicarions it is convenient to convert to a useful system of units.
Below we express the temperature in electron volts, and take the unit of den-
sity to be 101? part/cma. The time will be measured in milliseconds and the
length in centimeters. Furthermore, in place of the radius r we introduce the

dimensionless parameter X = r/a, where a is the radius of the plasma. The
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longitudinal magnetic field 1, will be measured in kilogauss and in place of
the azimuthal field Hy we introduce the quantity p = RqHg/rH, = qu/q,
where qq = const is a maximum stability margin to which it is convenient to
refer 4. In the units used here, in accordance with [3] we also assume that the
longitudinal conductivity is given by o, = 1.18 -+ 10T 2, the longitudinal

W Lk
LT85 . 105 ¢ , and the trans-
3 n _,- n

. g R S R n '
verse fon thermal conductivity by #1L = =~ == = 9.4 . [0° 7.,

HE

Taking account of the possibility of a time variation in the longitudinal
field Hy for the purpose of compressing the plasma, we now write the system
of equations that describes the behavior of the plasma with turbulence effects
included:

thermal conductivity by L=

u 1 dH o A a (-2 L9 e
o " a s —J—'_(T”"azx ox 1
o X X ox e
{11.1)
¢og e pon e n o dHy 0T 21
d ax ox oM, di ax 3 H,
dH, 1 aT I 12 2
x nT,=-——-. — [xm ud B — ‘
dt ¢ X ( Ze )+ o e {x ax (Xz}l)}
n2
+Q,+C, pey (T, —T7T,)—gnT, (11.2)
4
i aT; dn aT'; o n dH, aT; 2 1 5
ot dx dx 2H, di dx Hy ~
dH, 1 7] a7 1 d 2
X nT; = — . — ¥y —t . 2
dt ! X dx (Xn/“e I 0B s [x ax (x M)] +
&
‘ e
-+ Q; —Cy i (T,—T)—gnT; (11.3)
y&
On 1AMy on 1 iy
0t 9H,  dt  ox H, dt
- ._!ﬁ . a ( . )-(_)n’l_\ 1 11 (11
X Ix \k[ ax J e, )

where Ay = 6 - 10%a? By = 2 - 10'HE/R' G, = 2.3 « 10%

Equation (11.1) describes the diffusion of the magnetic field. The first
term on the right corresponds to radial transport of the frozen-in lines of force,
while the second describes the diffusion due to finite conductivity. We shall
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assume that the longitudinal current increases slowly, and that the cument den-
sity § ~ a does not experience streng changes which would lead to a screw in-
stability and the associated anomalous diffusion of the magnetic field by vir-
tue of the development of helical cells. When Eqgs. (11.1)11.4) are solved on
an electronic computer the absence of a screw instability can be checked by
means of Eq. (2.25); in the notation of the present section, this equation be-
comes

a2y mt P da.

_ —_— .= 11.5
ki x{U—gynfm) dx ( )

dx? x?

Equations (11.2) and (11.3) are the heat-balance equations {or the elec-
trons and jons, respectively. On the left side of these equations the second
term describes the transport of heat with the diffusion velocity; the third term
describes the transport of heat by virtue of magnetic compression, and the
fourth describes the adiabatic heating (due to compression). On the right side,
the first term comesponds to the turbulent thermal conductiviry; the second
term in Eq. (11.2) takes account of Joule heating, while the second term in
Eg. (11.3) takes account of the generation of Joule heat by the jons in the pres-
ence of an ion acoustic instability; Qe is the loss due to radiation; Q; is the
heat generated by external souices or by thermonuclear reactions; the fourth
term describes heat exchange as a result of electron-ion collisions; finally, the
last term arises by virtue of the flow of cold gas, i.e., g is the number of neu-
trals that appear in the plasma per unit time. The same effect appears in Eq.
(11.4) in the last term, while the next-to-last term in Eq. {11.4} describes the
anomalous diffusion. Thus, all of the wrbulence effects are included in the
coefficients xi, Xe. 2nd D,

Each of the coefficients (y i* Xe» and D) consists of a sum of terms, each
of which, in turn, coresponds to a given instability:

Yi=Ye+qr T s T At e =Us T ¥t D=Dp+ D, 4+ D, + Dy + Dy

Here, XE is the classical thermal conductivity, whichis given the following by
(when q° >> 1):
10%3
fom — (11.6)
a? H2 YV T

X — is the coefficient for turbulent thermal conductivity due to the tempera-
ture drift instabjlity. In accordance with Eq. (8.20), in the notation of the
present section we can write;
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R F{x dTr \2
Yo = 25‘0 : d}i” ( : ‘) : (11.7m
Hx %‘ VT, X
dx

where

| diar . B 0 for 0<<y<1,
w]ml, m = 1—m for 1 < <2
1 for > 2.

In general, the coefficient x4 is a rather complicated function of T.. How-
ever, since its basic dependence is determined by T; (any change in T, does
not change the order of magnitude of x 7) we take the value of X correspond-
ing o the condition Ty = T, and extrapelate to the case T; # T,-

The quantity x 5 corresponds to the thermal conductivity due to the cur-
rent-convective instability. Under conditions for which this quantity is import~
ant the convection cells have a region of localization which is appreciably
greater than pji; in this case the contributions to the jon and electron thermal

conductivities and the diffusion coefficients are approximately the same. Us-
ing Eq. (7.67), we find

fo= D, =35 108 R Vo Viclol ( dTﬁ)Xﬁ\)mz B

a? T?X“‘f’ﬂllg dx dx

The coefficient x, = D, is associated with the trapped-particle instability. In
addition to the effects we have considered above, theie are a oumber of others
that influence the thermal conductivity; these include a small term which cor-
responds to the electron temperature instability. In the presence of magnetic
cells there is also an additional heat transfer that results from the destruction
of the magnetic surfaces.

In the diffusion coefficient D, in addition to the term in (11.8), there is
a term DT that coriesponds to the temperature drift instability; as an approxi-
mation for this term we can write
Dy-:20,17,.
(11.9)

There is also a term Dy that corresponds to the trapped-particle instability
which, in accordance with Eq. (9.12), is given by

el b
Dy =4 a1 e )
) (Te - Tia’sRY: | dx

(11.10}
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In addition there are the following terms: Dg which derives from the drift in-
stability, and D, which derives from an instability due te the fjnite-orbit na-
ture of the drift motion. These terms are imporant in systeins with small
shear. In accordance with §10:

0 for ww, <,

R

Dy~ jofaeye R, T e oy 1
w) Ta T
1Fx | —
dx

where
ujv, = 12aH , Rgyn VT,

0 e a X} dun

Rg, i dx
2 2 ARA
D,~ ﬂr-‘“’-( A——-—)' : (11.12)
! a2l \ et

where A is the mean-square jon displacement in the drift motion.

The quantity Qg takes account of losses due to radiation, which comprise
the bremsstrahlung Qg , the magnetic synchrotron radiation Qu,, and impurity
radiation Q. In the units adopted here,

Qs =—7.2. 107" n2V7,. (11.13)

As far as Qp is concemned, we find from [44] that this quantity can be approxi-
mated by the expression

Q, =6 107""aTV*Hj l/ﬁ— : (11.14)

na
The quantity Qp can be approximated by an expression given in [45]:

Q, =:Z41.4 - 10720 T - £251.9 - 1070 T (L)

where § is the impurity concentration and Z is the effective charge number of -

the impurity.

The quantity Q4, which is the energy generated in nuclear reactions in
an equal mixture of deurerium and tritium, is

n

Q= 18 - 1077 exp (— 200/T;"). (11.16)
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The quantity &, takes account of the possibility of energy transfer to the
ions by virtue of ion-acoustic instabilities. As we have argued in §5, the de-
velopment of the instability can lead to an energy transfer to the ions of the
order of the Joule heat developed in the electron compeonent; however, the ef-
fect is nonvanishing only when T; < T, /3. Since a departure from equal rem-
peratures (T « Tg) occurs only when u » ¢ = VT./mjy, i.e., when the condi-
tion for the excitation of the ion-acoustic instability is satisfied, 54 can be ap-

proximated by
T
Oy = ——— . {11.17)
75 10T

Nz

for example, § ~ 107 « 1 when T = T; and 64 = 1 when T{ « To. The
quantiry g is the flux of neutral gas into the plasma as determined by the wall
conditions.

We note further that under conditions of plasma equilibrium the quan-
tity 38
1
Sap 10—

i
f=—£ = \ n(T, 4 T)) 2xddx (11.18)
HE g

must be smali, of order a/Rq_z.

Equations (11.1)<{11.17) represent the equations of motion for a turbulent
plasma in a toroidal system. Strictly speaking, these equations apply to a cir-
cular torus such as the Tokomak. To extend them to stellarator systems, in
Eqs. (11.7), (11.8), (11.11), and {11.12), the quantity dp Ax, which is propor-
tional to the shear 6, must be replaced by ((o/2m(d, /dx), where : is the total
rotational transform.

Estimates show that the plasma flow described by the turbulence coeffi-
cients ¥ and D is of the order of the values that are observed experimenially.

CONCLUSION

In the present review we have tried to take account of all of the basic
plasma instabilities that pertain to a toroidal geometry, and have investigated
the associated macroscopic effects, a summary of which is given in $11. The
possibility is not excluded that some of the results given here will undergo sig-
nificant changes in the future. In any case, a great deal of work still remains
to be done in order io establish the relations between the theoretical predic-
tions given here and the experimental data. Rough qualirative agreement has
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been obtained, but a more complete comparison of theory and experiment will
evidently require numerical calculations, since the macroscopic equations are
very sensitive to the radial distributions of current, density, and temperature in
the plasma. Even without the results of these calculations, and without a re-
liable comparison of theory and experiment, it is still of interest, at this point,
to consider the feasibility of obtaining a self-sustaining thermonuclear reaction
within the framework of the models proposed here for a turbulent plasma.

Since an increase in the dimensions of the apparatus leads to a reduction
in loss, the question before us can be formulated as follows. For what apparatus
dimensions will a thermoenuclear reaction become self-sustaining even in the
presence of anomalous diffusion?

In an equal mixture of deuteriuim and tritium a self-sustaining reaction
requires that the following condition be satisfied:

Hey > 6 - 107/, (L

where T is the confinement time; 8 = 8rpMH%; and H is the magnetic field (a
longitudinal field in the present case).

The confinement time T can be conveniently referred to the Bolun time
by writing
- e I

T=mat (2)

where the factor & < 1 takes account of the possibility of a reduction in the
effective diffusion coefficient (or in the thermal conductivity) as compared
with the Bohm value [36€].

The relations in (1) and (2) can then be combined to yield the following
condition for a self-sustaining reaction:

sz~ %o 17 fL 3
aH>E)2 10 - (3)

It is then evident that a self-sustaining reactor requires the use of the maximum
possible magnetic field.

At the present time, in principle it is possible to produce a magnetic
field H = 10° g by means of superconducting windings. If we take H = 10° g
and T = 10% eV in (3), the requirement becomes

a>140]/ % (4)
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Thus, with B = 107 and the Bohm diffusion coefficient (o = 1) the minor
radius of the torus must be 14 meters, a dimension that is ioo large to be ac-
ceptable. However, if a = 1072, the dimension ¢ = 140 cm becomes complete-
ly reasonable, and the question of achjeving controlled fusion thus reduces to
the possibility of reducing the turbulent diffusion coefficient to a value which
is two orders of magnitude smaller than the Bohm value. The results of the
present review indicate that this reduction is feasible.

The point here, as we have established above, is that in a rarefied plas-
ma one of the most dangerous instabilities is the trapped-particle instability.
L 103 this instability leads to a loss that
m
does not exceed the losses associatéd with the drift instabilities, With T = 10*
eV, n-= 108 part/cm"a, and H (1-2}° 1058, whichcorrespondstoBR-AlO'2 ~ 0%,
the mean-free path is Ag = 10° cm, i.e., it is of order 10° a, so that
the trapped-particle instability is not an overwhelming obstacle. On the other
hand, the drift instabilities lead to the development of highly localized cells
with localization widths that do not exceed pi/9. Hence, the corresponding
coefficients of thermal conductivity and diffusion do not exceed values of the
order of pi/ @a of the Bohm value (here we are taking account of the presence
of a small factor of order y*/w’ in the expressions for D and x). With T = 10*
eV and H = 10° g, the mean icn Larmor radius is p; ™ 107 ¢m, and thus,
with @ ~ 10° cm and @ ~ 107, the factor o is p*/@a = 107°. Consequently,
with these parameters, the possibility of achieving the value o ™~ 107 is com-
pletely realizable. Furthermore, the results of the present review indicate that
at lower temperatures, where the trapped-particle instabilities are stabilized,
the estimates given above refer only to the thermal conductivity; the diffusion
coefficient can be appreciably smaller.

However, with le/a < %

Now let us consider the heating problem. In a high-temperature plasma
in which the shear 8 is reasonably large the longitudinal current does not
lead to an additional instability; funthermore, it provides a convenient means
for producing shear. Thus, it would appear that the most convenient method
of heating a plasma is Joule heating. The energy generated in 1 em® per unit
titme s

g

jro e
intato

(5)

where Hg. is the value of the azimuthal magnetic field at the edge of the
plasma (the current is assumed to be distributed uniformly). Equating this ex-
pression to the loss (1/7)3nT, and assuming that 2nT = BHZ/ 8w, we find
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Hwapll . 12 (6)
—— _”'a o

Substituting T = 5 keV (0 = 4 - 10'%), which corresponds to the ignition tem-
perauure, (for which energy generated by nuclear reactions balances the
bremsstrahlung), we find

1 > 10t . 0

It

It appears that in a highly curved torus the quantity H / HZ § can approach
values of the order of 10. Then, with 8 ~ 107 and H ~ 10 g it would be
possible o satisfy (7) if it were possible to reduce o to 107 % for a period of the
order of rhe hearing time. Theoretical considerations indicate that o can be
reduced on a transient basis. For example, it is possible to exploit the fact
that the diffusion coefficient is small compared with the thermal conductiviry.
Thus, during the heating period the plasma can be isolated from the walls
either by changing the magnetic field or by displacing the limiters. Further-
more, it would be possible to add impurities at the periphery of the plasma in
order to reduce the conductivity, and to increase the Joule heating in this re-
gion. Thus, the possibility is not excluded that Joule heating could be used ex-
clusively; however, this would require a highly curved toms in order to obiain
the largest possible value of Hg/H with q > 1.

The results of the present review would seem to be weighted more to-
ward optimistic rather than pessimistic conclusions. It appears possible to ob-
tain a contzolled and thermonuclear reaction even in the presence of turbulent
diffusion and turbulent thermail conductivity, although the technological penal-
ties would be rather severe.
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