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Predictor—corrector methods

2.1 Introduction

In this chapter, we provide the tools needed for standard N-body inte-
gration. We first review the (raditional polynomial method which leads
to increased efficiency when used in connection with individual time-
steps. This selt-contained treatment follows closely an earlier description
[Aarseth, 1985a, 1994]. Some alternative formulations are discussed briefly
tfor completeness. We then introduce the simpler Hermite scheme [Makino,
1991a,b] that was originally developed for special-purpose computers but
is equally suitable for workstations or laptops and is attractive by its sim-
plicity. As discussed in a later section, the success of this scheme is based
on the novel concept of using quantized time-steps (factor of 2 commen-
surate), which reduces overheads. Variants of the Hermite method were
attempted in the past, such as the low-order scheme of categorics [Hayli,
1967, 1974] and the full nse of cxplicit Taylor scries derivatives [Lecar,
Loeser & Cherniack, 1974]. The lormer study actually introduced the idea
of hierarchical time-steps with respeet to individual force calculations us-
ing a low-order scheme, whereas the latter formulation is expensive (but
accurate) cven for modest particle numbers.

2.2 Force polynomials

The force acting on a particle usually varies in a smooth manner through-
out an orbit, provided the particle number is sufficiently large. Hence by
fitting a polynomial through some pasl points, it is possible to extend
the time interval for advancing the equations of motion and thereby re-
duce the number of force cvaluations. In other words, we can use the past
information to predict the future motion with greater confidence. Such
a scheme was already introduced in the pioneering work of von Hoerner
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Fig. 2.1. Force polynomial fitting.

[1960], who adopted a quadratic interpolation of the force on each particle.
In the following years formulations based on higher orders were employed
[Aarseth, 1966a, 1968; Wielen, 1967]. Experience has shown that there
is some gain in increasing the order of the integration scheme but the
law of diminishing returns applies and it appears that four orders is suffi-
cient for most purposes [Wielen, 1967, 1974]. A subscquent investigation
[Makino, 1991a] showed that the fourth-order scheme* is within 30% of
the minimum cost for all values of the rms energy error. The present dif-
ference formulation is based on the notation of Ahmad & Cohen [1973;
hereafter AC] and follows closcly an earlier treatment [Aarseth, 1985a).
In the subsequent description we omif the particle subscript in F; and
related quantities for clarity.

On some time-scale, the force on a particle can be considered to be
smoothly varying, as illustrated by Fig. 2.1, and can therefore be approx-
imated by a continuous function. Given the values of F at lour successive
past epochs tg,%s,%1, 0, with £5 the most recenl, we write a fourth-order
fitting polynomial at time ¢ valid in the interval [t3,to + At] as

By {[(D‘l(t )+ D3) (t—t2) + DB] Gy Dl} F=te)+ Fy.
(2.1)
Using compact notation, the first three divided differences are defined by
D tg, t5_1] — D i1, L]
to — tk ’

D*[ty, t] = (k=1,2,3) (2.2)
where DY = F and square brackets refer to the appropriate time intervals,
such that D%[t;, t3], for instance, is evaluated at ;. The term D? is defined
similarly by D?[t, t5] and D®*[tg, #3]-

* This is two orders more than used by von Iloerner but, one order less than Wielen.
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Conversion of the force polynomial into a Taylor series provides simple
expressions for integrating the coordinates and velocities. Equating terms
in the successive time derivatives of (2.1) with an equivalent Taylor scries
and settiug { = tg viclds the corresponding force derivatives

FO) = (D', + D%, + Dt} + D',
F2) = 20[DA(th#5 + thth + t1t5) + D*(£, + th) + D,
F® = 3IDY(t; + ¢ + t5) + D,

where £} = £y — t. These cquations are mainly used to obtain the Taylor
series derivatives af ¢ = ¢y, when the fourth difference is not yet known.
Thus the contribution from D* to cach order is only added at the end
of an integration step, ¢y + At. This semi-iteration, first introduced by
von Hoerner [1960], gives increased accuracy at little extra cost (on scalar
machines) and no exfra memory requirement.

We now describe the initialization procedure, assuming one force poly-
nomial. From the initial conditions, m;, r;, v;, the respective Taylor series
derivatives are formed by successive differentiations of (1.1). Introducing
the relative coordinates, R = r; — r;, and relative velocity, V = v; — Vi,
all pair-wise interaction terms in F and F(! are first abtained by

iy = ——ij/R?’,
F(l) — —*rrle/H3 = 3(LF1'J' 5 (24)

i

with @ = R - V/R2. The tolal contributions are obtained by summation
over all N particles. Next, the mutual second- and third-order terms arc
formed from

F\Y = —m;(F; — F;)/R® — 6aF. — 3bF;;,

1]
: . . W 2 0 i
FO = —m;(F —FV)/ R — 0aF D) — bF) — 3cFy;,  (25)
with
Vv R-(F;,—F;)
B (}%) vt m o T8
(1) (D)
3V.(F,—F,) R-FY_F) .
g= (R%z ) + 332 I 2+ a(3b— 40?). (2.6)

A second double summation gives the corresponding values of F?) and
F®) for all particles. This pair-wise boot-strapping procedure provides a
convenient starting algorithm, since the extra cost is usually small, Here
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we have employed a compact derivation [Findlay, private cominunication,
1983] instead of the equivalent but more cumbersome expressions used
previously [cf. Aarseth, 1972b)].

Appropriate initial time-steps, Af;, are now determined, uging the gen-
eral criterion discussed in the next section. Sefting tg = 0, the backwards
times are initialized by tp = —kAf; (k= 1,2,3). Hence this assumes con-
stant time-steps over the past fitting intcrval. Inversion of (2.3) to third
order finally yields starting values for the divided differences,

D' — (}FOY — [FO); + FO),
D? = - 1FO)(#] + 1) + LFO®
0¥ = 1p (2.7)

It should be remarked that polynomial initialization may also be re-
quired at any stage of the calculation, after switching from standard in-
tegration to more sophisticated treatments and wice versa.

The introduction of a softened potential of the form

& = —m/(R? + )12 (2.8)

is of historical interest [Aarseth, 1963a,b]. This represents a Plummer
sphere [Plummer, 1911] with half-mass radius given by ry, ~ 1.3¢ [Aarseth
& Fall, 1980]. Originally it was used to model galaxics with ¢ represent-
ing the characteristic size, and has been employed more generally to re-
duce the cffect of close enconnters. Softening may readily be included by
modifying all inverse R terms in the denominators of equations (2.4)
(2.6). For some purposcs, the corresponding radial force does not fall
ofl sufficiently fast with distance and a steeper r-dependence given by
® = —m/(R* + ¢))/* has been tried [Oh, Lin & Aarseth, 1995]. I'his
representation also has the advantage that outside some distance it can
be replaced by the basic point-mass interaction withont significant loss of
accuracy. Finally, it may be remarked that a softened potential necessi-
tates modifying the virial expression which is often used in simulations.
Neglecting external effects, the potential energy is then replaced by a
double summaltion over myry; - Fy; which gives the virial energy

b i i m;|r; — r;? (2.9)
i=1 §=1; j#i (rs —x5]2 + €2)?/2° .

2.3 Individual time-steps

Stellar systems are characterized by a range in density that gives rise
to different time-scales for signilicant changes of the orbital parameters.
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In order to exploit this feature, and economize on the expensive force
calculation, each particle is assigned its own time-step which is related to
the orbital time-scale. Thus the aim is to ensure convergence of the force
polynormial (2.1) with the minimum number of force evaluations. Since all
interactions must be added consistently in a direct integration method,
i, is necessary to include a temporary coordinate prediction of the other
particles. However, the additional cost of low-order predictions still leads
to a significant overall saving since this permits a wide range of time-steps
to be used.

Following the polynomial initialization discussed above, the integration
cycle itself begins by determining the next particle, ¢, to be advanced;
i.e. the particle, j, with the smallest value of t; + At;, where t; is the
time of the last force evaluation. It is convenient to define the present
epoch, or ‘global’ time, ¢, at this endpoint, rather than adding a small
inferval to the previous value. The complete integration cycle consists of
the sequence given by Algorithm 2.1.

Algorithm 2.1.  Individual time-step cycle.

Determine the next particle: ¢ = min; {#; + At;}
Set the new global time by ¢ = #; + At

Predict all coordinates r; to order FtU

Form F(® by the second equation (2.3)

Improve r; and predict v; to order F()

Obtain the new force F;

Update the times {; and differences D*

Apply the corrector D* to r; and v;

Specify the new time-step Af;

Repeat the calculation at step 1

S o0 =] O A s LI b —

]

The individual time-step scheme [Aarseth, 1963a,b] uses two Lypes of
coordinates for each particle. We define primary and secondary coordi-
nates, rg and ry, evaluated at £y and ¢, respectively, where the laticr are
derived from the former by the predictor. In the present treatment, unless
high precision is required, we predict all the coordinates to order F() hy

r; = [(AFWSE, + LF)6¢, + volot) +rg (2.10)

where d{; = ¢ —t; (with 87 < At;). The coordinates and velocity of
particle ¢ are then improved to order F®) by standard Taylor serics in-
tegration (cf. 2.3), whereupon the current force is calculated by direet
summation. At this stage the four times t; are updated (i.e. replacing i
with t5_1) to be consistent with the definition that #; denotes the time
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of the most rccent force evaluation. New dillerences are now formed (cf.
22). including D?*. Together with the new F™, these correction terms
are combined to improve the current coordinates and velocity to highest
order. The coordinate and velocity increments of (2.1) due to the correc-
tor D* contain four terms since all the lower derivatives are also modified
in (2.3). Consequently, we combine the corresponding time-step factors
which yield in compact notation, with £/ = ¢ — #j

Ar; =F¥ {[(%t’ +¢)0.61" + bl 5t + %a,} s,
Av; =F® {[(O-Z’t’ + 0.25¢)t" + 2B]t’ + 0.5a} 2 (2.11)

where all factorials are absorbed in the force derivatives. The coefficients
are defined by a = t]#ht}, b = t{th+1{th+ihth, ¢ = 1]+t +1), respectively,
where the old definition of ¢, still applies. Finally, the primary coordinates
are initialized by setting ry = ry. Hence we have a fourth-order predictor—
corrector scheme.

New time-steps are assigned initially for all particles and at the end of
each integration cycle for particle i. General considerations of convergence
for the corresponding Taylor series (2.1} suggest a time-step of the type

_( nF[ Y2

where 1 is a dimensionless accuracy parameter. Such an expression would
have the desirable property of ensuring similar reletive crrors of the force.
Moreover, two particles of different mass interacting strongly would tend
to have very similar time-steps, which also has certain practical advan-
tages. However, there are situations when this simple form is less sat-
isfactory. After considerable experimentation, we have adopted a morc
sensitive composite criterion given by

(2) (1))2y ) /2
i n(|F||F '|+IF %) _ (2.13)
|F(1}||F(-SJ| =5 1F(2)|?

For this purpose only the last two terms of the first and second force
derivatives in (2.3) are included. This expression ensures that all the force
derivatives play a role and it is also well defined for special cases (i.e.
starting from rest or |[F| = 0). Although successive time-steps normally
change smoothly, it is prudent to restrict the growth by an inertial factor
(e.g. 1.2). Being more scnsitive, typical time-steps are about V2 times
smaller than given by (2.12) for the same valuc of 7.

In suminary, the scheme requires the following 30 variables for each par-
ticle: m, rg, 1, vo, F, FIU, D!, D2 D3, At, tg, i1, tg, 3. It is also useful
to employ a secondary velocity, denoted vy, for dual purposes, such as
temporary predictions and gencral evalnations.




