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Chapter 6

Consequences of Crystallographic
Symmetry

6.1 Atomic Physics and the Periodic Table

First, some atomic physics1. The eigenspectrum of single electron hydrogenic atoms is specified by
quantum numbers n ∈ {1, 2, . . .}, l ∈ {0, 1, . . . , n− 1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2 . The bound state
energy eigenvalues Enl = −e2/2na

B
, where a

B
= ~

2/me2 = 0.529 Å is the Bohr radius, depend only on
the principal quantum number n. Accounting for electron-electron interactions using the Hartree-Fock
method2, the essential physics of screening is introduced, a result of which is that states of different l for
a given n are no longer degenerate. Smaller l means lower energy since those states are localized closer
to the nucleus, where the potential is less screened. Thus, for a given n, the smaller l states fill up first.
For a given n and l, there are (2s + 1) × (2l + 1) = 4l + 2 states, labeled by ml and ms. This group of
orbitals is called a shell.

6.1.1 Aufbau principle

Based on the HF energy levels, the order in which the electron shells are filled throughout the periodic
table is roughly given by that in Tab. 6.1. This is known as the Aufbau principle from the German Aufbau
= ”building up”. The order in which the orbitals are filled follows the diagonal rule, which says that
orbitaPoisson bra ls with lower values of n+ l are filled before those with higher values, and that in the
case of equal n + l values, the orbital with the lower n is filled first. There are hiccups here and there.
For example, in filling the 3d shell of the transition metal series (row four of the PT) , 21Sc, 22Ti, and
23V, are configured as [Ar] 4s2 3d1, [Ar] 4s2 3d2, and [Ar] 4s2 3d3, respectively, but chromium’s (dominant)
configuration is [Ar] 4s1 3d5. Similarly, copper is [Ar] 4s1 3d10 rather than the expected [Ar] 4s2 3d9. For

1An excellent discussion is to be found in chapter 20 of G. Baym’s Lectures on Quantum Mechanics.
2Hartree-Fock theory tends to overestimate ground state atomic energies by on the order of 1 eV per pair of electrons. The
reason is that electron-electron correlations are not adequately represented in the Hartree-Fock many-body wavefunctions,
which are single Slater determinants.

1



2 CHAPTER 6. CONSEQUENCES OF CRYSTALLOGRAPHIC SYMMETRY

Figure 6.1: The Aufbau principle and the diagonal rule. Image credit: Wikipedia.

palladium, the diagonal rule predicts an electronic configuration [Kr] 5s2 4d8 whereas experiments say it
is [Kr] 5s0 4d10 Go figure. Again, don’t take this shell configuration stuff too seriously, because the atomic
ground states are really linear combinations of different shell configurations, so we should really think
of these various configurations as being the dominant ones among a more general linear combination
of states. Row five pretty much repeats row four, with the filling of the 5s, 4d, and 5p shells. In row six,
the lanthanide (4f) series interpolates between the 6s and 5d shells, as the 5f actinide series interpolates
in row seven between 7s and 6d.

shell: 1s 2s 2p 3s 3p 4s 3d 4p 5s

termination: 2He 4Be 10Ne 12Mg 18Ar 20Ca 30Zn 36Kr 38Sr

shell: 4d 5p 6s 4f 5d 6p 7s 5f/6d

termination: 48Cd 54Xe 56Ba 71Lu 80Hg 86Rn 88Ra 102No

Table 6.1: Rough order in which shells of the periodic table are filled.

6.1.2 Splitting of configurations: Hund’s rules

The electronic configuration does not uniquely specify a ground state. Consider, for example, carbon,
whose configuration is 1s2 2s2 2p2. The filled 1s and 2s shells are inert. However, there are

(6
2

)
= 15

possible ways to put two electrons in the 2p shell. It is convenient to label these states by total L, S,
and J quantum numbers, where J = L+S is the total angular momentum. It is standard to abbreviate
each such multiplet as a term 2S+1LJ , where L = S, P, D, F, G, etc.. For carbon, the largest L value
we can get is L = 2, which requires S = 0 and hence J = L = 2. This 5-fold degenerate multiplet is

then abbreviated 1D2 . But we can also add together two l = 1 states to get total angular momentum
L = 1 as well. The corresponding spatial wavefunction is antisymmetric, hence S = 1 in order to
achieve a symmetric spin wavefunction. Since |L − S| ≤ J ≤ |L + S| we have J = 0, J = 1, or J = 2

corresponding to multiplets 3P0 , 3P1 , and 3P2 , with degeneracy 1, 3, and 5, respectively. The final state

has J = L = S = 0 : 1S0. The Hilbert space is then spanned by two J = 0 singlets, one J = 1 triplet, and
two J = 2 quintuplets: 0⊕ 0⊕ 1⊕ 2⊕ 2. That makes 15 states. Which of these terms corresponds to the
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3d transition metal series
(
[Ar] core

)

21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn

4s2 3d1 4s2 3d2 4s2 3d3 4s1 3d5 4s2 3d5 4s2 3d6 4s2 3d7 4s2 3d8 4s1 3d10 4s2 3d10

Table 6.2: Electronic configuration of 3d-series metals.

ground state?

The ordering of the multiplets is determined by the famous Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L− S|. If
the shell is more than half-filled, then J = L+ S.

Hund’s rules are largely empirical, but are supported by detailed atomic quantum many-body calcula-
tions. Basically, rule #1 prefers large S because this makes the spin part of the wavefunction maximally
symmetric, which means that the spatial part is maximally antisymmetric. Electrons, which repel each
other, prefer to exist in a spatially antisymmetric state. As for rule #2, large L expands the electron cloud
somewhat, which also keeps the electrons away from each other. For neutral carbon, the ground state
has S = 1, L = 1, and J = |L− S| = 0, hence the ground state term is 3P0.

Let’s practice Hund’s rules on a couple of ions:

• P : The electronic configuration for elemental phosphorus is [Ne] 3s2 3p3. The unfilled 3d shell has
three electrons. First maximize S by polarizing all spins parallel (up, say), yielding S = 3

2 . Next
maximize L consistent with Pauli exclusion, which says L = −1+0+1 = 0. Finally, since the shell
is exactly half-filled, and not more, J = |L− S| = 3

2 , and the ground state term is 4S3/2 .

• Mn4+ : The electronic configuration [Ar] 4s0 3d3 has an unfilled 3d shell with three electrons. First
maximize S by polarizing all spins parallel, yielding S = 3

2 . Next maximize L consistent with
Pauli exclusion, which says L = 2 + 1 + 0 = 3. Finally, since the shell is less than half-filled,
J = |L− S| = 3

2 . The ground state term is 4F3/2 .

• Fe2+ : The electronic configuration [Ar] 4s0 3d6 has an unfilled 3d shell with six electrons, or four
holes. First maximize S by making the spins of the holes parallel, yielding S = 2. Next, maximize
L consistent with Pauli exclusion, which says L = 2 + 1 + 0 + (−1) = 2 (adding Lz for the four
holes). Finally, the shell is more than half-filled, which means J = L + S = 4. The ground state
term is 5D4 .

• Nd3+ : The electronic configuration [Xe] 6s0 4f3 has an unfilled 4f shell with three electrons. First
maximize S by making the electron spins parallel, yielding S = 3

2 . Next, maximize L consistent
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np 0 1 2 3 4 5 6

L 0 1 1 0 1 1 0

S 0 1
2 1 3

2 1 1
2 0

J 0 1
2 0 3

2 2 3
2 0

nd 0 1 2 3 4 5 6 7 8 9 10

L 0 2 3 3 2 0 2 3 3 2 0

S 0 1
2 1 3

2 2 5
2 2 3

2 1 1
2 0

J 0 3
2 2 3

2 0 5
2 4 9

2 4 5
2 0

nf 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L 0 3 5 6 6 5 3 0 3 5 6 6 5 3 0

S 0 1
2 1 3

2 2 5
2 3 7

2 3 5
2 2 3

2 1 1
2 0

J 0 5
2 4 9

2 4 5
2 0 7

2 6 15
2 8 15

2 6 7
2 0

Table 6.3: Hund’s rules applied to p, d, and f shells.

with Pauli exclusion: L = 3 + 2 + 1 = 6. Finally, because the shell is less than half-filled, we have
J = |L− S| = 9

2 . The ground state term is 4I9/2 .

For high Z ions, spin-orbit effects are very strong, and one cannot treat the angular momentum and spin
degrees of freedom of the individual electrons separately. Rather, the electrons are characterized by their
total angular momentum j, and the LS (Russell-Saunders) coupling scheme which gives rise to Hund’s
rules crosses over to another scheme called jj coupling3. In practice, pure jj coupling is rare, and the
electronic structure of high Z atoms and ions reflects some intermediate situation between pure LS and
pure jj schemes.

6.2 Crystal Field Theory

The Hamiltonian of an isolated atom or ion has the full rotational symmetry of O(3). In a crystalline
environment, any electrons in an unfilled outer shell experience a crystal electric field due to the charges
of neighboring ions. This breaks O(3) down to a discrete site group P(r), resulting in a new multiplet
structure classified by the IRREPs of P(r). The program is therefore to identify the representation of
SO(3) (possibly with half-odd-integer angular momentum) and decompose it into the IRREPs of the

3See, e.g., P. H. Heckmann and E. Träbert, Introduction to the Spectroscopy of Atoms (North-Holland, 1989).
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Figure 6.2: Title from Bethe’s original article on term splitting in crystals, Ann. der Physik 395, 133-208
(1929), and a photo of Bethe.

appropriate site group using the decomposition formula

nΓ (Ψ) =
1

NG

∑

C
NC χ

Γ ∗

(C)χΨ (C) . (6.1)

If the crystal is symmorphic and the ion sits at a site of maximal symmetry, then the decomposition is
with respect to the crystallographic point group P. The foundations of this analysis were laid in 1929 by
Hans Bethe in a seminal paper entitled Termsaufspaltung in Kristallen (”term splitting in crystals”).

6.2.1 Decomposing IRREPs of O(3)

Our first order of business is to obtain the characters of the various point group class representatives
in the representations of SO(3), χJ(C), and then to invoke Eqn. 6.1 to decompose the terms 2S+1LJ

into the point group IRREPs4 The individual classes C will contain elements which are either rotations
C(α) through an angle α about an axis, inversion I , reflections in a plane σ = I C(π), or rotoreflections
S(α) = I C(α− π). We consider each of these in turn:

◦ Identity : The character of the identity is the dimension of the O(3) IRREP. Thus χJ(E) = 2J + 1.

◦ Proper rotations : Recall how the group character, being the trace of a representation matrix, is
invariant under a similarity transformation, and upon rotating to a frame where the invariant axis
is ẑ, the trace of the rotation matrix D(α, ẑ) = exp(−iαJz) is

χJ(α) =
sin (J + 1

2 )α

sin 1
2α

(6.2)

◦ Inversion : The inversion element I commutes with all other point group operations. Since I2 = 1,
the inversion eigenvalue is η = ±1. This is called the parity. For a single atomic orbital of angular
momentum l, we have η = (−1)l. But for the term 2S+1LJ , the parity is η =

∏
i(−1)li , where li is

4When the ion is located at a site which is not of maximal symmetry, P will refer to the appropriate site group.
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the angular momentum of the ith electron state in the electron configuration associated with each
term. Thus, if there are n electrons in the angular momentum l shell, the parity is η = (−1)nl which
is not necessarily the same as (−1)L. For example, the ground state term of nitrogen is 4S3/2, hence

L = 0. But the corresponding electron configuration is 1s2 2s2 2p3, hence η = −1. The character of
the inversion operator is χJ(I) = (2J + 1) η.

◦ Reflections : Every reflection can be written as σ = I C(π). Therefore since I commutes with C(π),
their eigenvalues multiply and we have χJ(σ) = η sin(J + 1

2)π.

◦ Rotoreflections : Since S(α) = I C(α− π), we have χJ(α̃) = χJ(α − π) η , where α̃ denotes rotore-
flection through angle α.

We will first consider the case where J ∈ Z, so we do not need to invoke the double groups. Another
possible setting is that we might be neglecting spin-orbit effects and considering individual atomic or-
bitals of angular momentum l, in which case the parity is η = (−1)l. For point group proper rotations,
we have from Eqn. 6.2,

χJ(π) =

{
+1 if J = 2k

−1 if J = 2k + 1
, χJ(2π/3) =





+1 if J = 3k

0 if J = 3k + 1

−1 if J = 3k + 2

(6.3)

and

χJ(π/2) =





+1 if J = 4k

+1 if J = 4k + 1

−1 if J = 4k + 2

−1 if J = 4k + 3

, χJ(π/3) =





+1 if J = 6k

+2 if J = 6k + 1

+1 if J = 6k + 2

−1 if J = 6k + 3

−2 if J = 6k + 4

−1 if J = 6k + 5

. (6.4)

p
x

p
y

p
z

p

O(3) D
4h

A
2u

E
u

Figure 6.3: Atomic p orbital in a tetragonal environment with D4h symmetry.
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D4 E 2C4 C2 2C ′
2 2C ′′

2 basis

A1 1 1 1 1 1 x2 + y2 or z2

A2 1 1 1 −1 −1 z or Lz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0
{
x , y

}
or
{
xz , yz

}

1− (p) 3 1 −1 −1 −1 A2 ⊕E

2+ (d) 5 −1 1 1 1 A1 ⊕B1 ⊕B2 ⊕ E

Table 6.4: Character table ofD4 and decomposition of atomic p- and d- levels in aD4 environment. Note
that D4h = D4 × Ci.

6.2.2 Atomic levels in a tetragonal environment

Let’s first consider a simple case of an atomic p-level placed in a tetragonal environment with D4 sym-
metry, as depicted in Fig. 6.3. In free space, the p level is triply degenerate. Since D4 is a proper point
group, we only need the characters for the operations E, C2, and C4, which, according to the above
computations, are

χl=1(E) = 3 , χl=1(C2) = −1 , χl=1(C3) = 0 , χl=1(C4) = +1 , (6.5)

where we’ve included χl=1(C3) as a bonus character. Using the representation decomposition formula
of Eqn. 6.1, we then find 1− = A2 ⊕E.

Suppose our environment has the full D4h symmetry and not only D4. Now D4h = D4 × Ci , where
Ci =

{
E, I

} ∼= Z2, and we know (see §2.4.6) that for an arbitrary group G, each conjugacy class C in
G has a double IC in G × Z2, and furthermore that each IRREP Γ of G spawns two IRREPs Γ± (also

called Γg and Γu) for G × Z2 , with χΓ±

(C) = χΓ (C) and χΓ±

(I C) = ±χΓ (C). Since p-states have parity

η = (−1)l = −1, we immediately know that in a D4h environment, 1− = A2u ⊕ Eu.

What happens if we place an atomic d level in a tetragonal environment with D4h symmetry? In this
case we have

χl=2(E) = 5 , χl=2(C2) = +1 , χl=2(C3) = −1 , χl=2(C4) = −1 . (6.6)

Accordingly we find 2+ = A1 ⊕ B1 ⊕ B2 ⊕ E in D4 , and of course 2+ = A1g ⊕ B1g ⊕ B1g ⊕ Eg in D4h.
Note that the labels u and g apply only when the site group symmetry includes inversion. Accordingly,
in Tab. 6.6, the IRREPs for the two proper point groups Td and D3 do not include the g or u label.

6.2.3 Point charge model

We can understand the splitting of atomic levels in terms of the local crystal field potential due to the
neighboring ions, which breaks the continuous O(3) atomic symmetry. Consider an electron at position
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O E 8C3 3C2 6C ′
2 6C4 basis

Γ = A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1 Lx Ly Lz (sixth order in r)

E 2 −1 2 0 0
{√

3 (x2 − y2) , 3z2 − r2
}

T1 3 0 −1 −1 1
{
x , y , z

}

T2 3 0 −1 1 −1
{
yz , zx , xy

}

Jη = 0± 1 1 1 1 1 A1

1± 3 0 −1 −1 1 T1
2± 5 −1 1 1 −1 E ⊕ T2
3± 7 1 −1 −1 −1 A2 ⊕ T1 ⊕ T2
4± 9 0 1 1 1 A1 ⊕E ⊕ T1 ⊕ T2
5± 11 −1 −1 −1 1 E ⊕ 2T1 ⊕ T2

Table 6.5: Character table of O and decomposition of O(3) IRREPs in terms of O IRREPs.

r in the vicinity of the origin, and the electrostatic potential arising from a fixed ion at position ∆ (not
necessarily a direct lattice vector). The Coulomb potential is proportional to

1

|∆− r| =
1

∆

(
1− 2∆̂ · u+ u2

)−1/2
, (6.7)

where u ≡ r/∆ and ∆̂ ≡∆/∆. Define ε ≡ 2∆̂ · u− u2. Then from Taylor’s theorem,

(1− ε)−1/2 = 1 + 1
2 ε+

3
8 ε

2 + 5
16 ε

3 + 35
128 ε

4 + . . . . (6.8)

We then have, keeping terms up to order u4, and restoring the dimensionful variables,

1

|∆− r| =
1

∆
+
∆ · r
∆3

+
3 (∆ · r)2 −∆2 r2

2∆5
+

5(∆ · r)3 − 3∆2 (∆ · r) r2
2∆7

+
35(∆ · r)4 − 30∆2 (∆ · r)2 r2 + 3∆4 r4

8∆9
+ . . . .

(6.9)

The local potential is given by

V (r) = −
∑

∆

Z
∆
e2

∆

1

|∆̂− u|
, (6.10)

where the charge of the ion at position ∆ is Z
∆
e . The general result, using the spherical harmonic

expansion, is

V
CF
(r) =

∑

∆

4πZ
∆
e2

∆

∞∑

l=0

1

2l + 1

(
r

∆

)l l∑

m=−l

Y ∗
lm(∆̂)Ylm(r̂) . (6.11)

In a tetragonal environment, the ions are located at ∆ = ±a x̂, ±a ŷ, and ±b ẑ. The isotropy of space is
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trigonal distortion rhombic distortion

Figure 6.4: Trigonal and rhombic distortions of an octahedral environment.

already broken at O(r2) of the expansion, and one finds, neglecting the constant piece,

Vtet(r) =

A︷ ︸︸ ︷
−Ze2

(
1

a
− 1

b

) (
x2

a2
+
y2

a2
− 2z2

b2

)
. (6.12)

Here we have assumed that all the surrounding ions have charge +Ze, but theD4h symmetry allows for
the planar ions do have a different charge than the axial ions. Note that for a = b the above potential
vanishes. In this case the symmetry is cubic and we must go to fourth order. Suppose Z < 0 and that
a < b. In this case the coefficient A is positive, and we see that the px and py orbitals incur an energy
cost, since they are pointed directly toward the closest negative ions. These orbitals provide suitable
basis functions for the E IRREP of D4. The pz orbital is then lower in energy, as Fig. 6.3 indicates, and
corresponds to the A2 IRREP. For d orbitals, clearly dx2−y2 is going to be highest in energy, since its
lobes are all pointing toward the planar ions. This transforms under the B1 IRREP, as may be seen by
inspection of the characters. The dxz and dyz orbitals clearly remain degenerate, since x may still be
rotated into y. Accordingly they transform as the two-dimensional E IRREP. This leaves d3z2−r2 and
dxy . There is no symmetry relating these orbitals, and they transform as the one-dimensional IRREPs A1

and B2, respectively.

6.2.4 Cubic and octahedral environments

Now let’s implement the same calculation for the case of a cubic or octahedral environment. Centering
each about the origin, one has that the eight cubic sites are located at R (±1,±1,±1). The six octahedral

sites are at R
{
(±1, 0, 0) , (0,±1, 0) , (0, 0,±1)

}
. If the side lengths are all a, then R =

√
3
2 a for the cube

andR = 1√
2
a for the octrahedron. One finds in each case that the local potential, neglecting the constant
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O(3) O
h

D
4h

C
i

free space octahedral tetragonal trigonal monoclinic

D
3

T
2g

E
g

d

B
1g

B
2g

B

B

E
g

E

E

A
1g

A
1

A

A

A

4Ds+ 5Dt

3Ds− 5Dt

10Dq

10Dq − 4Ds

−5Dt

Figure 6.5: Splitting of an atomic d-level in different crystalline environments.

piece, may be written

V (r) =
A

R5

(
x4 + y4 + z4 − 3

5 r
4
)

, (6.13)

where Acube = −70
9 Ze

2 and Aoctahedron = +35
4 Ze

2. Thus, the cubic and octahedral environments have
an opposite effect, and crystal field levels pushed up in a cubic environment are pushed down in an
octahedral environment, all else being the same. A typical scenario is that our central ion is a transition
metal, and the surrounding cage is made of O−− ions (Z = −2).

Consulting Tab. 6.5, we see that atomic p levels remain threefold degenerate in a cubic or octahedral
environment, transforming as the T2 representation. The fivefold degeneracy of the atomic d level is
split, though, into 2+ = E ⊕ T2. If the site symmetry is Oh, we have 2+ = Eg ⊕ T2g . In a cubic
environment, the T2g levels are pulled lower, since the dx2−y2 and d3z2−r2 orbitals point toward the face
centers of the cube, i.e. away from the oxygen anions, and the Eg levels are pushed up. In an octahedral
environment, the situation is reversed.

What happens in a tetragonal environment? Carrying out the above calculation of V (r), one finds a
nontrivial contribution at third order in r/R, and

Vtet(r) =
A

R4
xyz , (6.14)

with A = − 20√
3
Ze2. Notice how in all cases the potential transforms according to the trivial representa-

tion Γ1. The decomposition of the 2+ IRREP of O(3) into IRREPs of Td is pretty much identical, because
Td and O are isomorphic. One again has 2+ = E ⊕ T2. With respect to the 12 element group T , one
has s+ = E ⊕ T . Tab. 6.6 indicates how electron shell levels up to l = 4 split in various crystal field
environments. Note again how there is no g or u index on the IRREPs of the proper point groups, since
they do not contain the inversion element I .
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We can compute analytically the energy shifts using the point charge model. For the case of an atomic
d level, we first resolve the d states into combinations transforming according to the E and T2 IRREPs of
O, writing the angular wavefunctions as

dxy(r̂) =
i√
2

{
Y2,−2(r̂)− Y2,2(r̂)

}

dyz(r̂) =
1√
2

{
Y2,−1(r̂) + Y2,1(r̂)

}

dxz(r̂) =
i√
2

{
Y2,−1(r̂)− Y2,1(r̂)

}
,

(6.15)

which transform as T2, and

dx2−y2(r̂) =
1√
2

{
Y2,−2(r̂) + Y2,2(r̂)

}

d3z2−r2(r̂) = Y2,0(r̂) ,
(6.16)

which transform as E. According to the Wigner-Eckart theorem, this already diagonalizes the 5 × 5
Hamiltonian within the atomic d basis, with

ε(Eg) =
〈
dx2−y2

∣∣V (r)
∣∣ dx2−y2

〉
, ε(T2g) =

〈
dxy

∣∣V (r)
∣∣ dxy

〉
. (6.17)

One finds εOCT(Eg) = −4Dq and εOCT(T2g) = +6Dq, with

Dq =
eq 〈r4〉
6a5

, (6.18)

where q = Ze is the ligand charge, a is the distance from the metal ion (where the d electrons live) to the
ligand ions, and 〈r4〉 = 〈Rn2 | r4 |Rn2 〉 is the expectation of r4 with respect to the radial wavefunction
Rnl(r) with l = 2. For the cubic environment, one finds εCUB(Eg) = −8

9×6Dq and εCUB(T2g) = +8
9×4Dq,

while in a tetrahedral environment εTHD(Eg) = −4
9 × 6Dq and εTHD(T2g) = +4

9 × 4Dq. In a tetragonal
environment, one finds

εTTR(Eg) = −4Dq −Ds+ 4Dt

εTTR(B2g) = −4Dq + 2Ds−Dt

εTTR(A1g) = 6Dq − 2Ds− 6Dt

εTTR(B1g) = 6Dq + 2Ds−Dt ,

(6.19)

where

Ds =
2eq

7

(
1

a3
− 1

b3

)
〈r2〉 , Dt =

2eq

21

(
1

a5
− 1

b5

)
〈r4〉 . (6.20)

Fig. 6.5 gives a schematic picture of how an atomic d level splits in various crystalline environments
(D > 0 case is shown).

6.2.5 Matrix elements and selection rules

Recall the Wigner-Eckart theorem,

〈
Γc γ , lc

∣∣ Q̂Γa
α

∣∣Γb β , lb
〉
=
∑

s

(
Γa
α

Γb
β

∣∣∣∣
Γc , s

γ

) 〈
Γc , lc

∥∥ Q̂Γa
∥∥Γb , lb

〉
s

, (6.21)
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Oh Td D4h D3 D2h

Lη cubic tetrahedral tetragonal trigonal orthorhombic

0+ (s) A1g A1 A1g A1 A1g

1− (p) T1u T2 A2u ⊕ Eu A2 ⊕ E B2u ⊕ Eu

2+ (d) Eg ⊕ T2g E ⊕ T2 A1g ⊕B1g A1 ⊕ 2E A1g ⊕B1g

⊕B2g ⊕ Eg ⊕B2g ⊕ Eg

3− (f) A2u ⊕ T1u ⊕ T2u A2 ⊕ T1 ⊕ T2 A2u ⊕B1u A1 ⊕ 2A2 A1u ⊕A2u

⊕B2u ⊕ 2Eu ⊕B2u ⊕ 2Eu

4+ (g) A1g ⊕ Eg A1 ⊕ E 2A1g ⊕A2g ⊕B1g 2A1 ⊕A2 ⊕ 3E 2A1g ⊕A2g ⊕B1g

⊕T1g ⊕ T2g ⊕T1 ⊕ T2 ⊕B2g ⊕ 2Eg ⊕B2g ⊕ 2Eg

Table 6.6: Splitting of one-electron levels in crystal fields of different symmetry.

where lb,c labels different subspaces transforming according to the Γb,c IRREPs of the symmetry group

G, and s is the multiplicity index necessary when G is not simply reducible. Operators Q̂ such as the
Hamiltonian transform according to the trivial representation, in which case

〈
Γc γ , lc

∣∣ Q̂
∣∣Γb β , lb

〉
= δΓb Γc

δβγ
〈
Γc , lc

∥∥ Q̂
∥∥Γb , lb

〉
, (6.22)

where 〈
Γc , lc

∥∥ Q̂
∥∥Γb , lb

〉
=

1

dΓb

∑

β

〈
Γb β , lc

∣∣ Q̂
∣∣Γb β , lb

〉
. (6.23)

In order that
(
Γa
α

Γb
β

∣∣∣ Γc ,s
γ

)
6= 0, we must have Γc ⊂ Γa × Γb , i.e.

nΓc
(Γa × Γb) =

1

NG

∑

C
NC χ

Γ ∗
c (C)χΓa(C)χΓb(C) (6.24)

must be nonzero. Equivalently, the condition may be stated as Γb ⊂ Γ ∗
a × Γc or Γa ⊂ Γ ∗

b × Γc .

Let’s apply these considerations to the problem of radiative transitions in atoms. We follow the treat-
ment in chapter 3 of Lax, following a brief review of quantum radiation theory. The single electron
Hamiltonian is

Ĥ =
1

2m

(
p+

e

c
A
)2

+ V (r) + gµ
B
H · s/~+

1

2m2c2
s ·∇V ×

(
p+ e

cA
)

, (6.25)

where A is the vector potential of the electromagnetic field, V (r) is the scalar potential due to the ionic
nucleus, and s = 1

2~σ is the electron spin operator. µ
B
= e~

2mc = 5.788×10−9 eV/G is the Bohr magneton,

and g = 2 + α
π +O(α2) with α = e2

~c ≈ 1
137 is the so-called g-factor5, which is g = 2 at ”tree level” within

5Like, duh.
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E C2 C3 C4 C6 I σ S6 S4 S3

1− (P ) 3 −1 0 1 2 −3 1 0 −1 −2

1+ (M ) 3 −1 0 1 2 3 −1 0 1 2

Table 6.7: Characters for the electric and magnetic dipole operators.

quantum electrodynamics6. The last term above is due to the spin-orbit interaction and we will neglect
the contribution ofA therein. The quantized electromagnetic field is described by the vector potential7

A(r) =
∑

k,λ

√
2π~c

V |k|
(
a
kλ e

−ik·r ê∗λ(k) + a†
kλ e

ik·r êλ(k)
)

, (6.26)

where êλ(k) is the polarization vector, with
{
ê1(k) , ê2(k) , k̂

}
an orthonormal triad for each k.

The matrix element one must compute is that of p ·A(r), where p is the electron momentum and A(r)
is the quantized electromagnetic vector potential. Writing A(r) as the above Fourier sum, we need to
evaluate 〈

0
∣∣ e−ik·r p · ê∗λ(k)

∣∣n
〉

, (6.27)

where the atomic transition is from |n 〉 to the ground state | 0 〉, k is the wavevector of the emitted
photon, and êλ(k) is the photon polarization vector (with λ the polarization index). If ka

B
≪ 1, we may

approximate e−ik·r ≈ 1, and we then need the matrix element of

ê∗λ(k) ·
〈
0
∣∣p
∣∣n
〉
=
m

i~
(En − E0) ê

∗
λ(k) ·

〈
0
∣∣ r
∣∣n
〉

. (6.28)

If the states | 0 〉 and |n 〉 are of the same parity, then the transition is forbidden within the electric dipole
approximation, and one must expand exp(−ik · r) = 1− ik · r − 1

2 (k · r)2 + . . . to next order, i.e. to the
magnetic dipole and electric quadrupole terms. Magnetic dipole transitions involve the matrix element
k × ê∗λ(k) · 〈 0 | l + 2s |n 〉, where l = r × p and s is the electron spin. Summing over all the electrons in
the unfilled shell, we have the electric and magnetic dipole operators,

P = e
∑

i

ri , M =
e~

2mc

∑

i

(li + 2si) . (6.29)

We see that these operators transform as an axial vector (P , or 1−) and a pseudovector (M , or 1+),
respectively. This has profound consequences for the allowed matrix elements.

Site group C3v

Lax8 considers the case of an ion in an environment with a C3v site group. The characters for the vector
and pseudovector representations of the P and M operators are given in Tab. 6.7. Consulting the

6Radiative corrections to gtree = 2 may be cast in the form of an asymptotic power series in the fine structure constant α =
e2/~c ≈ 1

137
.

7See, e.g., J. J. Sakurai, Advanced Quantum Mechanics, §2.3.
8See the subsection ”Dipole Radiation Selection Rules” on pp. 88-89 in Lax, Symmetry Principles.
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character table for C3v (Tab. 2.1), we decompose their respective O(3) IRREPs 1∓ into C3v IRREPs, and
find 1− = A1 ⊕E and 1+ = A2 ⊕E, with Pz transforming as A1 and Px,y as E. Similarly, Mz transforms
as A2 and Mx,y as E. We now need to know how the products of the C3v IRREPs decompose, which
is summarized in Tab. 6.9. Since A1 × A2 = A2 × A1 = A2, and we see that no component of P can
have a nonzero matrix elements between these corresponding IRREPs, i.e. 〈A1 |P |A2 〉 = 0. Similarly,
since A1 × A1 = A2 × A2 = A1, we have 〈A1 |M |A1 〉 = 〈A2 |M |A2 〉 = 0. Further restrictions apply
when we consider the longitudinal (Qz) and transverse (Qx,y) parts of these operators, and we find that
〈Ai |Qz |E 〉 = 〈Ai |Qx,y |Aj 〉 = 0 whereQ is either P orM , for all i and j.

Site group D3d

Now consider the problem of dipole radiation in a D3d environment. haracter table for D3d, including
the decomposition of the P and M representations, is provided in Tab. 6.8. Unlike C3v , the group D3d

contains the inversion I , hence its IRREPs are classified as either g or u, according to whether χΓ (I) =
±dΓ . From Tab. 6.8, we find 1− = A2u ⊕ Eu and 1+ = A2g ⊕ Eg . Next, we decompose the products of
the D3d IRREPs, in Tab. 6.9, and we obtain 1− = A2u ⊕ Eu and 1+ = A2g ⊕ Eg . Since I commutes with

D3d E 2C3 3C ′
2 I 2IC3 3IC ′

2

A1g 1 1 1 1 1 1

A2g 1 1 −1 1 1 −1

Eg 2 −1 0 2 −1 0

A1u 1 1 1 −1 −1 −1

A2u 1 1 −1 −1 −1 1

Eu 2 −1 0 −2 1 0

1− (P ) 3 0 −1 −3 0 1 A2u ⊕ Eu

1+ (M ) 3 0 −1 3 0 −1 A2g ⊕ Eg

Table 6.8: Character table for D3d.

all group elements, its eigenvalue is a good quantum number, and accordingly 〈Γg |M |Γ ′
u 〉 = 0 for

any IRREPs Γg and Γ ′
u , since M is even under inversion and can have no finite matrix element between

states of different parity. Similarly, P is odd under inversion, so 〈Γg |P |Γ ′
g 〉 = 〈Γu |P |Γ ′

u 〉 = 0. Again,
matrix elements of the longitudinal and transverse components are subject to additional restrictions,
and the general rule is that some IRREP Γa contained in the decomposition of a given operator Q̂ must
also be contained in the decomposition of the product representation Γ ∗

b × Γc in order that 〈Γc | Q̂ |Γb 〉
be nonzero9.

9Note how we are using an abbreviated notation |Γ 〉 for the more complete |Γ µ , l 〉.
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C3v A1 A2 E

A1 A1 A2 E

A2 A2 A1 E

E E E A1 ⊕A2 ⊕E

D3d A1g A2g Eg A1u A2u Eu

A1g A1g A2g Eg A1u A2u Eu

A2g A2g A1g Eg A2u A1u Eu

Eg Eg Eg A1g ⊕A2g ⊕ Eg Eu Eu A1u ⊕A2u ⊕ Eu

A1u A1u A2u Eu A1g A2g Eg

A2u A2u A1u Eu A2g A1g Eg

Eu Eu Eu A1u ⊕A2u ⊕ Eu Eg Eg A1g ⊕A2g ⊕ Eg

Table 6.9: Decomposition of products of IRREPs in C3v and D3d. Red entries indicate cases where
〈Γ |P |Γ ′ 〉 = 0 for all components of P , and blue entries where 〈Γ |M |Γ ′ 〉 = 0 for all components of
M , where Γ and Γ ′ are the row and column IRREP labels, respectively. Additional constraints apply to
matrix elements of the longitudinal (z) and transverse (x, y) components individually (see text).

6.2.6 Crystal field theory with spin

Thus far we have considered how the 2l + 1 states in a single-electron orbital of angular momentum l,
which form an IRREP of O(3), split in the presence of a crystal field and reorganize into IRREPs of the
local site group, according to Eqn. 6.1. This formalism may be applied to many-electron states described
by terms 2S+1LJ , provided J ∈ Z. Or it may be applied to terms on the basis of their L values alone,
if we neglect the atomic spin-orbit coupling which is the basis of Hund’s third rule. In this section, we
consider term splitting in more detail, exploring how it can be approached either from the strong spin-
orbit coupling side or the strong crystal field potential side. We shall show how a given term 2S+1LJ

may be analyzed by either of the following procedures:

(i) First decompose the spin S and angular momentum L multiplets into IRREPs Γa(S) and Γb(L) of
P(r), respectively. Then decompose the products Γa(S)× Γb(L), again into IRREPs of P(r). This is
appropriate when V

CF
≫ V

RS
, where V

CF
is the scale of the crystal field potential, and V

RS
the scale

of the atomic Russell-Saunders L-S coupling.

(ii) First decompose 2S+1L within O(3) into IRREPs according to their total angular momentum J .
Then decompose these O(3) IRREPs into IRREPs of P(r). This is appropriate when V

RS
≫ V

CF
.

We illustrate the salient features by means of two examples.



16 CHAPTER 6. CONSEQUENCES OF CRYSTALLOGRAPHIC SYMMETRY

5
D

5
D

E×E

T
2
×E

T
2
×T

2

5
D

4

5
D

3

5
D

2

5
D

1

5
D

0

A
1 A

1

T
1

T
1

A
2

A
2

T
1

T
1

T
2T

2

T
2

T
2

E

E

E E

A
1 A

1

T
1

T
1

T
2

T
2

Cr
++

crystal field  

dominates

LS coupling  

dominates

cubic

environment

E×T
2

Figure 6.6: Decomposition of the 5D states of Cr++ into IRREPs of O.

Cr++ in a cubic environment

The first is that of the Cr++ ion, whose electronic configuration is [Ar] 4s0 3d4. The ground state term in
free space is 5D0 , i.e. S = L = 2. According to Tab. 6.5, each of these degenerate multiplets, for both
spin and angular momentum, decomposes as D = E ⊕ T2 within O. Thus,

5D = ΓS=2 × ΓL=2 =
(
E ⊕ T2

)
×
(
E ⊕ T2

)
= E × E ⊕ E × T2 ⊕ T2 × E ⊕ T2 × T2 . (6.30)

Appealing again to the character table for O, from Eqn. 6.1 we compute

E × E = A1 ⊕A2 ⊕ E

E × T2 = T2 ⊗ E = T1 ⊕ T2

T2 × T2 = A1 ⊕ E ⊕ T1 ⊕ T2 .

(6.31)

The resulting tally of O IRREPs and their multiplicities:

5D = 2A1 ⊕A2 ⊕ 2E ⊕ 3T1 ⊕ 3T2 . (6.32)



6.2. CRYSTAL FIELD THEORY 17

T ′
d E E 8C3 8C3

3C
2

3C2

6S4 6S4
6σd
6σd

O′ E E 8C3 8C3
3C

2

3C2

6C4 6C4
6C′

2

6C
′

2

O′ basis T ′
d basis

∆1 = A1 1 1 1 1 1 1 1 1 r2 r2 or xyz

∆2 = A2 1 1 1 1 1 −1 −1 −1 xyz Lx Ly Lz

∆12 = E 2 2 −1 −1 2 0 0 0
{√

3 (x2−y2) , 3z2−r2
} {√

3 (x2−y2) , 3z2−r2
}

∆15 = T1 3 3 0 0 −1 1 1 −1
{
Lx , Ly , Lz

} {
Lx , Ly , Lz

}

∆25 = T2 3 3 0 0 −1 −1 −1 1
{
yz , zx , xy

} {
x , y , z

}

∆6 2 −2 1 −1 0
√
2 −

√
2 0

{
| 12 , ±1

2 〉
} {

| 12 , ±1
2 〉
}

∆7 2 −2 1 −1 0 −
√
2

√
2 0

{
xyz ⊗ | 12 , ±1

2 〉
} {

Lx Ly Lz ⊗ | 12 , ±1
2 〉
}

∆8 4 −4 −1 1 0 0 0 0
{
| 32 , m 〉

} {
| 32 , m 〉

}

Γ1/2 2 −2 1 −1 0
√
2 −

√
2 0 ∆6

Γ3/2 4 −4 −1 1 0 0 0 0 ∆8

Γ5/2 6 −6 0 0 0 −
√
2

√
2 0 ∆7 ⊕∆8

Γ7/2 8 −8 1 −1 0 0 0 0 ∆6 ⊕∆7 ⊕∆8

Γ9/2 10 −10 −1 1 0
√
2 −

√
2 0 ∆6 ⊕ 2∆8

∆8 ×∆2 4 −4 −1 1 0 0 0 0 ∆8

∆8 ×∆15 12 −12 0 0 0 0 0 0 ∆6 ⊕∆7 ⊕ 2∆8

∆8 ×∆25 12 −12 0 0 0 0 0 0 ∆6 ⊕∆7 ⊕ 2∆8

Table 6.10: Character table for the double groups O′ and T ′
d .

Note that a sum of their dimensions yields 2 + 1 + 4 + 9 + 9 = 25, which of course is consistent with
S = 2 and L = 2. Now let’s approach this from the spin-orbit side. That is, we first multiply the S = 2
and L = 2 IRREPs within O(3), yielding

2× 2 = 0⊕ 1⊕ 2⊕ 3⊕ 4 . (6.33)

A check of the bottom half of Tab. 6.5 reveals that this once again results in the same final tally of O
IRREPs. This situation is illustrated in Fig. 6.6.
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Figure 6.7: Decomposition of the 4F states of Co++ into IRREPs of the double group O′.

Co++ in a cubic environment

Next, consider the case of Co++, whose ground state term is 4F9/2 , corresponding to S = 3
2 and L = 3.

We first ignore spin-orbit, and we decompose the L = 3 multiplet of O(3) as F = A2 ⊕ T1 ⊕ T2. We
adopt the alternate labels ∆2, ∆15, and ∆25 for these IRREPs of O (see Tab. 6.1010) because we will need
to invoke the double group O′ and its IRREPs presently. We next decompose the S = 3

2 spin component,
and here is where we need the double group O′ and its IRREPs. We see from the table that Γ3/2 = ∆8.

We now must decomposing the product representations of the double group O′, and we find

∆8 ×∆2 = ∆8

∆8 ×∆15 = ∆6 ⊕∆7 ⊕ 2∆8

∆8 ×∆25 = ∆6 ⊕∆7 ⊕ 2∆8 .

(6.34)

Therefore we conclude
4F = 2∆6 ⊕ 2∆7 ⊕ 5∆8 . (6.35)

Since ∆6 and ∆7 are two-dimensional, and ∆8 is four-dimensional, the total dimension of all the terms
in 4F is 2× 2 + 2× 2 + 4× 5 = 28 = (2S + 1)(2L + 1), with S = 3

2 and L = 3.

10Tab. 3.6.2 on p. 95 of Lax contains a rare error: χΓ5/2(6C4) = −
√
2 while χΓ9/2(6C4) = +

√
2 .
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Had we first decomposed into O(3) IRREPs, writing

3
2 × 3 = 3

2 ⊕ 5
2 ⊕ 7

2 ⊕ 9
2 , (6.36)

and decomposing these half-odd-integer spin IRREPs of O(3) into double group IRREPs of O′, we have

Γ3/2 = ∆8

Γ5/2 = ∆7 ⊕∆8

Γ7/2 = ∆6 ⊕∆7 ⊕∆8

Γ9/2 = ∆6 ⊕ 2∆8 .

(6.37)

Again we arrive at the same crystal field levels as in Eqn. 6.35, now labeled by IRREPs of the double
group O′. The agreement between the two procedures is shown in Fig. 6.7.

Figs. 6.6 and 6.7 are not intended to convey an accurate ordering of energy levels, although in each case
the ground state 2S+1LJ term is placed on the bottom right. Due to level repulsion (see §3.2.6), multiplets
corresponding to the same IRREP cannot cross as the ratio of V

CF
to V

RS
is varied. Note how in Fig. 6.6

there is level crossing, but between different IRREPs.

Dominant crystal field

We have seen how accounting for crystal field splittings either before or after accounting for spin-orbit
coupling yields the same set of levels classified by IRREPs of the local site group. Our starting point
in both cases was the partial term 2S+1L, where S and L are obtained from Hund’s first and second
rules, respectively. Phenomenologically, we can think of Hund’s first rule as minimizing the intraatomic
ferromagnetic exchange energy −J

H
S2, where S is the total atomic spin. What happens, though, if V

CF

is so large that it dominates the energy scale J
H

? Consider, for example, the case of Co4+, depicted in
Fig. 6.8. The electronic configuration is [Ar] 4s0 4d5, and according to Hund’s rules the atomic ground
state term is 6S5/2. In a weak crystal field, this resolves into IRREPs of O′ according to Tab. 6.10 : Γ5/2 =

∆7 ⊕∆8, each multiple of which consists of linear combinations of the original J = S = 5
2 atomic levels.

As shown in the figure, there are three electrons in the T2 orbital and two in the E orbital. The strong
Hund’s rules coupling J

H
keeps the upper two electrons from flipping and falling into the lower single

particle states. This is the high spin state. If V
CF

≫ J
H

, though, the E electrons cannot resist the energetic
advantage of the T2 states, and the electrons reorganize into the low spin state, with S = 1

2 . Unlike the
high spin state, the low spin state cannot be written as a linear combination of states from the original
ground state term. Rather, one must start with the configuration, which contains

(10
5

)
= 252 states.

After some tedious accounting, one finds these states may be resolved into the following O(3) product
representations

[Ar] 4s0 4d5 = 2I ⊕ 2H ⊕ 4G ⊕ 2G ⊕ 2G ⊕ 4F ⊕ 2F ⊕ 2F

⊕ 4D ⊕ 2D ⊕ 2D ⊕ 2D ⊕ 4P ⊕ 2P ⊕ 6S ⊕ 2S .
(6.38)
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Figure 6.8: High spin and low spin states of the Co4+ ion in a cubic environment.

These may be each arranged into full terms by angular momentum addition to form J = L + S, which
yields 2I = 2I13/2 ⊕ 2I11/2 , 4F = 4F9/2 ⊕ 4F7/2 ⊕ 4F5/2 ⊕ 4F3/2 , etc.11 The high spin state came from

the term 6S5/2 . The low spin states must then be linear combinations of the 4D1/2 , 4P1/2 , 2P1/2 , and
2S1/2 terms. These latter states all transform according to the ∆6 IRREP of O′, whereas 6S5/2 = ∆7 ⊕∆8.

Therefore, there must be a level crossing as V
CF

is increased and we transition from high spin state to
low spin state.

The oxides of Mn, Fe, Cu, and Co are quite rich in their crystal chemistry, as these ions may exist in
several possible oxidation states (e.g. Co2+, Co3+, Co4+) as well as various coordinations such as tetra-
hedral, pyramidal, cubic/octahedral. The cobalt oxides are particularly so because Co may exist in high
spin, low spin, and even intermediate spin states. Co2+ is always in the high spin state T 5

2 E
2 (S = 3

2 ),
while Co4+, which we have just discussed, is usually in the low spin state T 5

2 E
0 (S = 1

2 ). Co3+ exists
in three possible spin states: high (T 4

2 E
2, S = 2), intermediate (T 5

2 E
1, S = 1), and low (T 6

2 E
0, S = 0).

Such a complex phenomenology derives from the sensitivity of V
CF

to changes in the Co-O bond length
and Co-O-Co bond angle12.

11The full decomposition of the [Ar] 4s0 4d5 configuration into terms is then

[Ar] 4s0 4d5 = 2I13/2 ⊕ 2I11/2 ⊕ 2H11/2 ⊕ 2H9/2 ⊕ 4G11/2 ⊕ 4G9/2 ⊕ 4G7/2 ⊕ 4G5/2 ⊕ 2 · 2G9/2 ⊕ 2 · 2G7/2 ⊕ 4F9/2

⊕ 4F7/2 ⊕ 4F5/2 ⊕ 4F3/2 ⊕ 2 · 2F7/2 ⊕ 2 · 2F5/2 ⊕ 4D7/2 ⊕ 4D5/2 ⊕ 4D3/2 ⊕ 4D1/2 ⊕ 3 · 2D5/2

⊕ 3 · 2D3/2 ⊕ 4P5/2 ⊕ 4P3/2 ⊕ 4P1/2 ⊕ 2P3/2 ⊕ 2P1/2 ⊕ 6S5/2 ⊕ 2S1/2 .

12See B. Raveau and M. M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics (Wiley, 2012).
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C3 E C3 C2
3 C3v E 2C3 3σv

A 1 1 1 A1 1 1 1

E 1 ω ω2 A2 1 1 −1

E∗ 1 ω2 ω E 2 1 0

P (1−) 3 0 0 A⊕ E ⊕ E∗ P (1−) 3 0 1 A1 ⊕ E

M (1+) 3 0 0 A⊕ E ⊕ E∗ M (1+) 3 0 −1 A2 ⊕ E

Table 6.11: Character tables for C3 and C3v and decomposition of P andM . Here ω = e2πi/3.

6.3 Macroscopic Symmetry

Macroscopic properties of crystals13 are described by tensors. The general formulation is

θa
1
···ak = T

j
1
··· jn

a
1
··· ak

hj
1
··· jn . (6.39)

where θa
1
··· ak

is an observable, hj
1
··· jn is an applied field, and T

j
1
··· jn

a
1
··· ak

is a generalized susceptibility tensor.

The rank of a tensor is the number of indices it carries. Examples include dielectric response, which is a
second rank tensor:

Dµ(k, ω) = εµν(k,ω)Eν(k, ω) . (6.40)

Nonlinear response such as second harmonic generation is characterized by a rank three tensor,

D(2)
µ (2ω) = χµνλ(2ω, ω, ω)Eν(ω)Eλ(ω) . (6.41)

Another example comes from the theory of elasticity, where the stress tensor σαβ(r) is linearly related to
the local strain tensor εµν(r) by a fourth rank elastic modulus tensor Cαβµν ,

σαβ(r) = Cαβµν εµν(r) . (6.42)

We shall discuss the elastic modulus tensor in greater detail further below.

These various tensors must be invariant under all point group operations, a statement known as Neu-
mann’s principle. Note that this requires that the symmetry group Y of a given tensor T must contain the
crystallographic point group, i.e. P ⊂ Y, but does not preclude the possibility that Y may contain ad-
ditional symmetries. One might ask what happens in nonsymmorphic crystals, when the space group
is generated by translations and by elements

{
g
∣∣ τg

}
with τg 6= 0. The answer is that macroscopic

properties of crystals cannot depend on these small translations within each unit cell.

6.3.1 Ferroelectrics and ferromagnets

A crystal may also exhibit a permanent electric (P ) or magnetic (M ) polarization. Any such vector must
be invariant under all point group operations, i.e. P = ĝP ∀ g ∈ P, with the same holding for M 14. In

13See C. S. Smith, Solid State Physics 6, 175 (1958) for a review.
14We write ĝP for the action of the group operation g on the quantity P .
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P (1−) C1 C2 C3 C4 C6 Cs C2v C3v C4v C6v

1 2 3 4 6 m mm2 3m 4mm 6mm

M (1+) C1 C2 C3 C4 C6 Ci C2h S6 C4h C6h

1 2 3 4 6 1 2/m 3 4/m 6/m

Table 6.12: Point groups supporting ferroelectricity and ferromagnetism.

component notation, we have
(ĝP )ν = PµDµν(g) , (6.43)

where Dαβ(g) is the matrix representation of g. Clearly any point group P which contains the inversion
element I does not allow for a finite polarization, since Dµν(I) = −δµν .

If Ψ is the (generally reducible) representation under which P orM or indeed any susceptibility tensor

X
j
1
··· jn

a
1
··· ak

transforms, then the number of real degrees of freedom associated with the tensor is the number

of times it contains the trivial IRREP of P, i.e. the number of degrees of freedom is

n(Ψ) =
1

NG

∑

C
NC χ

Ψ (C) . (6.44)

Recall that χ(C) = 1 for all classes in the trivial representation. Examining the character tables for C3

and C3v, we see that n(1±) = 1 in C3, but in C3v we have n(1−) = 1 but n(1+) = 0. We conclude that any
crystal with a nonzero magnetization density M 6= 0 cannot be one of C3v symmetry. In general, the
condition for a point group to support ferroelectricity is that it be polar, i.e. that it preserve an axis, which
is the axis along which P lies. Of the 32 crystallographic point groups, ten are polar. The cyclic groups
Cn support ferromagnetism, and since 1+ is even under inversion, adding I to these groups is also
consistent with finite M . For all point groups other than those listed in Tab. 6.12, we have n(1±) = 0.
For example, in D3d, we found 1± = A2± ⊕ E± (see Tab. 6.8). In Oh, we found 1± = T1± (see Tab. 6.5
and add ± = g/u when inversion is present). In neither case is the trivial representation present in the
decomposition. Note that Cs

∼= C1v.

If we orient the symmetry axis of these groups along ẑ, we find, upon using the character tables and the
decomposition formula in Eqn. 6.44,

P (C1) =



Px

Py

Pz


 , P (Cs) =



Px

Py

0


 , P (Cn>2 , Cn>2 v) =




0
0
Pz


 (6.45)

and

M(C1) =



Mx

My

Mz


 , M(Ci) =



Mx

My

Mz


 , M(Cn>2 , Cn>2 × Ci) =




0
0
Mz


 , (6.46)

with P =M = 0 in the case of all other groups.
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6.3.2 Spontaneous symmetry breaking

Homage to Socrates, Galileo, Coleman, and Zee:

Sagredo : This thing you have demanded, i.e. that ĝM =M for all point group operations g ∈ P,
I fear is asking too much. For I learned in Professor McX’s class about the wondrous phenomenon
of spontaneous symmetry breaking, the whole point of which is that as a parameter is varied, if our
crystal be in the thermodynamic limit, the symmetry of the ground state may indeed become lower
than that of the Hamiltonian itself. Should not we then expect ĝM 6= M when g corresponds to
the action of one of the so-called broken generators of the symmetry group?

Salviati : Thou hast learnt well, and McX ought be well pleased by your understanding. But thy
question contains the seeds of its own answer. For surely the symmetry group of the Hamiltonian,
that which describes all the particles in a crystal, is indeed that most sublime and continuous group
O(3), appended, if need be, by the SU(2) of spin. The very fact that a crystal hath a point group
P with symmetry lower than that of O(3) heralds the spontaneous symmetry breaking which re-
sulted in that crystalline phase in the first place. When we demand ĝM =M for all g ∈ P, we are
saying that a spontaneous momentM is consistent only with certain point groups.

Sagredo : Master, thou didst remove the scales from before my eyes, that I might see what the
gods have ordained! For if a spontaneous moment P or M were to develop felicitously in a
crystal, it would, through electroelastic or magnetoelastic couplings, by necessity induce some
small motions of the ions. Thus, any transition where a spontaneous polarization or magnetization
ensues must be concomitant with a structural deformation if the high symmetry phase doth not
permit a finite P orM .

Salviati : Indeed it is so. Your words are excellent.

Sagredo : And therefore, a material of the cubic affiliation, such as iron, whose point group ab-
horeth a spontaneous magnetization, is held accurs’d, for it could never become a ferromagnet. . .

Salviati : Well, um. . .you see. . .

Simplicio : I’m hungry. Let’s get sushi.

Simplicio has pulled Salviati’s chestnuts out of the fire with his timely suggestion, but to Sagredo’s last
point, it is generally understood that a tetragonal deformation in α-Fe must accompany its ferromagnetic
transition at T

C
= 1043K. However, the resulting value of (c − a)/a is believed to be on the order of

10−6, based on magnetostriction measurements15, which is to say a shift in the c-axis length by a distance
smaller than a nuclear diameter. So far as I understand, the putative tetragonal distortion is too weak to
be observed at present16.

15See E. du Tremolet et al., J. Mag. Magn. Mat. 31, 837 (1983).
16In fact, since D4h does not accommodate a nonzero M , the ferromagnetic phase of α-Fe must have C4h symmetry, which

is not a holohedral point group. I.e. α-Fe below TC is either not a Bravais lattice, or its crystallographic symmetry is further
broken down to monoclinic, i.e. C2h.
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6.3.3 Pyroelectrics, thermoelectrics, ferroelectrics, and piezoelectrics

Let’s just get all this straight right now, people:

• Pyroelectric : A pyroelectric material possesses a spontaneous polarization P below a critical tem-
perature Tc. This is due to the formation of a dipole moment pwithin each unit cell of the crystal.
The Greek root pyr- means ”fire”, and the pyroelectric coefficient is defined to be γ = dP /dT .
In the presence of an external electric field E, one has P = P ind + Ps , where P ind = χE is the
induced polarization, with χ the polarization tensor, and Ps is the spontaneous polarization. One then
has γ = dPs/dT . We regard γ as a rank one tensor, since T is a scalar. Pyroelectric crystals were
known to the ancient Greeks, and in the 18th century it was noted that tourmaline crystals develop
charges at their faces upon heating or cooling.

• Thermoelectric : The thermoelectric effect is the generation of an electric field due in a sample with
a fixed temperature gradient. One has E = ρj +Q∇T , where E = −∇(φ− e−1µ) is the gradient of
the electrochemical potential and j is the electrical current. The response tensors ρ and Q are the
electrical resistivity and the thermopower (also called the Seebeck coefficient), respectively. The units
of thermopower are k

B
/e, and Q has the interpretation of the entropy carried per charge.

Note that despite the similarity in their names (thermo- is the Greek root for ”heat”), thermoelec-
tricity and pyroelectricity are distinct phenomena. In a pyroelectric, the change in temperature ∆T
is uniform throughout the sample. A change in temperature will result in a change of the dipole
moment per cell, and the accumulation of surface charges and a potential difference which grad-
ually decays due to leakage. Almost every material, whether a metal or an insulator, whether or
not a polar crystal, will exhibit a thermoelectric effect17. The electric field will remain so long as
the temperature gradient ∇T is maintained across the sample.

• Ferroelectric : For our purposes, there is no distinction between a ferroelectric and a pyroelectric.
However, in the literature, the distinction lies in the behavior of each in an external electric field
E. The spontaneous polarization Ps of a ferroelectric can be reversed by the application of a
sufficiently strongE field. In a pyroelectric, this coercive field exceeds the breakdown field, so the
dipole reversal cannot be accomplished. In a ferroelectric, the dipole moment can be reversed.

• Piezoelectric : Piezoelectricity occurs in 20 of the 21 noncentrosymmetric crystallographic point
groups, the exception being the cubic groupO (432). The polarization of a piezoelectric is changed
by applying stress: ∆Pµ = dµνλ σνλ, where ∆P = P − Ps and σνλ is the stress tensor. We shall
discuss the piezoelectric tensor dµνλ more below. The hierarchy of these phenomena is then

ferroelectric ⊂ pyroelectric ⊂ piezoelectric ,

with thermoelectricity being unrelated to the other three.

The Ginzburg-Landau free energy for an isotropic pyroelectrics or ferroelectrics is modeled by

f(P,E) = f0 + aP 2 + bP 4 + cP 6 − EP , (6.47)

17The exception is the case of superconductors, which have zero Seebeck coefficient because the Cooper pairs carry zero en-
tropy.
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where E = E · n̂ is the projection of the external electric field along the invariant axis of the
pyroelectric’s point group, a ∝ T − Tc , and c > 0. If b > 0 the transition at T = Tc is second order,
while if b < 0 the second order transition is preempted by a first order one at a = 3

16 (b
2/c). But

what do we mean by P in eqn. 6.47? If the high symmetry (i.e. P = 0 when E = 0) crystalline
phase is of cubic symmetry, we should write

f(P ,E) = f0 + a(P 2
x + P 2

y + P 2
z ) + b1(P

4
x + P 4

y + P 4
z ) + b2(P

2
xP

2
y + P 2

yP
2
z + P 2

xP
2
z )

+ c1(P
6
x + P 6

y + P 6
z ) + c2(P

4
xP

2
y + P 4

xP
2
z + P 4

y P
2
x + P 4

y P
2
z + P 4

z P
2
x + P 4

z P
2
y )

+ c3P
2
xP

2
y P

2
z −E · P +O(P 8) .

(6.48)

Ferroelectricity in barium titanate

A parade example of ferroelectricity is barium titanate depicted in Fig. 6.9. BaTiO3 has four structural
phases:

(i) a high temperature cubic phase (C) for T >∼ 393K

(ii) an intermediate temperature tetragonal phase (T) for T ∈ [∼ 282K , ∼ 393K]

(iii) a second intermediate temperature orthorhombic phase (O) for T ∈ [∼ 183K , ∼ 282K]

(iv) a low temperature rhombohedral (trigonal) phase (R) for T <∼ 183K.

All but the high temperature cubic phase exhibit ferroelectricity, i.e. spontaneous polarization which
may be reversed by the application of an external electric field. These phases have traditionally been

Ti
4+

Ba
2+

O
2−

Figure 6.9: High temperature cubic perovskite crystal structure of BaTiO3. Ba2+ sites are in green, Ti4+

in blue, and O2− in red. The yellow arrow shows the direction in which the Ti4+ ion moves as the
material is cooled below Tc within the displacive model. Image credit: Wikipedia.
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understood in terms of the displacement of the Ti4+ ion within each unit cell. In the cubic phase, each
Ti4+ ion sits in the center of an oxygen octahedron, and the free energy density from eqn. 6.48 is fC = f0 .
The three ordered phases have P = P n̂, where n̂

C
= (0, 0, 1), n̂

O
= 1√

2
(0, 1, 1), and n̂

R
= 1√

3
(1, 1, 1).

Each of these phases is described by a sixth order Landau free energy of the form of eqn. 6.47, with

b
T
= b1 , b

O
= 1

2b1 +
1
4b2 , b

R
= 1

3b1 +
1
3b2 (6.49)

and

c
T
= c1 , c

O
= 1

2c1 +
1
2c2 , c

R
= 1

9c1 +
2
9c2 +

1
27c3 . (6.50)

Minimizing the free energy in phase j ∈ {T,O,R} yields the equation a + 2bjP
2
j + 3cjP

4
j = 0, with

solution

Pj(T ) =
−bj +

√
b2j − 3acj

3cj
, (6.51)

where a = α(T − Tc) and Tc ≈ 393K. The free energy in phase j is then obtained by substituting the
result for P = Pj into fj(T ) = f0 + ajP

2 + bjP
4 + cjP

6.

Provided b
T
> b

O
and b

R
, the second order transition at a = 0 (i.e. T = Tc) is from cubic to tetragonal.

As one lowers the temperature further, one encounters two first order transitions, first from tetragonal
to orthorhombic, and second from orthorhombic to rhombohedral (trigonal)18. These transitions occur
at temperatures where f

T
(T ′

c) = f
O
(T ′

c) and f
O
(T ′′

c ) = f
R
(T ′′

c ).

The standard displacive model of ferroelectricity in BaTiO3 is unable to explain several experiments,
however. In the displacive model the high temperature cubic phase has point group Oh. This would
mean that first order Raman scattering is forbidden, because, as we shall see below in §6.4.3, Raman
scattering preserves parity, and thus the low energy, odd parity long wavelength phonons are all Ra-
man inactive. Yet a healthy first order Raman signal is observed19. A second problem is that one expects
on general grounds soft modes with frequencies tending toward zero as one approaches a second order
phase transition. Yet experiments show damped but finite frequency modes at the cubic to tetragonal
transition20. Finally, aspects of the observed x-ray scattering are difficult to understand within the dis-
placive model. In particular , x-ray fine structure measurements show in all phases that the Ti4+ ions
are displaced along different 〈111〉 directions21. In 2006, Zhang, Cagin, and Goddard22 (ZCG) presented
results from a density functional calculation the results of which differed from those of the displacive
model. Rather than an undistorted cubic phase, ZCG found that the C phase is antiferroelectric, with a
2× 2× 2 unit cell (see Fig. 6.10). In the T and O phases, there is mixed ferroelectric and antiferroelectric
order, and only in the R phase is the material purely ferroelectric. The associated space and point group
symmetries are listed in tab. 6.13.

Note that while C4v is a subgroup of Oh , it is not a subgroup of Td. Thus, the C to T transition is
predicted to be first order according to ZCG. Their identification of the symmetries of the various phases
also resolves the aforementioned difficulties in reconciling the displacive model with experimental data.

18Within Landau theory, the order of the transitions will depend on details of the Landau parameters.
19A. M. Quittet and M. Lambert, Solid State Comm. 12, 1053 (1973).
20Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C Solid State 13, 3761 (1980).
21B. Ravel et al., Ferroelectrics 206, 407 (1998).
22Q. Zhang, T. Cagin, and W. A. Goddard III, Proc. Natl. Acad. Sci. 103, 14695 (2006).
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displacive model DFT results

phase S P S P

cubic Pm3m m3m = Oh I43m 43m = Td

tetrahedral P4mm 4mm = C4v I4cm 4mm = C4v

orthorhombic Amm2 mm2 = C2v Pmn21 mm2 = C2v

rhombohedral R3m 3m = C3v R3m 3m = C3v

Table 6.13: Phases of BaTiO3 and their space and point groups.

Figure 6.10: Fig. 1 from Zhang, Cagin, and Goddard (2006) showing Ti4+ ion distortions and polariza-
tions in BaTiO3, as determined from density functional calculations.
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6.3.4 Second rank tensors : conductivity

The conductivity σµν and dielectric susceptibility εµν are examples of second rank tensors, i.e. matrices,

which relate a vector cause (E) to a vector effect (j orD)23. The action of a group element g on a second
rank tensor Tµν is given by

(ĝ T )αβ = Tµν Dµα(g)Dνβ(g) . (6.52)

Thus the tensor Tµν transforms according to the product representation Ψ(G) = D(G) × D(G). Recall
that product representations were discussed earlier in §2.4.7 and §3.2.

The product representation can be reduced to the symmetric (S) and antisymmetric (A) representations,
which themselves may be further reduced within a given symmetry group G. Recall the characters in
these representations are given by (see §3.2.2)

χS,A(g) = 1
2

[
χ(g)

]2 ± 1
2 χ(g

2) . (6.53)

Note that any equilibrium thermodynamic response function Tµν = −∂2F/∂hµ ∂hν , where h is an ap-

plied field, will necessarily transform according to the symmetric product representation ΨS. The num-
ber of independent components of a general response tensor will then be given by

n(ΨS,A) =
1

NG

∑

C
NC χ

S,A(C) . (6.54)

Let’s work this out for the group C3v, the vector representation 1− of which has characters χ(E) = 3,
χ(2C3) = 0, and χ(3σv) = 1 (see Tab. 6.11). From these values, we obtain

χS(E) = 6 , χS(2C3) = 0 , χS(3σv) = 2 (6.55)

χA(E) = 3 , χA(2C3) = 0 , χA(3σv) = −1 , (6.56)

and we then compute n(ΨS) = 2 and n(ΨA) = 0. The full decomposition into C3v IRREPs is found to be
ΨS = 2A1 ⊕ 2E and ΨA = A2 ⊕E. We conclude that the most general symmetric tensor invariant under
C3v is of the form diag(a, a, c), where ẑ is the symmetry axis. The antisymmetric component vanishes
entirely, because ΨA = 1+ does not contain the trivial A1 IRREP. However, note that nA

2

(ΨA) = 1, which

means that the tensor

T =



a d 0
−d a 0
0 0 c


 (6.57)

is permissible with nonzero a, c, and d if and only if a and c transform as A1 and d transforms as A2 . For
example, the conductivity tensor may be of the form

σ =



σ⊥(Hz) f(Hz) 0
−f(Hz) σ⊥(Hz) 0

0 0 σ‖(Hz)


 , (6.58)

where f(Hz) is an odd function of the magnetic field component along the symmetry axis. The quantities
σ⊥ , ‖(Hz) are constants invariant under all C3v operations and are even functions of Hz.

23Of course the dielectric and conductivity tensors are related by εµν(k, ω) = δµν + (4πi/ω) σµν(k, ω).
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elements of Tµν = Tνµ

crystal system 11 22 33 23 31 12

triclinic a b c f e d

monoclinic a b c 0 0 d

orthorhombic a b c 0 0 0

trigonal a a c 0 0 0

tetragonal a a c 0 0 0

hexagonal a a c 0 0 0

cubic a a a 0 0 0

Table 6.14: Allowed nonzero entries of symmetric rank two tensors by crystal system. Crystallographic
axes are assumed.

C3v is a trigonal point group. For the others, the allowed nonzero elements of a symmetric tensor T
are given in Tab. 6.14. Note that cubic symmetry requires that any symmetric rank two tensor be a
multiple of the identity. This means, for example, that the inertia tensor Iαβ , with the origin at the

center of a uniform cube, is a multiple of the identity24, and thus independent of the cube’s orientation.
This entails, for example, that if a cube is used to construct a torsional pendulum, the frequency of the
oscillations will be the same whether the torsional fiber runs through a face center, a corner, an edge
center, or indeed any point on the cube’s surface, so long as it also runs through the cube’s center.

Representation ellipsoid

Given a dimensionless rank two tensor Tµν , one can form the function T (r) = Tµν x
µ xν . The locus of

points r for which T (r) = ±1 is called the representation ellipsoid of Tµν . Clearly any antisymmetric part
of T will be projected out in forming the function T (r) and will not affect the shape of the representation
ellipsoid. In fact, T (r) = ±1 defines an ellipsoid only if all the eigenvalues of T are of the same sign. Else
it defines a hyperboloid. For any real symmetric matrix, the eigenvalues are real and the eigenvectors
are mutually orthogonal, or may be chosen to be so in the case of degeneracies.

For triclinic systems, the ellipsoid axes are under no restriction. For monoclinic systems, one of the
ellipsoid’s axes must be the twofold axis of the crystal. For orthorhombic systems, all three axes of the
ellipsoid are parallel to the crystalline axes. For trigonal, tetragonal, and hexagonal crystals, two of the
eigenvalues are degenerate (see Tab. 6.14), which means that the ellipsoid is a surface of revolution
along the high symmetry axis of the crystal. I.e. the ellipsoid has an O(2) symmetry about this axis.
Finally, for cubic systems, the representation ellipsoid is a sphere S2.

24Iαβ = 1

6
Ma2 δαβ where M is the cube’s mass and a its side length.
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6.3.5 Third rank tensors : piezoelectricity

A common example of a third rank tensor comes from the theory of the piezoelectric effect. An applied
stress σνλ leads to a polarization density Pµ, where

Pµ = dµνλ σνλ , (6.59)

where dµνλ is the piezoelectric tensor. We can immediately say that if the point group P contains the

inversion element I , then dµνλ = 0, because Dµµ′(I) = −δµµ′ and therefore Î dµνλ = −dµνλ.

Since the stress tensor σ is symmetric (see below), it contains six independent elements, the piezoelectric
tensor dµνλ is itself symmetric in its last two indices25, i.e. dµνλ = dµλν . Accordingly one may define the
composite index (νλ) → a, as defined in the following table:

(νλ) : (11) (22) (33) (23) (31) (12)

a : 1 2 3 4 5 6

Table 6.15: Composite indices for symmetric rank two tensors.

If we then define dµ4 ≡ dµ23 = dµ32 , dµ5 ≡ dµ31 = dµ13 , and dµ6 ≡ dµ12 = dµ21 , we may represent the
tensor multiplication in Eqn. 6.59 as an ordinary matrix multiplication, viz.



P1

P2

P3


 =



d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36







σ1
σ2
σ3
2σ4
2σ5
2σ6




, σ =



σ1 σ6 σ5
σ6 σ2 σ4
σ5 σ4 σ3


 . (6.60)

Note the appearance of a factor of two in the last three elements of the column vector of stresses.

Now let’s consider how the symmetry under a point group P restricts the form of dµa.

• For triclinic crystals with point group C1, there is no restriction, and dµa contains 18 independent
elements. If P = Ci, which contains inversion, then of course dµa = 0 for all (µ, a).

• For monoclinic crystals, the highest symmetry without inversion is Cs, which is generated by the
identity and reflections z → −z. All piezoelectric tensor elements dµνλ in which the index 3(z)
appears an odd number of times must vanish. For the rectangular 3×6 matrix dµa, this means that
the following eight elements vanish by symmetry:

d14 = d15 = d24 = d25 = d31 = d32 = d33 = d36 = 0 . (6.61)

We are left with ten independent piezoelectric constants for the group Cs , which is also a polar
point group, and hence can support ferroelectricity or ferromagnetism. The general form of the

25Thus dµνλ is not the most general rank three tensor possible.
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3× 6 piezoelectric tensor is

dMONO

µa [Cs] =



d11 d12 d13 0 0 d16
d21 d22 d23 0 0 d26
0 0 0 d34 d35 0


 . (6.62)

• For orthorhombic crystals, the only point groups without inversion C2v and D2. Consider first
C2v, in which x → −x and y → −y are symmetries, though not z → −z26. The only nonzero
piezoelectric tensor elements are those with an even number of indices of 1(x) and 2(y), which
means that only five elements of dµa may be nonzero, and the general form for dµa within C2v is

dORTHO

µa [C2v ] =




0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0


 . (6.63)

Note that C2v is polar. For D2, which is nonpolar, the only nonzero elements are d14 , d25 , and d36 .

• For tetragonal crystals, the highest symmetries not containing inversion areD2d ,C4v ,D4 , andC4h.
Consider the case D2d. Any point (x, y, z) has symmetry-related images at (−x,−y, z), (y, x, z),
and (x,−y,−z), which allows only for two independent nonzero piezoelectric tensor elements:
d14 = d25 and d36 . The group D2d is nonpolar. For D4, there is only one independent nonzero
element: d14 = −d25. The lowest point group symmetry in the tetragonal system is C4, which
relates (x, y, z) to (−y, x, z). This allows for the four independent nonzero piezoelectric tensor
elements:

dTET

µa [C4] =




0 0 0 d14 d15 0
0 0 0 d15 −d14 0
d31 d31 d33 0 0 0


 . (6.64)

Reducing the symmetry to C4v eliminates d14, and there are only three independent moduli. For
S4, relative toC4, we have d32 = −d31, we lose d33 but gain d36, so again there are four independent
moduli.

• For trigonal crystals, the highest symmetry noncentrosymmetric point group is D3 The imple-
mentation of the symmetry restrictions here is a little bit more involved because of the threefold
rotations and is left as an exercise to the student. There are three independent piezoelectric coeffi-
cients:

dTRIG

µa [D3] =



d11 −d11 0 d14 0 0
0 0 0 0 −d14 −2d11
0 0 0 0 0 0


 . (6.65)

The lowest within the trigonal class is C3, for which there are six independent moduli:

dTRIG

µa [C3] =



d11 −d11 0 d14 d15 −2d22
−d22 d22 0 d15 −d14 −2d11
d31 d31 d33 0 0 0


 . (6.66)

26If we would include a third orthogonal reflection, we’d then have inversion, in which case all dµνλ = 0.
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Increasing the symmetry to C3v , we lose d14 and d26, so there are four independent moduli:

dTRIG

µa [C3v] =




0 0 0 0 d15 −2d22
−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0


 . (6.67)

Both C3v and C3 are polar.

• For hexagonal crystals, we begin with the lowest symmetry group in the system, C6. There are
four independent elastic moduli, with

dHEX

µa [C6] =




0 0 0 d14 d15 0
0 0 0 d15 −d14 0
d31 d31 d33 0 0 0


 . (6.68)

Increasing the symmetry to C6v, one loses a modulus, with d14 = 0. Starting with C3h , one has
two independent moduli:

dHEX

µa [C3h] =



d11 −d11 0 0 0 −2d22
−d22 d22 0 0 0 −2d11
0 0 0 0 0 0


 . (6.69)

Increasing the symmetry to D3h, we lose d11 due to the twofold axis which sends (x, y, z) to
(−x, y,−z), and the only nonzero elements are d16 = 2d21 = −2d22. Finally, for D6, the only
nonzero elements are d14 = −d25.

• Finally we arrive at the cubic system. The centrosymmetric cubic point groupsOh and Th of course
do not support piezoelectricity. Surprisingly, while O is noncentrosymmetric, its symmetries are
sufficient to disallow piezoelectricity as well, and dµa = 0 for all elements. Thus, O is the sole ex-
ample among the 21 noncentrosymmetric crystallographic point groups which does not allow for
piezoelectric behavior. The point groups T and Td support piezoelectricity, with one independent
constant d14 = d25 = d36. Neither is polar.

6.3.6 Fourth rank tensors : elasticity

Another example comes from the theory of elasticity, where an elastic medium is described by a local
deformation field u(r), corresponding to the elastic displacement of the solid at r. The strain tensor is
defined by the dimensionless expression

εij(r) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.70)

Note that ε = εT is a symmetric tensor by definition. Similarly, the stress tensor σij(r) is defined by

dFi(r) = −σij(r)nj dΣ , (6.71)
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where dF (r) is the differential force on a surface element dΣ whose normal is the vector n̂. Angular mo-
mentum conservation requires that the stress tensor also be symmetric27. The stress and strain tensors
are related by the rank four elastic modulus tensor, viz.

σij(r) = Cijkl εkl(r) =
δf

δεij(r)
, (6.72)

where the second equality is a statement of thermal equilibrium akin to p = −∂F/∂V . Here,

f(r) = f0 +
1
2 Cijkl εij(r) εkl(r) +O(ε3) (6.73)

is the local free energy density. Since ε is a dimensionless tensor, the elastic moduli have dimensions
of energy density, typically expressed in cgs units as dyn/cm2. For an isotropic material, the only O(3)
invariant terms in the free energy to order ε2 are proportional to either (Tr ε)2 or to Tr(ε2). Thus,

f = f0 +
1
2 λ (Tr ε)

2 + µTr (ε2) . (6.74)

The parameters λ and µ are called the Lamé coefficients28. For isotropic elastic materials, then,

σij =
∂f

∂εij
= λTr ε δij + 2µ εij . (6.75)

In the literature, one often meets up with the quantityK ≡ λ+ 2
3µ , in which case the free energy density

becomes
f = f0 +

1
2K (Tr ε)2 + µTr

(
ε− 1

3 Tr ε
)2

(6.76)

The reason is that the tensor ε̃ ≡ ε − 1
3(Tr ε) ·1 is traceless, and therefore the constant K tells us about

bulk deformations while µ tells us about shear deformations. One then requires K > 0 and µ > 0 for
thermodynamic stability. We then may write, for isotropic materials,

σ = K (Tr ε)·1 + 2µ ε̃

ε =
1

9K
(Tr σ)·1 +

1

2µ
σ̃ ,

(6.77)

with σ̃ ≡ σ − 1
3(Tr σ)·1 the traceless part of the stress tensor29.

If one solves for the homogeneous deformation30 of a rod of circular cross section, the only nonzero
element of the stress tensor is σzz = p , where p is the pressure on either of the circular faces of the rod.
One then finds that εxx = εyy =

(
1
9K − 1

6µ

)
p and εzz =

(
1
9K + 1

3µ

)
p are the only nonzero elements of the

strain tensor. Thus,

Y ≡ σzz
εzz

=
9Kµ

3K + µ
, β ≡ −εxx

εzz
=

3K − 2µ

2(3K + µ)
. (6.78)

27Integrate the differential torque dN = r × dF over the entire body. Integrating by parts, one obtains a surface term and a
volume term. The volume torque density is −ǫijk σjk, which must vanish, thereby entailing the symmetry σ = σT.

28If you were wondering why we’ve suddenly switched to roman indices Cijkl instead of Greek Cαβµν , it is to obviate any
confusion with the Lamé parameter µ.

29In d space dimensions, one has K = λ+ 2d−1µ and m̃ = m− d−1
Trm is the traceless part of any matrix m.

30In a homogeneous deformation, the strain and stress tensors are constant throughout the body.
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The quantity Y is called the Young’s modulus, and must be positive. The quantity β is the Poisson ratio
β and satisfies β ∈

[
− 1, 32

]
. A material like tungsten carbide has a very large Young’s modulus of

Y = 53.4× 1011 dyn/cm2 at STP, which means that you have to pull like hell in order to get it to stretch a
little. Normally, when you stretch a material, it narrows in the transverse directions, which corresponds
to a positive Poisson ratio. Materials for which β < 0 are called auxetics. When stretched, an auxetic
becomes thicker in the directions perpendicular to the applied force. Examples include various porous
foams and artificial macrostructures.

Elasticity and symmetry

Since
Cijkl = Cjikl = Cijlk = Cklij , (6.79)

we may use the composite index notation in Tab. 6.15 to write the rank four tensor Cijkl ≡ Cab = Cba as
a symmetric 6×6 matrix, with 21 independent elements before accounting for symmetry considerations.
The linear stress-strain relation is then given by




σ1
σ2
σ3
σ4
σ5
σ6




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66







ε1
ε2
ε3
2ε4
2ε5
2ε6




. (6.80)

Since the elastic tensor is rank four, it is symmetric under inversion.

And now, let the symmetry commence!

• For triclinic crystals with point group C1 or Ci , there are no symmetries to apply to Cab , hence
there are 21 independent elastic moduli. However, one can always rotate axes, and given the
freedom to choose three Euler angles, this means we can always choose axes in such a way that
three of the 21 moduli vanish, leaving 18. Again, this requires a nongeneric choice of axes.

• For monoclinic crystals, there is symmetry under z → −z, and as in the example of the piezo-
electric tensor dµνλ, we have that Cijkl vanishes if the index 3(z) appears an odd number of times,
which means, in composite index notation,

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 , (6.81)

leaving 13 independent elastic moduli for point groupsC2 , Cs , and C2h. The 6×6 matrix Cab thus
takes the form

CMONO

ab =




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66




. (6.82)
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• For orthorhombic crystals, x → −x and y → −y are each symmetries. Adding z → −z in the case
of D2h doesn’t buy us any new restrictions since C is symmetric under inversion. We then have
Cab = 0 whenever a ∈ {1, 2, 3} and b ∈ {4, 5, 6}. The general form of Cab is then

CORTHO

ab =




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




. (6.83)

• For the tetragonal system, we can rotate (x, y, z) to (−y, x, z). For the lower symmetry point groups
among this system, namely C4 , S4 , and C4h , the most general form is

CTET

ab [C4, S4, C4h] =




C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
C16 −C16 0 0 0 C66




, (6.84)

which has seven independent moduli. For the higher symmetry tetragonal point groups D4 , C4v ,
D2d , and D4h , we have C16 = 0 because of the twofold axes which send (x, y, z) into (x,−y,−z)
and (−x, y,−z), and there are only six independent moduli.

• For the trigonal point groups, our lives are again complicated by the C3 rotations. One convenient
way to deal with this is to define ξ ≡ x+ iy and ξ̄ ≡ x− iy , with

εξξ = ξi ξj εij = εxx − εyy + 2i εxy

εξξ̄ = ξi ξ̄j εij = εxx + εxy

εzξ = ξi εzi = εzx + i εzy

εzξ̄ = ξ̄i εzi = εzx − i εzy ,

(6.85)

where ξi = ∂iξ where x1 = x and x2 = y, and ξ̄i = ∂iξ̄. A C3 rotation then takes ξ → e2πi/3 ξ and
ξ̄ → e−2πi/3 ξ̄ . The only allowed elements of Cijkl are

Czzzz , Czzξξ̄ , Cξξξ̄ξ̄ , Cξξ̄ξξ̄ , Czξzξ̄ , Czξξξ , Czξ̄ξ̄ξ̄ , (6.86)

and their corresponding elements obtained by permuting Cijkl = Cjikl = Cijlk = Cklij . The first
five of these are real, and the last two are complex conjugates: C

zξ̄ξ̄ξ̄
= C∗

zξξξ . So there are seven

independent elastic moduli for the point groups C3 and S6. Note the general rule that we must
have either no complex indices, one ξ and one ξ̄ index, two each of ξ and ξ̄, three ξ, or three ξ̄. All
other coefficients vanish by C3 symmetry. We may now construct the elastic free energy density,

f = f0 +
1
2Czzzz ε

2
zz + Cξξξ̄ξ̄ εξξ εξ̄ξ̄ + 2Cξξ̄ξξ̄ ε

2
ξξ̄ + 2Czzξξ̄ εzz εξξ̄

+ 4Czξzξ̄ εzξ εzξ̄ + 2Czξξξ εzξ εξξ + 2Czξ̄ξ̄ξ̄ εzξ̄ εξ̄ξ̄ .
(6.87)
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Note the coefficient of four in front of the C
zξzξ̄

term, which arises from summing over the eight

equal contributions,

1
2

(
Czξzξ̄ + Czξξ̄z + Cξzzξ̄ + Cξzξ̄z + Czξ̄zξ + Czξ̄ξz +Cξ̄zzξ +Cξ̄zξz

)
εzξ εzξ̄ = 4Czξzξ̄ εzξ εzξ̄ . (6.88)

From the free energy, one can identify the coefficients of εa εb , where a and b are composite indices,
and thereby determine the general form for Cab , which is

CTRIG

ab [C3, S6] =




C11 C12 C13 C14 −C25 0
C12 C11 C13 −C14 C25 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 C25

−C25 C25 0 0 C44 C14

0 0 0 C25 C14
1
2(C11 − C12)




, (6.89)

Adding in reflections or twofold axes, as we have in the higher symmetry groups in this system,
i.e. D3 , C3v , and D3d allows for ξ ↔ ξ̄, in which case Czξξξ = C

zξ̄ξ̄ξ̄
, reducing the number of

independent moduli to six, with C25 = 0.

There’s another way to compute the number of independent moduli, using Eqn. 6.44. This applies
to all cases, but it is particularly instructive to work it out for C3 since the threefold rotations make
its analysis more tedious than other cases where the symmetry operations merely permute the
Cartesian indices. We start by decomposing the representation by which the symmetric rank two
tensor εij transforms into IRREPs of C3. From Tab. 6.11, we have that 1 = A ⊕ E ⊕ E∗, where 1
denotes the vector (l = 1) IRREP of O(3). Since the strain tensor ε is symmetric, we decompose

Γε ≡ (1× 1)sym into C3 IRREPs using χsym(g) = 1
2

[
χ(g)

]2
+ 1

2 χ(g
2) , according to which χΓε(E) = 6

and χΓε(C3) = χΓε(C2
3 ) = 0. Thus we have Γε = 2A ⊕ 2E ⊕ 2E∗, whose total dimension is six,

as is appropriate for a symmetric 3 × 3 matrix. We next must decompose ΓC ≡ (Γε × Γε)
sym. into

C3 IRREPs. But this is a snap since we’ve computed the characters for Γε
31. Accordingly, we have

χΓC (E) = 1
2

[
χΓε(E)

]2
+ 1

2χ
Γε(E2) = 1

2 ·62 + 1
2 ·6 = 21 and χΓC (C3) = χΓC (C2

3 ) = 0. Therefore
ΓC = 7A ⊕ 7E ⊕ 7E∗ and we conclude from nA(Γ ) = 7 that there are seven independent elastic
constants for C3.

• For all seven hexagonal system point groups, we have Czξξξ = C
zξ̄ξ̄ξ̄

= 0, because C6 rotations

take ξ to ξ eiπ/3, hence Czξξξ to −Czξξξ . C3h and D3h don’t contain this element, but do contain the
mirror reflection z → −z, hence in all cases the elastic tensor resembles that for the trigonal case,
but with C14 = C25 = 0. Hence there are five independent moduli, with

CHEX

ab =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2(C11 − C12)




, (6.90)

31We work directly with the reducible representation Γε and only decompose into C3 IRREPs at the end of our calculation.
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• For the cubic system (five point groups), the only independent elements are Cxxxx , Cxxyy , Cxyxy ,
and their symmetry-related counterparts such as Czzzz , Cyzyz , etc. Thus,

CCUB

ab =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




, (6.91)

• For an isotropic material, C11 = C22 + 2C44. The Lamé parameters are λ = C12 and µ = C44.

6.3.7 Summary of tensor properties of the crystallographic point groups

At this point in the notes, we pause for a lengthy table, Tab. 6.16.

6.4 Vibrational and Electronic States of Molecules

6.4.1 Small oscillations of molecules

In §2.6 we considered the planar oscillations of a linear triatomic molecule of C3v symmetry. We now
consider the general case. First we consider the classical problem of N interacting point masses. Ex-
panding the potential energy about equilibrium, the Hamiltonian is

H =
∑

i,α

(pαi )
2

2mi

+
1

2

∑

i,j

∑

α,β

Φαβ
ij uαi u

β
j +O(u3) , (6.92)

where ui is the vector displacement of ion i from its equilibrium position, pi is its momentum, and mi

its mass. The indices α and β range over {1, . . . , d}, where d is the dimension of space. The quantity Φαβ
ij

is known as the dynamical matrix, and it is defined to be

Φαβ
ij =

∂2V

∂uαi ∂u
β
j

∣∣∣∣
EQ

, (6.93)

where V = V (r1, . . . , rN ) is the potential, and rj = r0j + uj with r0j the equilibrium position of the jth

ion. We now make a simple canonical transformation pαi = m
1/2
i p̃αi and uαi = m

−1/2
i ũαi for all i and α.

Clearly this preserves the Poisson bracket
{
uαi , p

β
j

}
PB

= δij δ
αβ . The Hamiltonian is then

H =
∑

i,α

(p̃αi )
2

2
+

1

2

∑

i,j

∑

α,β

Φ̃αβ
ij ũαi ũ

β
j +O(u3) , (6.94)
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group symbol tensor order

crystal system Schoenflies HM 1st 2nd 3rd 4th

triclinic C1 1 3 6 18 21

S2 1 0 6 0 21

monoclinic C2 2 1 4 8 13

C1h m 2 4 10 13

C2h 2/m 0 4 0 13

orthorhombic D2 222 0 3 3 9

C2v mm2 1 3 5 9

D2h mmm 0 3 0 9

tetragonal C4 4 1 2 4 7

S4 4 0 2 4 7

C4h 4/m 0 2 0 7

D4 422 0 2 1 6

C4v 4mm 1 2 3 6

D2d 42m 0 2 2 6

D4h 4/mmm 0 2 0 6

trigonal C3 3 1 2 6 7

S6 3 0 2 0 7

D3 32 0 2 2 6

C3v 3m 1 2 4 6

D3d 3m 0 2 0 6

hexagonal C6 6 1 2 4 5

C3h 6 0 2 2 5

C6h 6/m 0 2 0 5

D6 622 0 2 1 5

C6v 6mm 1 2 3 5

D3h 6m2 0 2 1 5

D6h 6/mmm 0 2 0 5

cubic T 23 0 1 1 3

Th m3 0 1 0 3

O 432 0 1 0 3

Td 43m 0 1 1 3

Oh m3m 0 1 0 3

isotropic 0 1 0 2

Table 6.16: Tensor properties of the 32 crystallographic point groups.
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where Φ̃αβ
ij = m

−1/2
i Φαβ

ij m
−1/2
j remains a real symmetric matrix in the composite indices (iα) and (jβ)

and can therefore be diagonalized by an orthogonal transformation Sσ,iα, where σ ∈ {1, . . . , dN} indexes
the normal modes of the molecule. That means

∑

i,α,jβ

Sσ,iα Φ̃
αβ
ij ST

jβ,σ′ = ω2
σ δσσ′ , (6.95)

where ωσ has the dimensions of T−2, i.e. frequency squared32. If the equilibrium is a stable one, then
ω2
σ ≥ 0 for all σ. This orthogonal transformation induces a second canonical transformation, from

{ũiα, p̃iα} to {ξσ, πσ}, with

ξσ = Sσ,iα ũ
α
i , πσ = p̃αi S

−1
iα,σ = Sσ,iα p̃

α
i , (6.96)

and the final form of the Hamiltonian is then

H =
dN∑

σ=1

(
1
2π

2
σ + 1

2ω
2
σ ξ

2
σ

)
. (6.97)

Hamilton’s equations of motion, which are of course preserved by the canonical transformations, are
then ξ̇σ = ∂H/∂πσ = πσ and π̇σ = −∂H/∂ξσ = −ω2

σ ξσ , hence ξ̈σ = −ω2
σ ξσ and ωσ is the oscillation

frequency for the normal mode label σ.

6.4.2 Group theory and the dynamical matrix

To solve the general small oscillations problem, one must diagonalize the symmetric matrix Φ̃αβ
ij , which

is of rank dN . While today this is a simple computational task, even for large molecules, such crank-
turning is oblivious to the consequences of point group symmetries that are relevant to many physically
relevant cases. The resulting multiplet structure in the spectrum is inscrutable without group theory.

To determine the IRREPs of the molecular point group P under which energy multiplets transform, just
follow these simple steps:

(i) First, identify the point group P which describes the full symmetry of the equilibrium configura-
tion.

(ii) Second, construct for each element g ∈ P the permutation matrix Dper(g), defined to be

Dper
ij (g) = 〈 i | g | j 〉 =

{
1 if g takes ion j to ion i

0 otherwise .
(6.98)

These matrices, which are all rank N , form a representation which we call Γ per.

(iii) Find the characters χper(g). Note that

χper(g) = number of ions remaining invariant under the operation g (6.99)

can be ascertained without computing all the matrix elements of Dper
ij (g).

32The original Φαβ
ij had dimensions of EL−2 = MT−2, hence Φ̃αβ

ij has dimensions of T−2.
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x

z

Figure 6.11: Left panel: the water molecule. Right panel: a molecule with C3v symmetry. Rotations by
an odd multiple of 60◦ are not a symmetry. Image credits: NCLab.com and ClipArtPanda.com.

(iv) For each g ∈ P, construct the matrices Dvec(g) ∈ O(d), which is the d × d orthogonal matrix
corresponding to the symmetry operation g.

(v) The symmetry operations operate on both the ion labels as well as their displacements from equi-
librium. The corresponding representation of P is thus Ψ = Γ vec × Γ per. From this, we must
subtract one copy of Γ vec corresponding to translational zero modes, and one copy of Γ rot, corre-
sponding to rotational zero modes. Note that Γ rot is the 1+ representation of O(3), whose matrices
are given by Drot(g) = det

[
Dvec(g)

]
·Dvec(g)

(vi) To find the IRREPs for the d(N − 2) finite frequency vibrational modes, decompose Γ per, Γ vec, and
Γ rot into IRREPs of P. The vibrational representations of the molecule are then given by

Γ vib =

Ψ︷ ︸︸ ︷
Γ vec × Γ per −Γ vec − Γ rot . (6.100)

(vii) Starting with an arbitrary (e.g. random) vector ψ, one can project onto the IRREPs Γ contained in
Γ vib using the projectors

ΠΓ =
dΓ
NG

∑

g∈G
χΓ ∗

(g)DΨ (g) or ΠΓ
µν =

dΓ
NG

∑

g∈G
DΓ ∗

µν (g)D
Ψ (g) , (6.101)

where ΠΓ projects onto the IRREP Γ , and ΠΓ
µν projects onto the µth row of Γ .

(viii) The projected vectors ΠΓψ form a basis for all occurrences of the IRREP Γ in the decomposition of
the dN -dimensional representation Ψ . One then must project out the zero modes in Γ vec and Γ rot.

Water molecule

Let’s test this scheme on the simple water molecule in Fig. 6.11. The group is C2v , with elements E
(identity), C2 (rotation by π about z-axis), σv (reflection in x-z plane), and σ′v (reflection in y-z plane):

C2 (x, y, z) = (−x,−y, z) , σv (x, y, z) = (x,−y, z) , σ′v (x, y, z) = (−x, y, z) . (6.102)
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Choosing the ion site labels O = 1, H = 2, and H′ = 3, the permutation matrices are

Dper(E) = Dper(σv) =



1 0 0
0 1 0
0 0 1


 , Dper(C2) = Dper(σ′v) =



1 0 0
0 0 1
0 1 0


 , (6.103)

which may readily be checked by inspection.

The matrices of Γ vec are

Dvec(E) =



+1 0 0
0 +1 0
0 0 +1


 , Dvec(C2) =



−1 0 0
0 −1 0
0 0 +1




Dvec(σv) =



+1 0 0
0 −1 0
0 0 +1


 , Dvec(σ′v) =



−1 0 0
0 +1 0
0 0 +1


 .

(6.104)

We may now compute the characters of the matrices Dper(g) and Dvec(g); they are reported in Tab. 6.17.
Multiplying the characters to compute χΨ (g) = χΓ vec

(g)χΓ per
(g), and decomposing into IRREPs of C2v,

we find

Ψ = Γ vec × Γ per = 3A1 ⊕A2 ⊕ 3B1 ⊕ 2B2 . (6.105)

From these IRREPs we must exclude

Γ vec = A1 ⊕B1 ⊕B2

Γ rot = A2 ⊕B1 ⊕B2 ,
(6.106)

resulting in

Γ vib = 2A1 ⊕B1 . (6.107)

C2v E C2 σv σ′v basis Γ × Γ ′ A1 A2 B1 B2

A1 1 1 1 1 z A1 A1 A2 B1 B2

A2 1 1 −1 −1 xy A2 A2 A1 B2 B1

B1 1 −1 1 −1 x B1 B1 B2 A1 A2

B2 1 −1 −1 1 y B2 B2 B1 A2 A1

Γ vec 3 −1 1 1 A1 ⊕B1 ⊕B2

Γ rot 3 −1 −1 −1 A2 ⊕B1 ⊕B2

Γ per 3 1 3 1 2A1 ⊕B1

Γ vec × Γ per 9 −1 3 1 3A1 ⊕A2 ⊕ 3B1 ⊕ 2B2

Table 6.17: Character and representation product tables for C2v.
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A
1

A
1 B

1

Figure 6.12: Normal modes of the H2O molecule and their C2v IRREP labels. Image credit: NCLab.com.

Recall we started with nine degrees of freedom for the water molecule, corresponding to three transla-
tions for each of its constituent atoms. Subtracting three translational and three rotational zero modes,
we are left with three finite frequency vibrational modes, two of which transform according to A1 and
one according to B1. These vibrations are depicted in Fig. 6.12.

Buckyball

Flush with success after identifying the IRREPs or the vibrational spectrum of H2O, let’s try something
with a bigger symmetry group – the buckyball C60. The buckyball is depicted in Fig. 6.13. Its symmetry
group is the icosahedral group with inversion, Ih = I ×Ci , which has 120 elements. A character tableis
provided in Tab. 6.18. It should come as no surprise that Γ vec = T1u and Γ rot = T1g .

When it comes to constructing Γ per, we are in luck. Eight of the ten classes of symmetry operations
leave no sites fixed, hence for these classes we have χper(C) = 0. The only operations which leave fixed
points are the identity, which leaves every site invariant, hence χper(E) = 60, and the reflections 15σ,
each of which leaves four sites invariant, hence χper(15σ) = 433. Taking the product with Γ vec to form
Ψ = Γ vec × Γ per, we have χΨ (E) = 180 and χΨ (15σ) = 4, hence thus, the number of times each IRREP Γ
appears in the product representation Ψ is

nΓ (Ψ) =
1

120

(
180 · χΓ (E) + 4 · 15 · χΓ (15σ)

)

= 3
2 χ

Γ (E) + 1
2 χ

Γ (15σ) .
(6.108)

The resulting nΓ (Ψ) values are given in the table within Fig. 6.13. Summing the dimensions of the
IRREPs times their multiplicities, one finds

∑

Γ

nΓ (Ψ) dΓ = 180 , (6.109)

which is the total number of vibrational degrees of freedom of the buckyball (including zero modes).
From the decomposition of Ψ into Ih IRREPs, one must subtract the translational and rotational zero

33See how a reflection plane bisecting the buckyball of Fig. 6.13 contains two links, i.e. four sites.
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Figure 6.13: The buckyball C60, its IRREPs, and the decomposition of Ψ = Γ vec × Γ per.

modes, which is to say one copy each of T1u and T1g , respectively. This leaves

Γ vib = 2Ag ⊕ 3T1g ⊕ 4T2g ⊕ 6Gg ⊕ 8Hg ⊕Au ⊕ 4T1u ⊕ 5T2u ⊕ 6Gu ⊕ 7Hu . (6.110)

Animations of each of these normal modes may be viewed at

http://www.public.asu.edu/~cosmen/C60_vibrations/mode_assignments.htm

6.4.3 Selection rules for infrared and Raman spectroscopy

Recall that electromagnetic radiation can excite modes via dipole transitions, and that a general matrix
element of the form 〈Γf β | Q̂Γ

µ |Γi α 〉 can be nonzero only if Γf ∈ Γi × Γ . Usually the initial state is the
ground state, in which case Γi is the trivial representation, and in our case Γ = Γ vec, corresponding to
an electric dipole transition. Then our condition for the possibility of a nonzero matrix element becomes
simply Γf ∈ Γ vec. Such modes are said to be IR-active. For example, for H2O, all three vibrational modes
are IR-active, because Γ vib = 2A1 ⊕ B1 and Γ vec = A1 ⊕ B1 ⊕ B2 . For C60, only the five T1u multiplets
are IR-active.

Raman spectroscopy involves the detection of inelastically scattered light. Thus, there is an incoming
electromagnetic wave E i and an outgoing wave E f . These are coupled through a 3 × 3 symmetric
polarization tensor, αµν . We shall therefore be interested in symmetric, rank-two tensor representations
of the molecular point group P.

http://www.public.asu.edu/~cosmen/C60_vibrations/mode_assignments.htm


44 CHAPTER 6. CONSEQUENCES OF CRYSTALLOGRAPHIC SYMMETRY

Ih E 12C5 12C2
5 20C3 15C2 I 12S3

10 12S10 20S6 15σ

Ag 1 1 1 1 1 1 1 1 1 1

T1g 3 τ 1− τ 0 −1 3 τ 1− τ 0 −1

T2g 3 1− τ τ 0 −1 3 1− τ τ 0 −1

Gg 4 −1 −1 1 0 4 −1 −1 1 0

Hg 5 0 0 −1 1 5 0 0 −1 1

Au 1 1 1 1 1 −1 −1 −1 −1 −1

T1u 3 τ 1− τ 0 −1 −3 −τ −1 + τ 0 1

T2u 3 1− τ τ 0 −1 −3 −1 + τ −τ 0 1

Gu 4 −1 −1 1 0 −4 1 1 −1 0

Hu 5 0 0 −1 1 −5 0 0 1 −1

Γ vec 3 τ 1− τ 0 −1 −3 −τ −1 + τ 0 1

Γ rot 3 τ 1− τ 0 −1 3 τ 1− τ 0 −1

Γ per 60 0 0 0 0 0 0 0 0 4

Ψ 180 0 0 0 0 0 0 0 0 4

Table 6.18: Character table for the icosahedral group Ih. Note τ = 2cos π
5 = 1

2

(
1+

√
5
)

satisfies τ2 = 1+τ .
Γ per is the permutation representation for the buckyball C60 .

The derivation of the effective Raman Hamiltonian is somewhat involved, and we include here a brief
discussion for the sake of completeness. The goal is to compute the effective molecular Hamiltonian up
to second order in the external time-dependent electric field E(t), within a restricted manifold of molecular
states consisting of the ground state | g 〉, assumed to transform trivially under point group operations,
and an excited state multiplet |Γ γ 〉, where γ is the partner label, transforming as the IRREP Γ . The
effective Hamiltonian is found to be34

Ĥeff(t) = Ĥ0 − µ̂ · E(t) + 1
2 Eρ(t)

t∫

−∞

dt′ α̂ρλ(t− t′) Eλ(t′) +O(E3) , (6.111)

where

Ĥ0 = Eg

∣∣ g
〉〈

g
∣∣+
∑

Γ

′
EΓ

dΓ∑

γ=1

∣∣Γ γ
〉〈
Γ γ

∣∣ (6.112)

includes the molecular ground state and all vibrational excitation multiplets, and

µ̂ = −e
∑

a,b

∣∣ b
〉 〈
b
∣∣ d̂
∣∣ a
〉 〈
a
∣∣ , (6.113)

34See, e.g., chapter 4 of R. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley,
2002).
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where | a 〉 and | b 〉 are taken from the low-lying states | g 〉 and |Γ γ 〉, and d̂ is the dipole moment
operator of the molecule. If the molecular point group P contains the inversion element I , then d̂ can
only have matrix elements between representations of different parity. The second order term involves
the polarization tensor, which is obtained from time-dependent perturbation theory, viz.

α̂ρλ(s) =
i

~

[
P̂ eiĤ0

s/~ d̂ρ e
−iĤ

0
s/~ Q̂ d̂λ P̂ − P̂ d̂λ Q̂ eiĤ0

s/~ d̂ρ e
−iĤ

0
s/~ P̂

]
Θ(s) , (6.114)

where P̂ =
∑

a | a 〉〈 a | is the projector onto the ground state and low-lying vibrational multiplets, and

Q̂ ≡ 1̂− P̂ =
∑′

m |m 〉〈m | is the orthogonal projector onto all other eigenstates (hence the prime on the

sum) of the E = 0 molecular Hamiltonian. Θ(s) is the step function. The Fourier transform of Ĥeff(t) is

Ĥeff(ω) = Ĥ0 δ(ω) − E(ω) · µ̂+ 1
2

∞∫

−∞

dω′

2π
Eρ(ω − ω′) Eλ(ω′) α̂ρλ(ω

′) , (6.115)

where

α̂ρλ(ω) =
∑

a,b

∑

n

′ ∣∣ b
〉
{〈

b
∣∣ d̂ρ

∣∣n
〉〈
n
∣∣ d̂λ

∣∣ a
〉

En −Eb − ~ω − i0+
+

〈
b
∣∣ d̂λ

∣∣n
〉〈
n
∣∣ d̂ρ

∣∣ a
〉

En − Ea + ~ω + i0+

}
〈
a
∣∣ . (6.116)

To be clear about what it is we are doing here, we are endeavoring to derive a low-energy effective
Hamiltonian for the vibrational states of a molecule. In general a given molecular state has electronic,
vibrational, and rotational quantum numbers. In many relevant cases, there is a hierarchy of energy
scales, with ∆Erot ≪ ∆Evib ≪ ~ω ≪ ∆Eel , which we shall assume. We’ll ignore here the rotational
modes, i.e. we’ll treat them as zero modes of the vibrational spectrum. All states may be decomposed as

|n 〉 = | vn 〉 ⊗ | en 〉 , (6.117)

i.e. into a direct product of nuclear coordinate (vibrational) and electronic wavefunctions, where the elec-
tronic wavefunctions are eigenfunctions of the Born-Oppenheimer Hamiltonian in which the nuclear
coordinates are frozen. Thus | en 〉 = | en(Q) 〉 depends explicitly on the nuclear coordinates. Although
the Born-Oppenheimer energies EBO

n (Q) will then depend on Q, the electronic energies dominate and
we may take EBO

n (Q) ≈ EBO
n (Q0) at the equilibrium nuclear coordinates. The dipole moment opera-

tor d̂ = −e∑i,l ri,l is a sum over electron displacements with respect to the fixed origin of the point

group,where ri,l for a given electron is a sum of terms including the equilibrium position Q0
i of the ith

ion, its displacement ui = Qi −Q0
i from equilibrium, and the electronic position ξi,l of the lth electron

on that ion with respect to its nucleus. We may now write35

α̂ρλ(Q,ω) =
1

~

∑

n

′
{〈

eg(Q)
∣∣ d̂ρ

∣∣ en(Q)
〉〈

en(Q)
∣∣ d̂λ

∣∣ eg(Q)
〉

ωng − ω − i0+

+

〈
eg(Q)

∣∣ d̂λ
∣∣ en(Q)

〉〈
en(Q)

∣∣ d̂ρ
∣∣ eg(Q)

〉

ωng + ω + i0+

}
,

(6.118)

35In deriving Eqn. 6.118, we use the fact that the Q-dependent part of the energy En(Q) may be dropped in the denominator
because of the aforementioned energy scale hierarchy. We may then collapse the sum on the vibrational component of the
high energy excited states using completeness.
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which acts as an operator on the vibrational wavefunctions | va 〉. The matrix elements 〈 eg(Q) | d̂ρ | en(Q) 〉
etc. involve integration over the electronic coordinates alone, and therefore are functions of the ionic co-
ordinates Q. Similarly, we define

µ̂ρ(Q) = −e
〈
eg(Q)

∣∣ d̂ρ
∣∣ eg(Q)

〉
. (6.119)

We arrive at an effective time-dependent Hamiltonian for the low-lying vibrational levels, which when
expressed in the frequency domain is36

〈
vb
∣∣ Ĥeff(ω)

∣∣ va
〉
= Ea δab δ(ω) − Eρ(ω)

〈
vb
∣∣ µ̂ρ(Q)

∣∣ va
〉

+ 1
2

∞∫

−∞

dω′

2π
E∗
ρ (ω

′ − ω) Eλ(ω′)
〈
vb
∣∣ α̂ρλ(Q,ω

′)
∣∣ va

〉
.

(6.120)

Finally, if the wavefunctions can be taken to be real, we see from Eqn. 6.118 that the polarizability matrix
is symmetric, i.e. αρλ(Q,ω) = αλρ(Q,ω). Note that the nuclear part | eg(Q) 〉〈 eg(Q) | is a one-dimensional
projector common to all terms in the effective vibrational Hamiltonian, and can hence be set to unity.

At this point the electric field Eρ(ω) may be quantized and written in terms of photon creation and an-
nihilation operators. The second term corresponds to Rayleigh scattering in which a photon of frequency
ω = (Eb − Ea)/~ is absorbed. We assume here that a is the ground state. If a represents an occupied
excited state, as may be the case at finite temperature, a photon can be emitted. Regarding the third term
in Ĥeff , which corresponds to Raman scattering, we can read off from the form of the Hamiltonian that
if Eλ(ω′) destroys an incoming photon of frequency ω′, then E∗

ρ (ω
′ − ω) creates an outgoing photon of

frequency ω′−ω, where ~ω = Eb−Ea. WhenEb > Ea this is called Stokes scattering. In Stokes scattering,
the frequency of the emitted radiation is less than that of the incident radiation. When Eb < Ea, the
emitted radiation is at a higher frequency, and the process is called anti-Stokes scattering37.

For Rayleigh scattering, the selection rules are as we discussed above. The operator µ̂ transforms as a
vector, hence 〈 b | µ̂ | a 〉 can be nonzero only if Γb ∈ Γ vec × Γa. For Raman scattering, α̂ρλ transforms
as the symmetric product of two vectors, i.e. as Ψ = (Γ vec × Γ vec)sym. This representation is symmetric
under inversion, hence Raman scattering does not result in a change of parity. Therefore, in molecules
with inversion symmetry, IR (Rayleigh) and Raman scattering are complementary tools, since a mode
can either be IR or Raman active, but not both. If there is no inversion symmetry, a mode can be both IR
and Raman active. Of course, a mode can be inactive for both IR and Raman. Modes which are inactive
for reasons other than parity are called silent.

As an example, consider our old friend C3v, for which Γ vec = A1 ⊕ E, with χvec(E) = 3, χvec(2C3) = 0,
and χvec(3σv) = 1. From

χsym(g) = 1
2

[
χvec(g)

]2
+ 1

2χ
vec(g2) , (6.121)

we have χsym(E) = 6, χsym(2C3) = 0, and χsym(3σv) = 2, whence the decomposition formula yields
Γ sym = 2A1 ⊕ 2E. Thus, if the initial vibrational state is the ground state, the final state is Raman active
if Γf is either A1 or E but not A2.

36See also the discussion in the appendix, §6.8.
37Stokes’ law says that the frequency of fluorescent light is always less than or equal to that of the incident light. Hence Stokes

lines are those which correspond to Stokes’ law, and anti-Stokes lines are those which violate it.
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Figure 6.14: Rayleigh and Raman spectral lines in crystalline sulfur. Image credit: spectrome-
try316.blogspot.com.

For H2O, with point group C2v , we found Γ vib = 2A1 ⊕ B1. We next need Γ sym, which we obtain by
computing the characters χsym(g) using Eqn. 6.121. Note that C2 , σv , and σ′v are all of order two, and
we obtain

χsym(E) = 6 , χsym(C2) = χsym(σv) = χsym(σ′v) = 2 . (6.122)

Decomposing into C2v IRREPs, we find

Γ sym = 3A1 ⊕A2 ⊕B1 ⊕B2 , (6.123)

the total dimension of which is six, corresponding to the degrees of freedom in a real 3 × 3 symmetric
matrix. Thus, all IRREPs are present in Γ sym and all modes are Raman active.

For the buckyball, Γ vec = T1u , and one finds

Ih : Γ vec × Γ vec = Ag ⊕ T1g ⊕Hg . (6.124)

The sum of the dimensions is nine, corresponding to a 3×3 real matrix. To obtain Γ sym, we must subtract
out the antisymmetric tensor representation Γ ASY. Since this is of dimension three, we immediately
know it must be T1g and that Γ sym = Ag ⊕ Hg , which is properly of total dimension six. Comparing
with Fig. 6.13, we see that in addition to the Raman inactive parity-odd multiplets, all parity even
multiplets other than Ag and Hg are Raman silent. A quick check of the character tables shows that
the representation functions for T1g are the angular momentum operators, which indeed correspond to
an antisymmetric rank three tensor. But if this casual elimination of T1g strikes one as too glib – even
though it is obviously correct! – we can grind through a direct calculation using Eqn. 6.121 and Tab.
6.18. All we need to keep in mind is that (C5)

2 = C2
5 , (C2

5 )
2 = C−1

5 (class C5), (C3)
2 = C−1

3 (class C3),
I2 = E , (S3

10)
2 = C3

5 (class C2
5 ), (S10)

2 = C5 , (S6)
2 = C3 , and σ2 = 1. It is then straightforward to derive

χsym(E) = χsym(I) = 6 , χsym(C5) = χsym(S10) = 1 , χsym(C2
5 ) = χsym(S3

10) = 1 (6.125)
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and
χsym(C3) = χsym(S3

6) = 0 , χsym(C2) = χsym(σ) = 2 . (6.126)

One then derives the decomposition

nΓ (Γ
sym) =

1

10

(
χΓ (E) + 2χΓ (C5) + 2χΓ (C2

5 ) + 5χΓ (C2)
)

, (6.127)

from which one readily recovers Γ sym = Ag ⊕Hg .

6.4.4 Electronic spectra of molecules

The decomposition of electronic eigenstates follows the same general rubric as in §6.4.2, except rather
than decomposing Γ vec × Γ per, we must decompose Γ orb × Γ per, where Γ orb is the representation for the
atomic orbitals. There are no translational or rotational zero modes to subtract.

Consider, for example, a benzene molecule, C6H6. The symmetry group is C6v. Each carbon atom has a
1s2 2s2 core plus two electrons in the 2p orbital, one of which forms a bond with its neighboring hydrogen
atom. The remaining six electrons are associated with the carbon pz (π) orbitals. A pz orbital is invariant
under all C6v operations, since it is oriented perpendicular to the symmetry plane. Thus, Γ orb = A1 for
benzene, and we are left with the task of decomposing Γ per. The only symmetry operations which leave
sites invariant are the identity, for which χper(E) = 6, and the diagonal mirrors, for which χper(σd) = 2.
Consulting the character table for C6v, one readily finds

Γ per = A1 ⊕B2 ⊕ E1 ⊕E2 . (6.128)

A simple tight-binding model for the π orbitals is given by

Ĥ = −t
6∑

n=1

∑

σ

(∣∣n, σ
〉〈
n+1, σ

∣∣+
∣∣n+1, σ

〉〈
n, σ

∣∣
)

, (6.129)

which is instantly diagonalized in the crystal momentum basis as

Ĥ = −2t
∑

k,σ

cos(nk) | k, σ 〉〈 k, σ | , (6.130)

where k = 0, ±1
3 π, ±2

3 π, and π. Note that without spin-orbit coupling, the spin just comes along for the
ride, and we needn’t bother with the trouble of the double group. The eigenfunctions are

∣∣ k, σ
〉
=

1√
6

6∑

n=1

eikn
∣∣n, σ

〉
. (6.131)

We see that the k = 0 and k = π states are singly degenerate, hence one must transform as A1 and one
as B2. Obviously k = 0 transforms as A1, so k = π must transform as B2. Just to check, note that the
mirrors σv which run perpendicular to the hexagonal faces, exchange odd and even numbered sites,
while the diagonal mirrors preserve the oddness or evenness of the site index n. Since χB

2(σv) = −1
and χB

2(σd) = +1, we can be sure there was no mistake, and the k = π state indeed transforms as
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B2. The remaining eigenstates are organized into two doublets: k = ±1
3π and k = ±2

3π. A check of

the C3v character table tells us that χE
1,2(C2) = ±2, so we can use this as a test. Under C2, we have

n → n + 3. Since exp(3ik) = −1 for k = ±1
3π, we conclude that this doublet transforms as E1 and

k = ±2
3π transforms as E2.

Next, consider a cubic molecule. If we construct a tight-binding model consisting of s-orbitals on each
site, there will be a total of eight orbitals for each spin polarization. How are they arranged in IRREPs of
Oh? Simple. We first note that the only operations g ∈ Oh which leave sites are invariant are the iden-
tity, which preserves all eight sites, the threefold rotations 8C3 about the four axes running diagonally
through the cube, which preserve the two sites along each axis, and the diagonal mirrors 6IC ′

2 , which
preserve the four sites lying in each mirror plane. For every other class, χper(C) = 0. Since the orbitals
are all s-states, we have Γ orb = A1g , the trivial representation. After consulting the character table for
Oh, we find

Γ orb × Γ per = A1g ⊕ T1g ⊕A2u ⊕ T2u . (6.132)

Suppose instead each site contained p-orbitals rather than an s-orbital. In this case, Γ orb = Γ vec, and the
decomposition formula yields

Γ orb × Γ per = A1g ⊕ Eg ⊕ T1g ⊕ 2T2g ⊕A2u ⊕ Eu ⊕ 2T1u ⊕ T2u . (6.133)

Adding up all the dimensions yields 24, which corresponds to the total number of orbitals, as required.

Oh E 8C3 6IC ′
2 decomposition

Γ vec 3 0 1 T1u
Γ per 8 2 4 A1g ⊕ T1g ⊕A2u ⊕ T2u

Γ vec × Γ per 24 0 4 see text

Table 6.19: Partial character table for Oh. Classes shown are those for which χper(C) 6= 0 for the cube.

6.5 Phonons in Crystals

Consider next the vibrations of a crystalline solid, which are called phonons. We defineR to be a Bravais
lattice vector, i.e. a label for a unit cell, and ui(R) to be the displacement of the ith basis ion in theR unit
cell. The Hamiltonian is

H =
∑

R,i

p2i (R)

2mi

+
1

2

∑

R,R′

∑

i,j

∑

α,β

uαi (R) Φαβ
ij (R −R′) uβj (R

′) +O(u3) , (6.134)

where

Φαβ
ij (R−R′) =

∂2U

∂uαi (R) ∂uβj (R
′)

. (6.135)

Remember that the indices i and j run over the set {1, . . . , r}, where r is the number of basis vectors,
while α and β are Cartesian vector indices taken from {1, 2, . . . , d}, where d is the dimension of space.
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In the case of molecules, the dynamical matrix is of rank dN . For a molecule with no point group
symmetries, this is the dimension of the eigenvalue problem to be solved. In crystals, by contrast, we
may take advantage of translational invariance to reduce the dimension of the eigenvalue problem to
dr, i.e. to the number of degrees of freedom within a unit cell. This is so even in the case of a triclinic
system with no symmetries (i.e. point group C1). Each vibrational state is labeled by a wavevector k,
and at certain high symmetry points k in the Brillouin zone, crystallographic point group symmetries
may be used to group these dr states into multiplets transforming according to point group IRREPs.

Upon Fourier transform,

uαi (R) =
1√
N

∑

k

ûαi (k) e
ik·R eik·δi

pαi (R) =
1√
N

∑

k

p̂αi (k) e
ik·R eik·δi ,

(6.136)

where the sum is over all k within the first Brillouin zone. The Fourier space dynamical matrix is then

Φ̂αβ
ij (k) =

∑

R

Φαβ
ij (R) e−ik·R e−ik·δi eik·δj . (6.137)

The Hamiltonian, to quadratic order, takes the form

H =
∑

k,i

p̂αi (k) p̂
α
i (−k)

2mi

+
1

2

∑

k

∑

i,j

∑

α,β

ûαi (−k) Φ̂αβ
ij (k) ûβj (k) , (6.138)

Note that ûαi (−k) =
[
ûαi (k)

]∗
because the displacements uαi (R) are real; a corresponding relation holds

for the momenta. Note also the Poisson bracket relation in crystal momentum space becomes

{
uαi (R) , pβj (R

′)
}

PB

= δ
RR

′ δij δαβ ⇒
{
ûαi (k) , p̂

β
j (k

′)
}

PB

= δP
k+k

′,0 δij δαβ , (6.139)

where δP
k+k

′,0
=
∑

G
δ
k+k

′,G
requires k + k′ = 0 modulo any reciprocal lattice vector. Note also that

Φαβ
ij (R) = Φβα

ji (−R) ⇒ Φ̂βα
ji (k) = Φ̂αβ

ij (−k) =
[
Φ̂αβ
ij (k)

]∗
. (6.140)

The system is diagonalized by writing

ûαi (k) =
dr∑

λ=1

êαiλ(k) q̂λ(k) , p̂αi (k) = mi

dr∑

λ=1

êα∗iλ (−k) π̂λ(k) (6.141)

where
{
q̂λ(k), π̂λ′(k)

}
PB

= δ
k+k

′,0
δλλ′ and Siα,λ(k) ≡ êαiλ(k) ≡ m

−1/2
i Uiα,λ(k) diagonalizes the dynami-

cal matrix, with Uiα,λ(k) unitary. Thus,

∑

β,j

Φ̂αβ
ij (k) êβjλ(k) = mi ω

2
λ(k) ê

α
iλ(k) (6.142)
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Figure 6.15: Upper panel: phonon spectrum in fcc elemental rhodium (Rh) at T = 297K measured by
high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998). Note
the three acoustic branches and no optical branches, corresponding to d = 3 and r = 1. Lower panel:
phonon spectrum in gallium arsenide (GaAs) at T = 12K, comparing theoretical lattice-dynamical cal-
culations with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note
the three acoustic branches and three optical branches, corresponding to d = 3 and r = 2. The Greek
letters along the x-axis indicate points of high symmetry in the Brillouin zone.

with the completeness relation,
dr∑

λ=1

êα∗iλ (k) ê
β
jλ(k) =

1

mi

δij δαβ (6.143)

and the orthogonality relation,

r∑

i=1

d∑

α=1

mi ê
α∗
iλ (k) ê

α
iλ′(k) = δλλ′ , (6.144)

which are the completeness and orthogonality relations, respectively. Since êα∗iλ (−k) and êαiλ(k) obey the
same equation, we have that ωλ(−k) = ωλ(k). If the phonon eigenmode |k, λ 〉 is nondegenerate, we
may choose êαiλ(−k) = êα∗iλ (k). Else at best we can conclude êαiλ(−k) = êα∗iλ′(k) eiη where |k, λ′ 〉 is another
state from the degenerate manifold of phonon states at this wavevector, and eiη is a phase.
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The Hamiltonian takes the diagonalized form

H =
∑

k

dr∑

λ=1

{
1
2 π̂λ(−k) π̂λ(k) + 1

2 ω
2
λ(k) q̂λ(−k) q̂λ(k)

}
, (6.145)

with
{
q̂λ(k) , π̂λ′(k

′)
}

PB
= δλλ′ δP

k+k
′,0

. To quantize, promote the Poisson brackets to commutators:{
A , B}

PB
→ −i~−1

[
A , B

]
. Then define the ladder operators,

Aλ(k) =

(
ωλ(k)

2~

)1/2
q̂λ(k) + i

(
1

2~ωλ(k)

)1/2
π̂λ(k) , (6.146)

which satisfy
[
Aλ(k) , A

†
λ′(k

′)
]
= δP

kk
′ δλλ′ . The quantum phonon Hamiltonian is then

Ĥ =
∑

k

dr∑

λ=1

~ωλ(k)
(
A†

λ(k)Aλ(k) +
1
2

)
. (6.147)

Of the dr phonon branches, d are acoustic, and behave as ωa(k) = c(k̂) k as k → 0, which is the Γ point
in the Brillouin zone. These gapless phonons are the Goldstone bosons of the spontaneously broken
translational symmetry which gave rise to the crystalline phase. To each broken generator of translation,
there corresponds a Goldstone mode. The remaining d(r − 1) modes are called optical phonons. Whereas
for acoustic modes, all the ions in a given unit cell are moving in phase, for optical modes they are
moving out of phase. Hence optical modes are always finite frequency modes. Fig. 6.15 shows the
phonon spectra in elemental rhodium (space group Fm3m, point group Oh ) , and in gallium arsenide
(space group F43m, point group Td ) . Since Rh forms an fcc Bravais lattice, there are no optical phonon
modes. GaAs forms a zincblende structure, i.e. two interpenetrating fcc lattices, one for the gallium, the
other for the arsenic. Thus r = 2 and we expect three acoustic and three optical branches of phonons.

Nota bene : One may choose to define the Fourier transforms above taking the additional phases for the
basis elements to all be unity, viz.

uαi (R) =
1√
N

∑

k

ûαi (k) e
ik·R , pαi (R) =

1√
N

∑

k

p̂αi (k) e
ik·R , Φ̂αβ

ij (k) =
∑

R

Φαβ
ij (R) e−ik·R .

(6.148)
All the equations starting with Eqn. 6.138 remain the same. Setting the basis phases to unity amounts
to a choice of gauge. It is somewhat simpler in certain contexts, but it may obscure essential space
group symmetries. On the other hand, it should also be noted that the Fourier transforms ûαi (k), p̂

α
i (k),

and Φ̂αβ
ij (k) are not periodic in the Brillouin zone, but instead satisfy generalized periodic boundary

conditions,

ûαi (K + k) = e−iK·δi ûαi (k)

p̂αi (K + k) = e−iK·δi p̂αi (k)

Φ̂αβ
ij (K + k) = e−iK·(δi−δj) Φ̂αβ

ij (k) ,

(6.149)

whereK ∈ L̂ is any reciprocal lattice vector.
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6.5.1 Translation and rotation invariance

The potential energy U
(
{uαi (R)}

)
must remain invariant under the operations

uαi (R) → uαi (R) + dα

uαi (R) → uαi (R) + ǫαµν (R
µ + δµi − δµj ) d

ν (6.150)

for an infinitesimal vector d. The first equation represents a uniform translation of all lattice sites by d.
The second represents an infinitesimal rotation about the jth basis ion in theR = 0 unit cell. We are free
to choose any j.

Writing U(u+∆u) = U(u), we must have that the linear terms in ∆u vanish, hence
∑

R,i

Φαβ
ij (R) =

∑

i

Φ̂αβ
ij (0) = 0

ǫαµν
∑

R,i

(Rµ + δµi − δµj )Φ
νβ
ij (R) = i ǫαµν

∑

i

∂Φ̂νβ
ij (k)

∂kµ

∣∣∣∣
k=0

= 0 .

(6.151)

Note that (α, β, j) are free indices in both equations. The first of these equations says that any vector
dβ is an eigenvector of the dynamical matrix at k = 0, with zero eigenvalue. Thus, at k = 0, there is
a three-dimensional space of zero energy modes. These are the Goldstone modes associated with the
three broken generators of translation in the crystal.

6.5.2 Phonons in an fcc lattice

When the crystal is a Bravais lattice, there are no basis indices, and the dynamical matrix becomes

Φ̂αβ(k) =
∑

R

′
(1− cosk ·R)

∂2v(R)

∂Rα ∂Rβ
, (6.152)

where v(r) is the inter-ionic potential, and the prime on the sum indicates that R = 0 is to be excluded.
For central potentials v(R) = v(R),

∂2v(R)

∂Rα ∂Rβ
=
(
δαβ − R̂α R̂β

) v′(R)
R

+ R̂α R̂β v′′(R) . (6.153)

For simplicity, we assume v(R) is negligible beyond the first neighbor. On the fcc lattice, there are twelve
first neighbors, lying at ∆ = 1

2a (±ŷ ± ẑ), ∆ = 1
2a (±x̂ ± ẑ), and ∆ = 1

2a (±x̂ ± ŷ). Here a is the side

length of the underlying simple cubic lattice, so the fcc lattice constant is a/
√
2. We define

A =

√
2

a
v′
(
a/

√
2
)

, B = v′′
(
a/

√
2
)

. (6.154)

Along (100), we have k = kx̂ and

Φ̂αβ(k) = 4 sin2(14ka)



2A+ 2B 0 0

0 3A+B 0
0 0 3A+B


 , (6.155)
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which is already diagonal. Thus, the eigenvectors lie along the cubic axes and

ω
L
= 2

√
2(A+B)

m

∣∣ sin(ka/4)
∣∣ , ω

T1
= ω

T2
= 2
√

3A+B
m

∣∣ sin(ka/4)
∣∣ . (6.156)

Along (111), we have k = 1√
3
k (x̂+ ŷ + ẑ). One finds

Φ̂αβ(k) = 4 sin2
(
ka/

√
12
)


4A+ 2B B −A B −A
B −A 4A+ 2B B −A
B −A B −A 4A+ 2B


 . (6.157)

ω
L
= 2
√

A+2B
m

∣∣ sin
(
ka/

√
12
)∣∣ , ω

T1
= ω

T2
= 2
√

5A+B
2m

∣∣ sin
(
ka/

√
12
)∣∣ . (6.158)

6.5.3 Elasticity theory redux : Bravais lattices

In a Bravais lattice, we have Φ̂αβ(0) = 0 from translational invariance. The potential energy may then
be written in the form

U = U0 −
1

4

∑

R,R′

∑

α,β

[
uα(R)− uα(R′)

]
Φαβ(R−R′)

[
uβ(R)− uβ(R′)

]
. (6.159)

We now assume a very long wavelength disturbance, and write

uα(R)− uα(R′) = (Rµ −R′µ)
∂uα

∂xµ

∣∣∣∣
R

+ . . . . (6.160)

Thus,

U = U0 −
1

4

∑

R,R′

∑

α,β

∑

µ,ν

∂uα

∂xµ

∣∣∣∣
R

∂uβ

∂xν

∣∣∣∣
R

(Rµ −R′µ) (Rν −R′ν)Φαβ(R−R′) . (6.161)

We may symmetrize with respect to Cartesian indices38 to obtain the elastic tensor

Cαβµν ≡ − 1

8Ω

∑

R

(
RµRν Φαβ(R) +RµRβ Φαν(R) +RαRν Φµβ(R) +RαRβ Φµν(R)

)
. (6.162)

Note that
Cαβµν = Cβαµν = Cαβνµ = Cµναβ , (6.163)

where Ω is the Wigner-Seitz cell volume.

Elasticity in solids

Recall from §6.3.6 that we may regard the rank four tensorCαβµν as a symmetric 6×6 matrix Cab , where
we replace (αβ) → a and (µν) → b according to the scheme which we repeat from Tab. 6.15: In cubic

38Symmetrization is valid because the antisymmetric combination
(
∂uα

∂xβ − ∂uβ

∂xα

)
corresponds to a rotation.
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(αβ) : (11) (22) (33) (23) (31) (12)

a : 1 2 3 4 5 6

Table 6.20: Abbreviation for symmetric compound indices (αβ).

crystals, for example, we have

C11 = Cxxxx = Cyyyy = Czzzz

C12 = Cxxyy = Cxxzz = Cyyzz

C44 = Cxyxy = Cxzxz = Cyzyz .

(6.164)

Typical values of Cab in solids are on the order of gigapascals, i.e. 109 Pa:

element C11 C12 C44

4He 0.031 0.028 0.022

Cu 16 8 12

Al 108 62 28.3

Pb 48.8 41.4 14.8

C (diamond) 1040 170 550

Table 6.21: Elastic moduli for various solids (in GPa).

The bulk modulus of a solid is defined as B = V ∂2F/∂V 2. We consider a uniform dilation, which is
described by R→ (1 + ζ)R at each lattice site. Thus the displacement field is u(r) = ζr. This leads to a
volume change of δV = 3ζV , hence ζ = δV/3V . The strain tensor is εαβ = ζ δαβ , hence

δF =
(δV )2

18V

∑

α,β

Cααββ = 1
9

3∑

a,b=1

Cab . (6.165)

Thus, for cubic materials, B = 1
3C11 +

2
3C12 .

Elastic waves

The Lagrangian of an elastic medium is be written as

L =

∫
ddr L =

∫
ddr

{
1
2 ρ

(
∂uα

∂t

)2
− 1

2 Cαβµν

∂uα

∂xβ
∂uµ

∂xν

}
, (6.166)
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where ρ is the overall mass density of the crystal, i.e. ρ = m/Ω. The Euler-Lagrange equations of motion
are then

0 =
∂

∂t

∂L
∂(∂tu

α)
+

∂

∂xβ
∂L

∂(∂βu
α)

= ρ
∂2uα

∂t2
− Cαβµν

∂2uν

∂xβ ∂xµ
.

(6.167)

The solutions are elastic waves, with u(x, t) = ê(k) ei(k·x−ωt) where

ρω2 eα(k) = Cαβµν k
β kµ eν(k) . (6.168)

Thus, the dispersion is ωa(k) = ca(k̂) k , where

det
[
ρ c2(k̂) δαν − Cαβµν k̂

β k̂µ
]
= 0 (6.169)

is the equation to be solved for the speeds of sound ca(k̂) in each elastic wave branch a.

For isotropic solids, C12 ≡ λ, C44 ≡ µ, and C11 = C12 + 2C14 = λ + 2µ, where λ and µ are the Lamé
coefficients. The free energy density is discussed in §6.3.6 and is given by

f = 1
2λ (∂iui)

2 + 1
2µ (∂iuj) (∂iuj) +

1
2µ (∂iuj) (∂jui) , (6.170)

which results in the Euler-Lagrange equations of motion

ρ ü = (λ+ µ)∇(∇ · u) + µ∇2u . (6.171)

Writing u(r, t) = u0 ê(k) e
i(k·r−ωt), where ê is a polarization unit vector, we obtain a longitudinal mode

when ê(k)·k̂ = 1 with ωL(k) = cL |k| and cL =
√

(λ+ 2µ)/ρ , and two transverse modes when ê(k)·k̂ = 0
with ωT(k) = cT |k| and cT =

√
µ/ρ .

In cubic crystals, there are three independent elastic moduli, C11, C12, and C14 . We then have

ρ c2(k̂) ex =
[
C11 k̂

2
x + C44

(
k̂2y + k̂2z

)]
êx + (C12 + C44)

(
k̂x k̂y ê

y + k̂x k̂z ê
z
)

ρ c2(k̂) ey =
[
C11 k̂

2
y + C44

(
k̂2x + k̂2z

)]
êy + (C12 + C44)

(
k̂x k̂y ê

x + k̂y k̂z ê
z
)

ρ c2(k̂) ez =
[
C11 k̂

2
z + C44

(
k̂2x + k̂2y

)]
êz + (C12 + C44)

(
k̂x k̂z ê

x + k̂y k̂z ê
y
)

.

(6.172)

This still yields a cubic equation, but it can be simplified by looking along a high symmetry direction in
the Brillouin zone.

Along the (100) direction k = k x̂, we have

ê
L
= x̂ c

L
=
√
C11/ρ (6.173)

ê
T1

= ŷ c
T1

=
√
C44/ρ (6.174)

ê
T2

= ẑ c
T2

=
√
C44/ρ . (6.175)



6.5. PHONONS IN CRYSTALS 57

Along the (110) direction, we have k = 1√
2
k
(
x̂+ ŷ). In this case

ê
L
= 1√

2

(
x̂+ ŷ) c

L
=
√

(C11 + 2C12 + 4C44)/3ρ (6.176)

ê
T1

= 1√
2

(
x̂− ŷ) c

T1
=
√

(C11 − C12)/2ρ (6.177)

ê
T2

= ẑ c
T2

=
√
C44/ρ . (6.178)

Along the (111) direction, we have k = 1√
3
k
(
x̂+ ŷ + ẑ). In this case

ê
L
= 1√

3

(
x̂+ ŷ + ẑ) c

L
=
√

(C11 + C12 + 2C44)/2ρ (6.179)

ê
T1

= 1√
6

(
2x̂− ŷ − ẑ) c

T1
=
√

(C11 − C12)/3ρ (6.180)

ê
T2

= 1√
2

(
ŷ − ẑ) c

T2
=
√

(C11 − C12)/3ρ . (6.181)

6.5.4 Elasticity theory in cases with bases

The derivation of the elastic tensor Cαβµν is significantly complicated by the presence of a basis. Sadly,
translational invariance if of no direct avail because

U 6= U0 −
1

4

∑

R,R′

∑

α,β

∑

i,j

[
uαi (R)− uαi (R

′)
]
Φαβ
ij (R−R′)

[
uβj (R)− uβj (R

′)
]

. (6.182)

The student should understand why the above relation is not an equality.

Rather than work with the energy, we will work with the eigenvalue equation 6.142,

Φ̂αβ
ij (k) êβjλ(k) = mi ω

2
λ(k) ê

α
iλ(k) ,

and expand in powers of k. Accordingly, we write

êαiλ(k) = dαi + kσfαiσ + 1
2 k

σkτgβiστ +O(k3)

Φ̂αβ
ij (k) = Φ̂αβ

ij (0) + kµ
∂Φ̂αβ

ij (k)

∂kµ

∣∣∣∣
0

+ 1
2 k

µ kν
∂2Φ̂αβ

ij (k)

∂kµ ∂kν

∣∣∣∣
0

+O(k3) .
(6.183)

We retain the basis index i on dαi even though it is independent of i because we will use it to make clear
certain necessary sums on the basis index within the Einstein convention. We then have

mi ω
2
{
dαi + kσfαiσ + . . .

}
= (6.184)

{
Φ̂αβ
ij (0) + kµ

∂Φ̂αβ
ij (k)

∂kµ

∣∣∣∣
0

+ 1
2 k

µ kν
∂2Φ̂αβ

ij (k)

∂kµ ∂kν

∣∣∣∣
0

+ . . .

} {
dβj + kτfβjτ + . . .

}
,
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where there is no implied sum on i on the LHS. We now work order by order in k . To start, note that

ω2(k) = c2(k̂) k2 is already second order. On the RHS, we have Φ̂αβ
ij (0) dβj = 0 to zeroth order in k. At

first order, we must have

Φ̂αβ
ij (0) fβjσ +

∂Φ̂αβ
ij (k)

∂kσ

∣∣∣∣
0

dβj = 0 , (6.185)

and defining the matrix inverse Υ̂ γα
li (k) by the relation

Υ̂ γα
li (k) Φ̂αβ

ij (k) = δγβ δlj , (6.186)

we have

fγlσ = −Υ̂ γα
li (0)

∂Φ̂αβ
ij (k)

∂kσ

∣∣∣∣
0

dβj (6.187)

Finally, we obtain the eigenvalue equation for the elastic waves,

mi ω
2 dαi =

[
1

2

∂2Φ̂αβ
il (k)

∂kµ ∂kν

∣∣∣∣
0

−
∂Φ̂ασ

ij (k)

∂kµ

∣∣∣∣
0

Υ̂ σγ
jm(0)

∂Φ̂γβ
ml(k)

∂kν

∣∣∣∣
0

]
kµ kν dβl . (6.188)

Remember that dαi is independent of the basis index i. We have dropped the mode index λ here for

notational convenience. Note that the quadratic coefficient gβiστ never entered our calculation because
it leads to an inhomogeneous term in the eigenvalue equation, and therefore must be dropped. We do
not report here the explicit form for the elastic tensor, which may be derived from the above eigenvalue
equation.

6.6 Appendix : O(3) Characters of Point Group Operations

In tables Tab. 6.22 and 6.23 we present the characters of all crystallographic point group operations for
several integer and half-odd-integer representations of SO(3).

6.7 Appendix : Construction of Group Invariants

6.7.1 Polar and axial vectors

We follow the discussion in §4.5 of Lax. Let rj denote a polar vector and mk an axial vector, where j

and k are labels. Let’s first recall how axial vectors transform. If we write mµ = ǫµνλ r
ν
1 r

λ
2 , where r1,2

are polar vectors, then under the action of a group element g, we have m→m′, where

m′
µ = ǫµνλDν′ν(g)Dλ′λ(g) r

ν′

1 r
λ′

2 . (6.189)

Now if R is any 3× 3 matrix, then Rµ′µRν′ν Rλ′λ ǫ
µνλ = det(R) ǫµ

′ν′λ′

, and therefore m′
µ = mµ′ D̃µ′µ(g),

where D̃αβ(g) = detD(g) ·Dαβ(g). In other words,

ǫµνλDν′ν(g)Dλ′λ(g) = detD(g) · ǫµ′ν′λ′Dµ′µ(g) . (6.190)
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J E C2 C3 C4 C6 E C3 C4 C6

1/2 2 0 1
√
2

√
3 −2 −1 −

√
2 −

√
3

1 3 −1 0 1 2 3 0 1 2

3/2 4 0 −1 0
√
3 −4 1 0 −

√
3

2 5 1 −1 −1 1 5 −1 −1 1

5/2 6 0 0 −
√
2 0 −6 0

√
2 0

3 7 −1 1 −1 −1 7 1 −1 −1

7/2 8 0 1 0 −
√
3 −8 −1 0

√
3

4 9 1 0 1 −2 9 0 1 −2

9/2 10 0 −1
√
2 −

√
3 −10 1 −

√
2

√
3

5 11 −1 −1 1 −1 11 −1 1 −1

11/2 12 0 0 0 0 −12 0 0 0

6 13 1 1 −1 1 13 1 −1 1

Table 6.22: O(3) characters of crystallographic point group operations. Note χ(C2) = χ(C2).

χ(σ) χ(σ) χ(I) χ(I) χ(S3) χ(S4) χ(S6) χ(S3) χ(S4) χ(S6)

η χ(C2) η χ(C2) η χ(E) η χ(E) η χ(C6) η χ(C4) η χ(C3) η χ(C6) η χ(C4) η χ(C3)

Table 6.23: Characters for improper O(3) operations. Here η = ± is the parity.

Thus for proper rotations,m transforms in the same way as a polar vector. But for improper operations,
it incurs an extra minus sign. From these results, we can also determine that

• For polar vectors r1 and r2 , the cross product r1×r2 transforms as an axial vector (proven above).

• For axial vectorsm1 and m2 , the cross productm1 ×m2 also transforms as an axial vector.

• The cross product r ×m of a polar vector with an axial vector transforms as a polar vector.

6.7.2 Invariant tensors

Suppose Tα
1
···αNµ

1
···µM

transforms as a polar vector (i.e. 1−) with respect to the indices {αj} and as an

axial vector (i.e. 1+) with respect to indices {µk}. Then the function

T
(
{rj}, {mk}

)
= Tα

1
···αNµ

1
···µM

N∏

j=1

r
αj

j

M∏

k=1

m
µk
k . (6.191)
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transforms as a scalar (i.e. the trivial representation) under O(3). For example, if Tαβµ transforms as a

(polar) vector under α and β, and as an (axial) pseudovector under µ, then T (x,y,m) = Tαβµ x
α yβ mµ

is an invariant if x and y are vectors and m a pseudovector. Basically, so long as one is always taking
the ”dot product” on indices transforming according to the same IRREP of O(3), either 1− or 1+, then the
resulting expression is a group scalar if all available indices are contracted. This also holds true if one
internally contracts tensor indices which transform in the same way, e.g.

T̃
(
{rj}, {mk}

)
= Tα

1
···αNµ

1
···µM

δα1
α
2 δµ1

µ
2 δµ3

µ
4

N∏

j=3

r
αj

j

M∏

k=5

m
µk
k (6.192)

is also a scalar. Now, following Lax, to every invariant polynomial of homogeneous degree K in(
{rj , mk}

)
there corresponds an invariant tensor of rank K , which one reads off from the coefficients

of the monomials. Recall that any polynomial for which

T (λr1, . . . , λrN , λm1, . . . , λmM ) = λK T (r1, . . . , rN ,m1, . . . ,mM ) (6.193)

is homogeneous of degree K . Thus, T (x,y,m) = x × y ·m = ǫαβγ x
α yβmµ is invariant and homo-

geneous of degree K = 3. Therefore Tαβµ = c ǫαβµ , where c is any constant, is an invariant rank three
tensor, inverting the logic of our previous example.

For the group SO(n) of proper rotations, a theorem which we shall not prove establishes that all poly-
nomial invariants of the n vectors {r1, . . . , rn} are of the form

P (r1, . . . , rn) = P1

(
{ri · rj}

)
+ P2

(
{ri · rj}

)
det(rµi ) , (6.194)

where P1,2 are functions of the dot products ri · rj . In fact, the determinant is also a function of the dot

products, although not a polynomial function thereof: detMiµ ≡ det(rµi ) = det1/2(ri · rj) ≡
(
detNij

)1/2
.

6.7.3 Shell theorem

Let
{
φΓµ (r)

}
and

{
ψΓ
ν (r)

}
be two sets of orthonormal basis functions for an IRREP Γ of some finite

discrete group G. Then the function

FΓ (r, r′) =

dΓ∑

µ=1

φΓ
∗

µ (r)ψΓ
µ (r

′) (6.195)

is invariant under the operation of all g ∈ G. Explicitly, we have

g FΓ (r, r′) =
∑

α,β

φΓ
∗

α (r)ψΓ
β (r

′)

= δαβ︷ ︸︸ ︷∑

µ

D∗
αµ(g)Dβµ(g) . (6.196)

Similarly, we have

1

NG

∑

g∈G
g
[
φΓ

∗

µ (r)ψΓ
µ (r

′)
]
=
∑

α,β

φΓ
∗

α (r)ψΓ
β (r

′)
1

NG

∑

g∈G
D∗

αµ(g)Dβµ(g) =
1

dΓ

∑

α

φΓ
∗

α (r)ψΓ
α (r

′) ,

(6.197)
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where there is no implicit sum on µ. The LHS above is an average over all group operations, whereas
the RHS is a ”shell average” over all the labels in the representation Γ .

These results may be used to construct invariant tensors. Lax presents an example from C3v , taking

φE1 = yz′ − zy′ , φE2 = zx′ − xz′ , ψE
1 = mx , ψE

2 = my , (6.198)

and
φA2 = xy′ − yx′ , ψA

2 = mz . (6.199)

The general invariant is expressed as F = aE ·E + bA2 ·A2 , i.e.

F = a (yz′ − zy′)mx + a (zx′ − xz′)my + b (xy′ − yx′)mz . (6.200)

We read off the coefficients of rµ r
′
ν mλ to obtain the invariant tensor elements χµνλ,

χ123 = −χ213 = a

χ231 = χ312 = −χ321 = −χ132 = b .
(6.201)

With spin, the invariant carries spatial and spin information, and is written

FΓ (r, r′, s, s′) =

dΓ∑

µ=1

φΓ
∗

µ (r, s)ψΓ
µ (r

′, s′) , (6.202)

where s and s′ are spinor indices.

6.8 Appendix : Quasi-degenerate Perturbation Theory

Oftentimes, as in our discussion of Raman spectroscopy in §6.4.3, we would like to focus on a subset
of Hilbert space and derive an effective Hamiltonian valid for a restricted group of states. This may
be accomplished by decoupling the target group of states from the rest of Hilbert space perturbatively
order by order in a canonical transformation39.

6.8.1 Type A and type B operators

Consider a Hamiltonian H = H0 + V , with H0| j 〉 = E0
j

∣∣ j
〉
. Typically the Hilbert space in which

H operates will be infinite-dimensional. Now consider some finite subset of levels {j1, jj , . . . , jK} and

define P to be be the projector onto this subspace, i.e. P =
∑K

α=1 | jα 〉〈 jα | . Let Q = 1 − P be the
orthogonal projector onto the complementary subspace. Typically we will be interested in cases where
P projects onto a small number of energy levels, such as the low-lying vibrational states of a molecule,
or, in a solid, a group of levels in the vicinity of the Fermi energy, such as the valence band(s) plus
conduction band(s) in a semiconductor.

39See, e.g. Appendix B of R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer,
2003).
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Let us write V = VA + VB , where

VA = P V P +QVQ

VB = P V Q+QV P .
(6.203)

The operator VA has no matrix elements connecting the P and Q subspaces, while VB only has matrix
elements between those subspaces. Clearly H0, which is diagonal, is a “type A” operator. Fig. 6.16
shows schematically the difference between type A and type B.

6.8.2 Unitary transformation for block diagonalization

Consider now a unitary transformation with

H̃ = e−S H eS = H + [H,S] +
1

2!

[
[H,S], S

]
+

1

3!

[[
[H,S], S

]
, S
]
+ . . .

≡
∞∑

k=0

1

k!

[
H,S

]
(k)

,
(6.204)

where S = −S† is antihermitian in order that eS be unitary, and where

[
H,S

]
(k)

=

k times︷ ︸︸ ︷[[[
H,S

]
, S] · · · , S

]
, (6.205)

with [H,S](0) ≡ H . As we shall see, we may assume S = SB is of type B., in which case H̃ = H̃A + H̃B,

with

H̃A =
∞∑

j=0

1

(2j)!

[
H0 + VA, S

]
(2j)

+
∞∑

j=0

1

(2j + 1)!

[
VB, S

]
(2j+1)

H̃B =

∞∑

j=0

1

(2j + 1)!

[
H0 + VA, S

]
(2j+1)

+

∞∑

j=0

1

(2j)!

[
VB, S

]
(2j)

.

(6.206)

We choose S such that H̃B = 0. This is done perturbatively. We start by formally replacing VA → λVA
and VB → λVB, with λ = 1 at the end of the day. We then write S as a Taylor series in powers of λ:

S = λS(1) + λ2 S(2) + . . . . (6.207)

X Y [X,Y ]

type A type A type A

type A type B type B

type B type A type B

type B type B type A

Table 6.24: Commutators and their types.
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Figure 6.16: Type-A operators preserve the subspace; type B operators change the subspace.

To third order in λ, we will need the following expressions:

[
H0 + λVA, S

]
(1)

= λ
[
H0, S(1)

]
+ λ2

([
H0, S(1)

]
+
[
VA, S

(1)
])

+ λ3
([
H0, S(3)

]
+
[
VA, S

(2)
])

+O(λ4)
[
H0 + λVA, S

]
(3)

= λ3
[[[
H0, S(1)

]
, S(1)

]
, S(1)

]
+O(λ4)

(6.208)

and
[
λVB, S

]
(0)

= λVB
[
λVB, S

]
(2)

= λ3
[[
VB, S

(1)
]
, S(1)

]
+O(λ4)

(6.209)

To order λ3, then, we make H̃B vanish by demanding

0 =
[
H0, S(1)

]
+ VB

0 =
[
H0, S(2)

]
+
[
VA, S

(1)
]

0 =
[
H0, S(3)

]
+
[
VA, S

(2)
]
+ 1

6

[[
[H0, S(1)], S(1)

]
, S(1)

]
+ 1

2

[
[VB, S

(1)], S(1)
]

.

(6.210)

We solve the first equation for S(1), then plug this into the second to obtain an equation for S(2), the
solution of which is used in the third equation to obtain S(3), etc. Setting λ = 1, the Hamiltonian is then

H̃ = H̃A = H0 + VA +
[
VB, S

(1)
]
+ 1

2

[
[H0, S(1)], S(1)

]
+ . . .

= H0 + VA + 1
2

[
VB, S

(1)
]
+ . . . .

(6.211)

Let a and b index states in P and let n and m index states in Q. The equation for S(1) then yields

0 = Van +H0
ab S

(1)
bn − S(1)

amH
0
mn = Van +

(
E0

a − E0
n

)
S(1)
an . (6.212)
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X [X,S](2j) [X,S](2j+1)

type A type A type B

type B type B type A

Table 6.25: Multiple commutators and their types.

Therefore, we have

S(1)
an =

Van
E0

n − E0
a

, S(1)
na =

Vna
E0

a − E0
n

. (6.213)

Note that Van and Vna both come from the VB part of V .

The equation for S(2) may be written in component form as

0 = H0
ab S

(2)
bn − S(2)

amH
0
mn + Vab S

(1)
bn − S(1)

am Vmn

=
(
E0

a − E0
n

)
S(2)
an +

VabVma

E0
n − E0

b

− VamVmn

E0
m − E0

a

.

(6.214)

Restoring the summation symbols for added clarity, we then have

S(2)
an =

1

E0
a − E0

n

·
(
∑

b

VabVbn
E0

n − E0
b

−
∑

m

VamVmn

E0
m − E0

a

)
, (6.215)

with a corresponding expression for S
(2)
na . At this point, the student should write down the expression

for S
(2)
an . The Hamiltonian in the P sector, to this order, is then

H̃ab = E0
a δab + Vab +

1
2

(
VanS

(1)
nb − S(1)

an Vnb
)

= E0
a δab + Vab +

1
2

∑

n

(
1

E0
a − E0

n

+
1

E0
b − E0

n

)
VanVnb .

(6.216)

6.9 Jokes for Chapter Six

MATHEMATICS JOKE : Q: What does the ”B” in Benoit B. Mandelbrot stand for? A: Benoit B.
Mandelbrot.

GRAMMAR JOKE : A businessman is in Boston for only the second time in his life. On his first visit
he had some delicious New England seafood, and he’s looking forward to going back to the same
restaurant. So he hails a cab, and asks the driver, ”I was in Boston a few years ago. Can you take
me to Angela’s, where I had scrod before?” The driver replies, ”You know, lots of people ask me
that, but never in the pluperfect subjunctive.”
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LOGICIAN JOKE : A logician’s husband tells his wife, ”please go to the grocery store on your way
home from work. We need a gallon of milk. And if they have eggs, get a dozen.” She returns home
with twelve gallons of milk. ”What the hell happened?!” asks the husband. ”They had eggs,” she
explained.

MUSICIAN JOKE : A conductor who is preparing for a performance is having trouble finding a
good clarinet player. He calls a contractor who tells him, ”The only guy I’ve got is a jazz clar-
inetist.” ”I can’t stand working with jazz musicians!” says the conductor. ”They dress like bums,
they’re always late, and every one of them has an attitude problem.” ”Hey, he’s all I’ve got,” says
the contractor. The conductor is desperate, so he agrees.

The conductor arrives early for the first rehearsal and sees the jazz clarinetist wearing a suit and
tie, a pencil resting on his stand, and practicing his part. During the rehearsal, he plays sensitively
and writes down all of the conductor’s suggestions. At the second rehearsal, the clarinetist plays
even better. At the final dress rehearsal, he is absolutely flawless.

During the dress rehearsal break, the conductor tells the orchestra, ”I’ve got an apology to make,
and I wanted to do so publicly, because there is a lesson here for us all. I was really dreading
having to work with a jazz musician, but I must say that our clarinetist has proven me wrong.
He’s always neatly dressed, comes early to rehearsal, and he really listened to me and learned his
part very well indeed.” Turning to the clarinet player the maestro says, ”I just wanted to tell you
that I truly appreciate your effort and dedication.”

The clarinetist replies, ”Hey man, it’s the least I can do since I can’t make the gig.”

SPECIAL JOKE FOR CHAPTER SIX : A Mn4+ ion walks into a bar. The bartender asks, ”would you
like a point group?” The ion replies, ”better make it a double.”40

40I made this joke up all by myself. It is term-splitting, if not side-splitting. ”They laughed when I said I wanted to be a
comedian. Well, nobody is laughing now!”
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