
Contents

Contents i

List of Figures ii

List of Tables iii

4 Continuous Translations and Rotations 1

4.1 Translations and their Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.1.1 Discrete translations and their continuum limit . . . . . . . . . . . . . . . . . . . . 1

4.1.2 The cyclic group and its continuum limit . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1.3 Consequences of parity symmetry on the eigenspectrum . . . . . . . . . . . . . . 3

4.1.4 Invariant measure for SO(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Remarks about SO(N ) and SU(N ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.1 How SO(N ) acts on vectors, matrices, and tensors . . . . . . . . . . . . . . . . . . 5

4.2.2 Invariant symbols, dual tensors, and up/down index notation . . . . . . . . . . . 6

4.2.3 Tensor representations of SU(N ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 SO(3) and SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 Irreducible representations of SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3.2 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.3 Guide for the perplexed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.4 Invariant measure for Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.5 Peter-Weyl theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



ii CONTENTS

4.3.6 Projection operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.7 Product representations for SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.8 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.9 Tensor operators and the Wigner-Eckart theorem for SU(2) . . . . . . . . . . . . . 24

4.4 Joke for Chapter Four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



List of Figures

4.1 Definition of Euler angles and their order of operations . . . . . . . . . . . . . . . . . . . . 10

List of Tables

iii



iv LIST OF TABLES



Chapter 4

Continuous Translations and Rotations

4.1 Translations and their Representations

4.1.1 Discrete translations and their continuum limit

Consider an infinite one-dimensional lattice of points xn = na, where n ∈ Z and a is the lattice spacing.
If all sites are equivalent, the relevant symmetry group is Z, i.e. the group of the integers under addition.
The unitary representations are labeled by a wavevector k, with dimensions of inverse length, such that
Dk(n) = exp(−ikna). Then Dk(n)Dk(n′) = Dk(n + n′) yadda yadda yadda. Clearly the representation
matrices are periodic under k → k + 2π

a , hence k may be restricted to the interval k ∈
[
− π

a , +
π
a

]
,

with the endpoints identified. Alternatively, we could define z ≡ exp(−ika) and say that the unitary
representations are labeled by a unimodular complex number z ∈ S1. This interval over which k may
be restricted (without loss of generality) is called the first Brillouin zone in condensed matter physics.

In d space dimensions, the unitary IRREPs of the group Z
d are labeled by a d-component wavevector1

k = {k1, . . . , kd}, with Dk(n) = exp(−ik · na), where n = {n1, . . . , nd} ∈ Z
d. The Brillouin zone

becomes a d-dimensional product of intervals of the d = 1 type, or, equivalently, a d-dimensional torus

T d, with z = {z1, . . . , zd} ∈ T d. The set of points R = a
∑d

j=1 nj êj in d-dimensional space describes a
d-dimensional cubic lattice.

In general, we can choose a set of linearly independent vectors {aj} with j ∈ {1, . . . , d} and define the
lattice position R =

∑
j njaj . This is the construction for a d-dimensional Bravais lattice. The represen-

tations are given by Dk(R) = e−ik·R. The unit cell volume is given by

Ω = ǫ
µ1···µd

a
µ1
1 · · · aµd

d , (4.1)

and is by definition positive2. The {aj} are called the elementary direct lattice vectors and by convention
one chooses them to have the shortest possible lengths. One can then define the elementary reciprocal

1For d = 1, the wavevector is in fact a scalar. Ain’t that a kick in the head?
2If the expression in Eqn. 4.1 is negative, swap the labels of two of the elementary direct lattice vectors aj .

1



2 CHAPTER 4. CONTINUOUS TRANSLATIONS AND ROTATIONS

lattice vectors,

bνk ≡ 2π

Ω
ǫµ1···µk−1 ν µ

k+1···µd
a
µ1
1 · · · aµk−1

k−1 a
µk+1

k+1 · · · aµd

d , (4.2)

which satisfy

ai · bj = 2πδij . (4.3)

For example, with d = 3 we have Ω = a1 · a2 × a3 and

b1 =
2π

Ω
a2 × a3 , b2 =

2π

Ω
a3 × a1 , b3 =

2π

Ω
a1 × a2 . (4.4)

The Brillouin zone volume is Ω̂ = (2π)d/Ω. The first Brillouin zone is the set of wavevectors k such that

k =

d∑

j=1

θj
2π
bj , (4.5)

with θj ∈ [−π, π] for all j ∈ {1, . . . , d}.

For example, the triangular lattice is described by

a1 = a
(
1
2 x̂−

√
3
2 ŷ

)
, a2 = a

(
1
2 x̂+

√
3
2 ŷ

)
(4.6)

with Ω =
√
3
2 a2. The elementary reciprocal lattice vectors are then

b1 =
4π

a
√
3

(√
3
2 x̂− 1

2 ŷ
)

, b2 =
4π

a
√
3

(√
3
2 x̂+ 1

2 ŷ
)

. (4.7)

In the continuum limit, R→ r becomes continuous and Dk(r) = e−ik·r.

4.1.2 The cyclic group and its continuum limit

Recall how the cyclic groupCN , describing a single n-fold axis, is isomorphic to ZN , the group of integer
clock arithmetic modulo N . The group elements are {1, ω, . . . , ωN−1} , with ω ≡ exp(−2πi/N) , and the
representations Γj are labeled by integers j ∈ {0, . . . , N − 1}, with the 1 × 1 representation matrices

Dj(ωl) = ωjl. In the continuum limit N → ∞, we define θ ≡ 2πl/N , and Dj(θ) = e−ijθ with j ∈ Z. Note
the periodicity under θ → θ + 2π. These are the IRREPs of the group C∞ ∼= SO(2). Note that there are
an infinite number of IRREPs, as there must be upon consideration of the N → ∞ limit of the formula
NG =

∑
Γ d

2
Γ .

Note that SO(2) is also the group of continuous translations in one dimension when periodic boundary
conditions (PBCs) are imposed. PBCs mean that x is equivalent to x + L, where L is the length of the
system. This is equivalent to placing our one-dimensional system on a circle. One must then have
Dk(x) = e−ikx = e−ik(x+L) , i.e. e−ikL = 1 for all k, which requires k = 2πj/L with j ∈ Z. Equivalently,
define θ ≡ 2πx/L, and label the IRREPs by j, in which case we recover Dj(θ) = e−ijθ.
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For discrete translations, we may still implement PBCs, equivalencing sites n and n+N , where L = Na
is the size of the system. We then have exp(ikNa) = 1, in which case k is among a discrete set,

k ∈ 2π

Na

{
− 1

2N , . . . , 1
2N

}
(4.8)

where we have assumedN even for simplicity. In theN → ∞ limit, with a remaining finite, this discrete
set becomes the interval ka ∈ [−π, π].

4.1.3 Consequences of parity symmetry on the eigenspectrum

One might ask, as I did during a moment of intellectual weakness at 2 am, how it is then that the dis-
persion relation ε(k) for a free particle in one dimension satisfies ε(k) = ε(−k) = ~

2k2/2m, i.e. the states
other than k = 0 are all doubly degenerate. Where are the two-dimensional IRREPs? Now if you are
going to ask this question, you should make sure that you ask a very smart person, like my colleague
John McGreevy, who will tell you that the symmetries of the free particle are not just continuous trans-
lations along the real line, i.e. the group R under addition (or Z for a discrete infinite chain), but rather
R ⋊ Z2 , where Z2 is due to parity, and where, as we discussed in chapter 1, the symbol ⋊ denotes the
semidirect product . If we denote the parity operation σ and translation through u by t(u) (rather than u
itself, which is slightly awkward notation in this context), then the elements of R× Z2 are t(u) and s(u),
where s(u) ≡ σ t(u) = t(−u)σ. The multiplication table for R⋊ Z2 is as follows:

t(u1) t(u2) = t(u1 + u2)

t(u1) s(u2) = s(u2 − u1)

s(u1) t(u2) = s(u1 + u2)

s(u1) s(u2) = t(u2 − u1) .

(4.9)

Now for the IRREPs, which are still labeled by a real scalar k. The one-dimensional IRREPsare given by

D(k)
(
t(u)

)
= e−iku , D(k)

(
s(u)

)
= 1 . (4.10)

However, now there are also two-dimensional IRREPs, given by

D(k)
(
t(u)

)
=

(
e−iku 0
0 eiku

)
, D(k)

(
s(u)

)
=

(
0 eiku

e−iku 0

)
. (4.11)

The student should verify that the group multiplication law is satisfied by each of these IRREPs. The
above results directly generalize to the case where R is replaced in d dimensions by R

d (continuous
and infinite), Td (continuous and periodic) or Z

d (discrete and infinite) or Z
d
n (discrete and periodic).

Note that in §1.5.3 we discussed how Dn = Zn ⋊ Z2 . For all n ≥ 2, the dihedral groups Dn have two-
dimensional IRREPs. And as John notes, R is essentially indistinguishable from a very large circle S

1,
which is the continuum limit of a periodic chain.
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4.1.4 Invariant measure for SO(2)

Recall the orthogonality and completeness theorems for finite groups:

1

NG

∑

g∈G
DΓ

ik(g)
∗DΓ ′

i′k′(g) =
1

dΓ
δΓΓ ′ δii′ δkk′

∑

Γ,i,k

dΓ D
Γ
ik(g)

∗DΓ
ik(g

′) = NG δgg′ .
(4.12)

How do these generalize for continuous (Lie) groups? A natural guess might be

∫

G

dµ(g)DΓ
ik(g)

∗DΓ ′

i′k′(g) ∼
1

dΓ
δΓΓ ′ δii′ δkk′

∑

Γ,i,k

dΓ D
Γ
ik(g)

∗DΓ
ik(g

′) ∼ δ(g − g′) .
(4.13)

Here we assume that while the number of IRREPs is infinite, the dimension dΓ of each IRREPs is finite.
The expression dµ(g) is an integration measure on the group manifoldG, and δ(g−g′) is a generalization
of the Dirac delta function3. An important feature of the measure is that it should be invariant under
replacement of g by gh, where h is any element in G. I.e. dµ(g) = dµ(gh) for all g, h ∈ G. This is because
the group integration is the continuum limit of a sum over all the elements of a finite group, and by
rearrangement we know that

∑
g∈G F (g) is the same as

∑
g∈G F (gh

−1) for all h. For G = SO(2), the
group elements g = g(φ) are parameterized by the angle variable φ ∈ [0, 2π]. We then have

dµ(g) = ρ(φ) dφ , (4.14)

where ρ(φ) is a weighting function. The condition that dµ(g) be an invariant measure means that it
is unchanged under group multiplication g → gh for all fixed h. This means ρ(φ) = ρ(φ + α) for
all α ∈ [0, 2π), hence ρ(φ) = C , a constant. Normalizing

∫
G dµ(g) ≡ 1, we have ρ(φ) = 1

2π . The
completeness and orthonormality relations then become

2π∫

0

dφ

2π

[
Dj(φ)

]∗
Dj′(φ) = δjj′

∞∑

j=−∞

[
Dj(φ)

]∗
Dj(φ′) = 2π δ(φ− φ′) .

(4.15)

with Dj(φ) = e−ijφ.

3The formal statement of completeness is known as the Peter-Weyl theorem, which we shall discuss in §4.3.5. Since we do not
add elements of the group itself, the notation δ(g − g′) is problematic, and we shall see further below how to make proper
sense of all this.
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4.2 Remarks about SO(N ) and SU(N )

4.2.1 How SO(N) acts on vectors, matrices, and tensors

SO(2) is abelian and while important in physics, it is rather trivial from the point of view of group theory.
We’ve just classified all its unitary representations. On to SO(N), which is nonabelian for N > 2.

SO(N) ⊂ GL(N,R) is the group of proper rotations in N Euclidean dimensions, i.e. the group of N ×N
real matrices R satisfyingRRT = RTR = 1. Acting on the vector space R

N , rotation matrices act on basis
vectors in the following manner:

êa → ê′a = êbRba . (4.16)

Thus with x = xa ê
a, we have

x′ = xa ê
bRba ⇒ x′a = Rab xb . (4.17)

The group also acts on N ×N matrices, with M ′ = RMRT, i.e.

M ′
ij = RiaRjbMab = (RMRT)ij . (4.18)

A matrix Mij may be generalized to an object with more indices, called a tensor. A p-tensor carries p
indices {i1, . . . , ip}, with each ip ∈ {1, . . . , N} ,, and is denoted Mi1i2···ip . Under elements of SO(N), an

n-tensor transforms thusly:
M ′

i1···ip = Ri1a1
· · ·Ripap

Ma1···ap . (4.19)

The transformation coefficients C
i1···ip
a1···ap

(R) ≡ Ri1a1
· · ·Ripap

form a representation of SO(N) because

C
i1···ip
a1···ap

(S) C
a1···ap
j1···jp

(R) = C
i1···ip
j1···jp

(SR) . (4.20)

What is the dimension of this representation? It is given by the dimension of the space on which the
transformation coefficients act, i.e. the space of p-tensors M , where each index runs over N possible
values. Thus, we have obtained a representation of dimension Np.

But is this representation reducible? To address this question, let’s first think about the case n = 2 , i.e.
good old matrices. Our representation is then of dimension N2. But any matrix M ik can be written as

M ik =

c δik︷ ︸︸ ︷
1

N
TrM δik +

Aik
︷ ︸︸ ︷
1

2

(
M ik −Mki

)
+

Sik
︷ ︸︸ ︷
1

2

(
M ik +Mki

)
− 1

N
TrM δik (4.21)

where c = 1
NTrM , A = −AT is an antisymmetric matrix, and S = ST is a traceless symmetric matrix.

Orthogonal transformations preserve all these forms: RRT is the identity, RART is itself antisymmetric,
and RSRT is itself traceless and symmetric. Note that A has 1

2N(N − 1) independent components, and
S has 1

2N(N + 1) − 1 independent components. Thus, our representation, which is N2-dimensional,
reduces as

N2 = 1⊕ 1
2N(N − 1)⊕

[
1
2N(N + 1)− 1

]
. (4.22)

For N = 3, this says 9 = 1 ⊕ 3 ⊕ 5. Note that the dimension of the antisymmetric tensor representation
is the same as that of the vector representation. This is because an three component vector is dual to a
3× 3 antisymmetric 2-tensor (i.e. matrix).
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4.2.2 Invariant symbols, dual tensors, and up/down index notation

Any matrix R ∈ SO(3) preserves the Kronecker delta symbol δab as well as the totally antisymmetric
symbol ǫabc. Recall that

ǫi1··· iN = sgn

(
1 2 · · · N
i1 i2 · · · iN

)
. (4.23)

and that ǫi1··· iN
= 0 if any of the indices ip are repeated. Note that for any matrix R, one has

Ri
aR

j
b δ

ab = (RRT)ij

R
i1
a1
· · ·R iN

aN
ǫa1···aN = det(R) ǫi1··· iN .

(4.24)

Hence if R ∈ SO(N), the Kronecker and epsilon symbols remain invariant under an orthogonal trans-
formation. The raised and lowered indices don’t do anything but aid us in identifying which pairs are

to be contracted, i.e. Ri
j = R j

i = Rij . We always contract an upper index with a lower index4.

True facts about the epsilon symbol:

ǫi1··· iN ǫi1···iN = N !

ǫi1··· iN ǫj1i2···iN = (N − 1)! δ
i1
j1

ǫi1··· iN ǫj1j2i3···iN = (N − 2)!
(
δ
i1
j1
δ
i2
j2
− δ

i1
j2
δ
i2
j1

)
.

(4.25)

The general case:

ǫi1··· iN ǫj1···jKiK+1··· iN = (N −K)!
∑

σ∈SK

sgn(σ) δ
i1
j
σ(1)

· · · δ iKj
σ(K)

. (4.26)

Given a totally antisymmetric K-tensorAa1···aK , we may use the ǫ-symbol to construct its dual, which is

a totally antisymmetric (N −K)-tensor Ã i1··· iN−K , viz.

Ã i1··· iN−K
≡ 1

K!
ǫi1··· iN−Ka1···aK A

a1··· aK . (4.27)

What is the dual of the dual? We have

˜̃
A b1··· bK =

1

(N −K)!
ǫb1··· bK i1··· iN−K Ã i1··· iN−K

=
1

K! (N −K)!
ǫb1··· bK i1··· iN−K ǫi1··· iN−Ka1···aK A

a1··· aK

=
(−1)K(N−K)

K!

∑

σ∈SK

sgn(σ) δ
b1
a1
· · · δbKaK A

a1···aK = (−1)K(N−K)Ab1··· bK .

(4.28)

4Since R is not necessarily a symmetric matrix, we offset the upper and lower indices to indicate which is the row and which
is the column index, i.e. Ri

j = Rij but R i
j = Rji. For diagonal matrices like the δ-symbol, we don’t need to do this, and we

write δab = δab = δba. We can use the δ-symbol to raise and lower indices, viz. δijMjk =M i
k. In relativistic theories, the metric

tensor gµν = diag(+,−,−,−) is used to raise and lower indices, which introduces sign changes.
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Thus, up to a sign, the dual of the dual tensor is the original tensor. We see that for N = 3, the dual of a
vector V a is the antisymmetric tensor

Ṽab = ǫabc V
c =




0 +V 3 −V 2

−V 3 0 +V 1

+V 2 −V 1 0


 . (4.29)

This establishes the equivalence between vector and antisymmetric matrix representations of SO(3). For
N = 4, we have

Fµν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 ⇒ F̃µν = 1

2 ǫµνρσ F
ρσ =




0 −Bx −By −Bz

Bx 0 −Ez Ey

By Ez 0 −Ex

Bz −Ey Ex 0


 . (4.30)

One can also readily establish that if

Bb1··· bK = R
b1
a1

· · ·R bK
aK
Aa1··· aK , (4.31)

then
B̃j1··· jN−K

= R
i1

j1
· · ·R iN−K

jN−K
Ãi1··· iN−K

, (4.32)

i.e. the dual of the orthogonal transform is the orthogonal transform of the dual.

4.2.3 Tensor representations of SU(N)

Let U ∈ SU(N). Thus, Uia U
†
aj = UiaU

∗
ja = δij . Let Q be a rank (p + q) tensor, with components

Qa1··· ap , b1··· bq . We define

Q′
a1···ap , b1···bq = C

a1···ap , b1··· bq
a′1··· a′p , b′1··· b′q

(U)Qa′1··· a′p , b′1··· b′q (4.33)

where
C

a1··· ap , b1··· bq
a′1···a′p , b′1···b′q

(U) = Ua1a
′

1
· · ·Uapa

′

p
U∗
b1b

′

1
· · ·U∗

bqb
′

q
. (4.34)

This forms a representation of SU(N) because

C
a1··· ap , b1··· bq
a′1···a′p , b′1··· b′q

(U) C
a′1··· a′p , b′1··· b′q
a′′1 ···a′′p , b′′1 ··· b′′q

(V ) = C
a1···ap , b1··· bq
a′′1 ··· a′′p , b′′1 ···b′′q

(UV ) . (4.35)

As with the special orthogonal group, the Levi-Civita ǫ symbol is an invariant tensor:

Ua1b1
Ua2b2

· · ·UaN bN
ǫb1···bN =

= 1︷ ︸︸ ︷
det(U) ǫa1···aN . (4.36)

Consider the tensor representation of SU(N) with C
a1a2
a′1a

′

2
(U) = Ua1a

′

1
Ua2a

′

2
. For SO(N), there is always a

one-dimensional IRREP where the tensorMa1a2
= Aδa1a2

, because Ra1a
′

1
Ra2a

′

2
δa′1a′2

= (RRT)a1a2
= δa1a2

.



8 CHAPTER 4. CONTINUOUS TRANSLATIONS AND ROTATIONS

Not so for SU(N), because UUT 6= 1 in general. Still, symmetric and antisymmetric tensors transform
among their respective kinds, hence rather than eqn. 4.22, we have

N2 = 1
2N(N − 1)⊕ 1

2N(N + 1) . (4.37)

Thus, the trivial IRREP in SO(N) adjoins in SU(N) to the symmetric matrix IRREP to form a larger sym-
metric matrix IRREP of dimension 1

2N(N + 1). The general classification scheme for IRREPs of SO(N )
and SU(N) is facilitated by the use of Young tableaux similar to those encountered in our study of the
symmetric group. The rules for counting IRREPs and their dimensions are different, however. In the
language of Young diagrams,

N
×

N
=

1
2
N(N−1)

⊕
1
2
N(N+1)

. (4.38)

Next, consider the tensor representation of SU(N) with C
a1a2
a′1a

′

2
(U) = Ua1a

′

1
U∗
a2a

′

2
. Now we find that the

Kronecker matrix δa1a2
does indeed remain invariant, hence there is a trivial one-dimensional repre-

sentation in the decomposition of this representation. However, one can also see that symmetric and
antisymmetric matrices will in general mix under this transformation, hence the symmetric and anti-
symmetric IRREPs of SO(N) adjoin in SU(N) to yield an IRREP of dimension N2 − 1, which is the adjoint
representation:

N ×N = id⊕ adj . (4.39)

Here we denote by N the fundamental IRREP of SU(N), and by N the antifundamental (i.e. complex
conjugate) IRREP.

4.3 SO(3) and SU(2)

Recall that SO(3) is the matrix Lie group of rotations in Euclidean 3-space. Its elements can be rep-
resented as R(ξ, n̂), meaning a (right-handed) rotation by ξ about n̂, with ξ ∈ [0, π]. As discussed in
chapter 1, topologically this means that each element of SO(3) can be associated with a point ξn̂ in a
filled sphere of radius π. Since R(π, n̂) = R(π,−n̂), points on the surface of this sphere are identified
with their antipodes, resulting in π1

(
SO(3)

) ∼= Z2 .

The Lie algebra so(3) consists of real antisymmetric 3×3 matrices. We can define a basis for this algebra,

Σx =



0 0 0
0 0 −1
0 +1 0


 , Σy =




0 0 +1
0 0 0
−1 0 0


 , Σz =




0 −1 0
+1 0 0
0 0 0


 . (4.40)

Note that Σa
ij = −ǫaij , from which one easily establishes the commutation relations

[
Σa, Σb

]
= ǫabcΣ

c.
Then with ξ = ξn̂, we have R(ξ, n̂) = exp(ξ ·Σ) = exp(ξ n̂ ·Σ). Note that

(
n̂ ·Σ

)
ab

=




0 −nz +ny

+nz 0 −nx
−ny +nx 0




ab

= −ǫabc nc . (4.41)
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Squaring this, we obtain

[
(n̂ ·Σ)2

]
ac

= ǫabd n
d ǫbce n

e = nanc − δac ≡ −Qac
n̂ , (4.42)

where Qab
n̂ = δab − nanc is the orthogonal projector with respect to n̂. The projector onto n̂ is of course

P ab
n̂ = nanb. Defining Σn̂ ≡ n̂ ·Σ, it is now easy to show that

Pn̂Qn̂ = Qn̂Pn̂ = 0 , Pn̂Σn̂ = Σn̂Pn̂ = 0 , Qn̂Σn̂ = Σn̂Qn̂ = Σn̂ , (4.43)

as well as the projector relations P 2
n̂ = Pn̂ and Q2

n̂ = Qn̂ and our previous result Σ2
n̂ = −Qn̂.

From these relations, we may sum the exponential series for R(ξ, n̂) to obtain

Rab(ξ, n̂) = exp(ξ n̂ ·Σ) = nanb +
(
δab − nanb

)
cos ξ − ǫabc n

c sin ξ . (4.44)

It is also a simple matter to show that if S ∈ SO(3), then

S R(ξ, n̂)S−1 = R(ξ, n̂′) (4.45)

where n̂′ = Sn̂. This means that rotations through a fixed angle ξ form an equivalence class. Recall from
chapter 1 how SO(3) is topologically equivalent to a three-dimensional sphere of radius π, with radial
coordinate ξ and angular coordinates given by the unit vector n̂. The condition R(π, n̂) = R(π,−n̂)
means that SO(3) is multiply connected, with π1

(
SO(3)

)
≃ Z2. Thus the equivalence classes of SO(3)

correspond to concentric two-dimensional spheres, with antipodes identified on the surface ξ = π.

In the physics literature, the so(3) generators are Hermitian, and we write Ja = iΣa = D(Ĵa) is a 3 × 3
matrix representation of the operator Ĵa, where the familiar commutation relations

[
Ĵa, Ĵb

]
= iǫabcĴ

c

hold for both the angular momentum operator Ĵa as well as its representation matrices Ja. Thus,

R(ξ, n̂) = exp(−iξ n̂ · J
)
= D

[
exp(−iξ n̂ · Ĵ

)]
, (4.46)

is the matrix representation of the rotation operator R̂(ξ, n̂) = exp(−iξn̂ · Ĵ). Rather than the (ξ, n̂)
parameterization, we could also choose to parameterize a generalR ∈ SO(3) by the Euler angles (α, β, γ)
familiar from the classical mechanics of rotating bodies5, where α, γ ∈ [ 0, 2π) and β ∈ [ 0, π ]. The general
rotation operation in terms of the Euler angles is depicted in Fig. 4.1 and is given by

R(α, β, γ) = exp(−iγJz′′) exp(−iβJy′) exp(−iαJz) . (4.47)

Here exp(−iαJz) rotates by α about the original ẑ = ê03 axis, exp(−iβJy′) by β about the new ŷ′ = ê′2
axis, and exp(−iγJz′′) by γ about the new ẑ′′ = ê′′3 axis. Then

exp(−iγJz′′) = exp(−iβJy′) exp(−iγJz) exp(iβJy′)

exp(−iβJy′) = exp(−iαJz) exp(−iβJy) exp(iαJz)
(4.48)

and so we find
R(α, β, γ) = exp(−iαJz) exp(−iβJy) exp(−iγJz) . (4.49)

5Since we reflexively parameterize the unit vector n̂ in terms of its polar angle θ and azimuthal angle ψ, we’ll call the Euler
angles (α, β, γ) rather than the also common (φ, θ, ψ) to obviate any confusion.
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ê
′

2

ê
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Figure 4.1: Definition of Euler angles and their order of operations in Eqn. 4.47.

Thus, we obtain an expression which looks very much like that in Eqn. 4.47, except (i) the rotations are
now about lab-fixed axes and (ii) the order of operations is reversed. Identifying R(α, β, γ) ≡ R(ξ, n̂),
one obtains a relation6

φ = 1
2 (π + α− γ) , tan θ =

tan
(
1
2β

)

sin
(
1
2α+ 1

2γ
) , cos2

(
1
2ξ
)
= cos2

(
1
2β

)
cos2

(
1
2α+ 1

2γ
)

. (4.50)

Note that [
R(α, β, γ)

]−1
= exp(iγJz) exp(iβJy) exp(iαJz) . (4.51)

Explicitly, we may write

R(α, β, γ) =



cosα − sinα 0
sinα cosα 0
0 0 1







cos β 0 sin β
0 1 0

− sin β 0 cos β






cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 (4.52)

=



cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ sinα sin β

− sinβ cos γ sin β sin γ cosβ


 .

For future reference, we note that

TrR(α, β, γ) = cos(α+ γ) cos β + cos(α+ γ) + cos β . (4.53)
6See Wu-Ki Tung, Group Theory in Physics, p. 99.



4.3. SO(3) AND SU(2) 11

4.3.1 Irreducible representations of SO(3)

We now promote the generators and group elements to operators acting on Hilbert space, writing
R̂(α, β, γ), Ĵa, etc., and we seek representations of SO(3) which can be used to classify the eigenstates of
a rotationally invariant Hamiltonian, i.e. one for which

[
Ĥ, R̂(ξ, n̂)

]
= 0 for all rotations R̂(ξ, n̂). Clearly

it is enough that
[
Ĥ, Ja

]
= 0 for all the generators Ja, so we will seek a representation of the Lie al-

gebra so(3). This will yield a representation of the group SO(3) itself, provided global conditions such
as R̂(π, n̂) = R̂(π,−n̂) are met. As we shall soon see, we will be led naturally to a set of projective
representations, which you already know correspond to half-odd integer total angular momentum, as
well as proper representations, corresponding to integer angular momentum.

We will seek finite-dimensional representations in which the generators Ĵa are all represented by Her-
mitian matrices. In general we can pull this off for compact Lie groups like SO(3). We’ll follow a general
point of attack outlined by Élie Cartan, whose work in the first half of the 20th century laid the foun-
dations for the theory of Lie groups. Cartan’s approach was to start with a standard vector |ψ0 〉 ∈ H
and to generate the remaining vectors in an irreducible basis by iteratively applying various generators.
One important entity which helps us label the IRREPs is the existence of a Casimir operators. A Casimir
is an operator Ĉ which commutes with all elements of the group, and hence with all operators in the

Lie algebra. For so(3), this is Ĉ = Ĵ
2
. By Schur’s first lemma, this means Ĉ is a multiple of the identity,

hence the individual IRREPs may be labeled by the eigenvalues {C1, . . . , CK} of all the Casimirs, where
K is the total number of Casimirs7.

For so(3), following Cartan’s method, it is useful to define the ladder operators Ĵ± = Ĵx ± iĴy . Then

[
Ĵz, Ĵ±] = ±Ĵ± ,

[
Ĵ+, Ĵ−] = 2Ĵz (4.54)

as well as Ĵ
2
= (Ĵz)2 + Ĵz + Ĵ−Ĵ+ and (Ĵ±)† = Ĵ∓. In the vector space V of our representation,

we label the basis vectors by the eigenvalues of the Hermitian operator Ĵz as write them as |m 〉, with
Ĵz|m 〉 = m |m 〉. We then apply Ĵ+, and from the commutation relations we have

ĴzĴ+
∣∣m

〉
= (m+ 1) Ĵ+

∣∣m
〉

. (4.55)

We can keep applying Ĵ+, but eventually, if the representation is finite, we must reach a state | j 〉 for

which Ĵz | j 〉 = j | j 〉 but Ĵ+ | j 〉 = 0. We then have Ĵ
2| j 〉 = j(j + 1)| j 〉. The eigenvalue of our Casimir

is thus j(j + 1), and | j 〉, our ”standard vector”, is called the highest weight state.

We now work downward from | j 〉, successively applying Ĵ−. Note that for any normalized state |m 〉
with m ≤ j ,

〈
m

∣∣ (Ĵ−)†Ĵ− ∣∣m
〉
=

〈
m

∣∣ Ĵ+Ĵ− ∣∣m
〉
=

〈
m

∣∣ (Ĵ2 − (Ĵz)2 + Ĵz
) ∣∣m

〉

= j(j + 1)−m(m− 1) .
(4.56)

We also have ĴzĴ−| j,m 〉 = (m− 1)Ĵ−| j,m 〉, hence we may take

Ĵ−∣∣m
〉
=

√
j(j + 1)−m(m− 1)

∣∣m− 1
〉

. (4.57)

7A Lie group can have several Casimirs. For example, SU(3) has two and in general SU(N) has N − 1 Casimirs.
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If the representation is finite, eventually one must reach a state where Ĵ−|m 〉 = 0, which requires
m = −j. As this state is achieved by an integer number of applications of the lowering operator Ĵ−, we
must have j − (−j) = 2j ∈ N, where N denotes the natural numbers {0, 1, 2, . . .}. Thus, j ∈ 1

2N, which is
to say j may be a positive integer or a half odd positive integer. We now include the label j on all states,
in order to label the representation, and we have

Ĵ
2 ∣∣ j,m

〉
= j(j + 1)

∣∣ j,m
〉

Ĵz
∣∣ j,m

〉
= m

∣∣ j,m
〉

Ĵ± ∣∣ j,m
〉
=

√
j(j + 1)−m(m± 1)

∣∣ j,m± 1
〉

,

(4.58)

where m ∈ {−j, . . . , j} . When we refer to the matrix elements of Ĵa, we will respectfully remove the
hats from the operators, i.e. Ja is the matrix whose elements are Ja

mm′ = 〈 j,m | Ĵa | j,m′ 〉.

4.3.2 Rotation matrices

Rotation matrices are the matrices corresponding to a particular group element, and are specific to each
representation. By definition,

R̂(α, β, γ) | j,m′ 〉 = | j,m 〉D(j)
mm′(α, β, γ) . (4.59)

Since R̂(α, β, γ) = exp(−iαĴz) exp(−iβĴy) exp(−iγĴz), we have

D
(j)
mm′(α, β, γ) = e−iαm e−iγm′

d
(j)
mm′(β) , (4.60)

with

d
(j)
mm′(β) =

〈
j,m

∣∣ exp(−iβĴy)
∣∣ j,m′ 〉 . (4.61)

As the matrices of Ĵ± are real8, iJy is real, and we conclude d
(j)
mm′(β) is a real-valued matrix of rank

2j + 1. For all j we have
[
d(j)(β)

]
T

= d(j)(−β) =
[
d(j)(β)

]−1
, as well as

d
(j)
−m,−m′(β) = (−1)2j−m−m′

d
(j)
m,m′(β) = (−1)m−m′

d
(j)
m,m′(β) . (4.62)

Note that we could have stuck with the (ξ, n̂) parameterization, and written

R̂(ξ, n̂) | j,m′ 〉 = | j,m 〉D(j)
mm′(ξ, n̂) , (4.63)

but clearly the Euler angle parameterization is advantageous due to the particularly simple way in
which the α and γ angles appear in the rotation matrices.

8This was actually a convention that we chose, by taking the prefactor on the RHS of the last of Eqn. 4.58 to be real, and is
originally due to Condon and Shortley.
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Characters

Recall that rotations through a fixed angle ξ form a class within SO(3). What is the character of this
class? Since the axis doesn’t matter, we choose n̂ = ẑ, in which case

χ(j)(ξ) = Tr exp(−iξJz) =

j∑

m=−j

e−imξ =
sin

[
(j + 1

2)ξ
]

sin(12ξ)
. (4.64)

Using the Euler angle parameterization,

χ(j)(α, β, γ) =

j∑

m=−j

e−im(α+γ) d(j)mm(β) . (4.65)

Examples

The simplest example of course is j = 1
2 , where J = 1

2σ are the Pauli matrices. Then

d(1/2)(β) = exp(−iβσy/2) =
(
cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)
. (4.66)

For j = 1, we need to exponentiate the 3×3 matrix iβJy . Let’s first find the normalized eigenvalues and
eigenvectors of Jy :

ψ+ =
1

2




1

i
√
2

−1


 . ψ0 =

1√
2




1
0
−1


 , ψ− =

1

2




1

−i
√
2

−1


 , (4.67)

with corresponding eigenvalues +1, 0, and −1, respectively. From these we construct the projectors

P±
ij = ψ±

i ψ
±∗
j =

1

4




1 ∓i
√
2 −1

±i
√
2 2 ∓i

√
2

−1 ±i
√
2 1


 , P 0

ij = ψ0
i ψ

0∗
j =

1

2




1 0 −1
0 0 0
−1 0 1


 . (4.68)

The projectors are mutually orthogonal and complete: P aP b = δabP a (no sum) and
∑

a P
a = 1. We can

decompose Jy into its projectors, writing Jy = P+ − P−, in which case

exp(−iβJy) = 1− iβ (P+ − P−)− 1
2β

2 (P+ − P−)2 + . . .

= P 0 + cos β (P+ + P−)− i sin β (P+ − P−) .
(4.69)

since (P+ − P−)2n = P+ + P− and (P+ − P−)2n+1 = P+ − P−, allowing us to sum the Taylor series.
Thus, we have

d(1)(β) = exp(−iβJy) =
1

2



1 + cos β −

√
2 sin β 1− cosβ√

2 sin β 2 cos β −
√
2 sin β

1− cos β
√
2 sin β 1 + cosβ


 . (4.70)
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For a general Hermitian matrix M , we can always decomposeM into its orthogonal projectors, viz.

M =
∑

l

λk P
(k) , (4.71)

where P (k) projects onto the kth eigenspace and λk is the associated eigenvalue. We can always orthog-
onalize projectors associated with degenerate eigenspaces, and so

exp(−iθM) =
∑

k

exp(−iθλk)P (k) , (4.72)

where λk is the kth eigenvalue of M . Therefore

d(j)(2π) =

j∑

m=−j

e−2πim P (m) = (−1)2j 1 . (4.73)

This immediately tells us that the IRREPs we have found with j ∈ Z+ 1
2 are not proper IRREPs, but rather

are projective IRREPs.

The general expression for the d(j)(β) matrices is

d
(j)
mm′(β) =

2j∑

k=0

(−1)k
[
(j +m)! (j −m)! (j +m′)! (j −m′)!

]1/2

k! (j +m− k)! (j −m′ + k)! (k −m+m′)!

[
cos(12β)

]2j+m−m′−2k[
sin(12β)

]2k−m+m′

,

(4.74)
where it is to be understood that values of k which make the arguments of any of the factorials negative
are excluded from the sum.

Parameterizations of SU(2)

SU(2) ∈ GL(2,C) is the group of unitary 2 × 2 complex matrices with determinant 1. We have met up
with SU(2) along the way several times already. Let’s recall some of its parameterizations. Any matrix
U ∈ SU(2) may be written as

U(w, x) =

(
w x

−x∗ w∗

)
(4.75)

where w, x ∈ C and detU = |w|2 + |x|2 = 1. Thus, SU(2) ∼= S3, the three dimensional sphere. We may
also write

U(ξ, n̂) = exp
(
− i

2 ξ n̂ · σ
)
= cos

(
1
2ξ
)
1− i sin

(
1
2ξ
)
n̂ · σ , (4.76)

where σ are the Pauli matrices and n̂ = (sin θ cosφ, sin θ sinφ, cos θ) is a unit vector. The ranges of
the parameters (ξ, θ, φ) are ξ ∈ [0, 2π), θ ∈ [0, π], and φ ∈ [0, 2π). This parameterization carries the
interpretation of a rotation by an angle ξ about the axis n̂. We’ve seen how SU(2) is a double cover of
SO(3), for if U = exp

(
− i

2 ξ n̂ · σ
)
, then

Rab =
1
2Tr

(
Uσa U †σb

)
= nanb +

(
δab − nanb

)
cos ξ − ǫabc n

c sin ξ (4.77)
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where R ∈ SO(3). Note that R(2π − ξ, n̂) = R(ξ,−n̂), so the coordinates (ξ, θ, φ) cover SO(3) twice, and
for a unique expression of SO(3) matrices we restrict ξ ∈ [0, π] and identify R(π, n̂) ≡ R(π,−n̂), as we
have discussed before. Finally, we have the Euler angle parameterization,

U(α, β, γ) = exp
(
− i

2 ασ
z
)
exp

(
− i

2 β σ
y
)
exp

(
− i

2 γ σ
z
)

(4.78)

where α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 4π).

4.3.3 Guide for the perplexed

The action of rotation operators on wavefunctions can be confusing when it comes to active versus
passive rotations. To set the record straight, consider the action of a rotation operator Û(R) where
R(ξ, n̂) ∈ SO(3). When there is no intrinsic spin, we have

Û(R)ψ(r) ≡
〈
r
∣∣ Û(R)

∣∣ψ
〉
=

〈
rR

∣∣ψ
〉
= ψ(rR) = ψ(RTr) , (4.79)

where R ≡ Ddef(R) is the 3 × 3 matrix representation of the rotation R in the defining representation
of SO(3)9. Now suppose there is intrinsic spin j. We assume the structure of Hilbert space is such that
spatial and spin degrees of freedom enter as a direct product, i.e. that the wavefunction can be written

∣∣Ψ
〉
=

∣∣ψm′

〉
⊗

∣∣m′ 〉 . (4.80)

with an implied sum on m′ from over the range
{
−j , . . . , j

}
. We then have

Û(R)
∣∣Ψ

〉
=

[
Ûrot(R)

∣∣ψm′

〉]
⊗

∣∣m
〉
D

(j)
mm′(R) (4.81)

so that

〈
r
∣∣ Û(R)

∣∣Ψ
〉
=

〈
r
∣∣ Ûrot(R)

∣∣ψm′

〉 ∣∣m
〉
D

(j)
mm′(R)

= ψm′(rR)
∣∣m

〉
D

(j)
mm′(R) =

[
Û(R)Ψ(r)

]
m

∣∣m
〉

,

(4.82)

where Ûrot(R) = exp(−iξL · n̂/~) is the spatial rotation part of Û(R). We can also write this as

Û(R)



ψ+j(r)

...
ψ−j(r)


 = D(j)(R)



ψ+j(rR)

...
ψ−j(rR)


 . (4.83)

Attend to the order of operations here or you may lead an unhappy life: R = Ddef(R) multiplies the row
vector r on the right, while D(j)(R) multiplies the column vector Ψ on the left.

9Recall that in the defining representation of any matrix Lie groupG ⊂ GL(n, F), each element g is represented by itself.
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4.3.4 Invariant measure for Lie groups

How does one sum over all the elements of a continuous group? Since the group space G is a man-
ifold, we may integrate over G if we have an appropriate measure dµ(g). Integrating with respect to
this measure should be the equivalent of summing over all elements of a discrete group. But then, by
rearrangement, we must have ∫

G

dµ(g)φ(gh−1) =

∫

G

dµ(g)φ(g) (4.84)

for any function φ(g) and any fixed h ∈ G. Thus, we require dµ(gh) = dµ(g) in order that the integral
remain invariant under rearrangement. A measure which satisfies this desideratum is called an invariant
(or Haar) measure.

Let each group element g ∈ G be parameterized by a set of coordinates x = {x1, . . . , xdim(G)}. We define

xg to be the coordinates corresponding to the group element g. The coordinates xgh for the product gh
must depend on those of the components g and h, and accordingly we write

xgh = f(xg , xh) , (4.85)

where f(x,y) is the group composition function. Any group composition function must satisfy the follow-
ing consistency relations:

f
(
f(x,y) ,z

)
= f

(
x ,f(y,z)

)

f(xE ,y) = f(y,xE) = y

f(x,x−1) = f(x−1,x) = xE ,

(4.86)

where xE are the coordinates of the identityE, i.e. g(xE) = E, and x−1 are the coordinates of the inverse

of g(x), i.e. g(x−1) =
[
g(x)

]−1
. We can use the composition functions to construct an invariant measure,

by writing

dµ
(
g(x)

)
= ρ(x)

dim(G)∏

j=1

dxj (4.87)

with

ρ0 = ρ(x)

∣∣∣∣∣ det
(
∂fj(ǫ,x)

∂ǫk

)

ǫ=ǫ
E

∣∣∣∣∣ , (4.88)

where ρ0 = ρ(xE). An equivalent and somewhat more convenient definition is the following. For any

g(x), express g−1 ∂g
∂xi

in terms of the Lie algebra generators T a, i.e.

g−1(x)
∂g(x)

∂xi
=

dim(G)∑

a=1

Mia(x)T
a , (4.89)

where {T a} are the generators of the Lie algebra g . Then10

ρ(x) = ρ0
∣∣detM(x)

∣∣ . (4.90)

10Since we are taking the absolute value of the determinant, it doesn’t matter whether we use the math or physics convention
for the generators, since the difference is only a power of i, which is unimodular.
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Note that
[
h g(x)

]−1 ∂
[
h g(x)

]

∂xi
= g−1(x)h−1 h

∂g(x)

∂xi
=Mia(x)T

a (4.91)

and therefore the measure is invariant under left multiplication of g. The student should check that it is
also right-invariant. For compact, semisimple Lie groups, we will always be able to choose a normalization
of the generators Tr (T aT b) = c δab, in which case we may write

Mia(x) = c−1 Tr

(
T a g−1(x)

∂g(x)

∂xi

)
. (4.92)

It is conventional to normalize the invariant measure according to

∫

G

dµ(g) ≡ 1 . (4.93)

Let’s implement these formulae for the cases of SO(2) and SU(2) (and SO(3)). For SO(2),

U(φ) =

(
cosφ − sinφ
sinφ cosφ

)
, U−1(φ) = g(−φ) ,

∂U

∂φ
=

(
− sinφ − cosφ
cosφ − sinφ

)
, (4.94)

and thus

U−1(φ)
∂U

∂φ
=

(
0 −1
1 0

)
. (4.95)

The RHS is −iσy , and σy is the generator of SO(2) (physics convention). Thus, ρ(φ) is a constant, and
normalizing over the group manifold, we have ρ(φ) = 1

2π .

The analysis for SU(2) is not quite so trivial, but still straightforward. Let’s choose the parameterization
U(ξ, n̂) = exp

(
− i

2 ξ n̂ · σ
)
. Then U−1(ξ, n̂) = U(ξ, n̂) and

dU(ξ, n̂) = −1
2 sin

(
1
2ξ
)
dξ − 1

2 cos
(
1
2ξ
)
n̂ · σ dξ − i sin

(
1
2ξ
)
dn̂ · σ (4.96)

and one readily obtains

U−1(ξ, n̂) dU(ξ, n̂) = − i
2 n̂ · σ dξ − i

2 sin ξ dn̂ · σ + i
2 (1− cos ξ) n̂ × dn̂ · σ . (4.97)

It is convenient to define vectors ê1,2 such that {ê1, ê2, n̂} forms an orthonormal triad for all (θ, φ).
Explicitly,

ê1 = (cos θ cosφ , cos θ sinφ , − sin θ)

ê2 = (− sinφ , cosφ , 0)

n̂ = (sin θ cosφ , sin θ sinφ , cos θ) .

(4.98)

One then finds

dn̂ = ê1 dθ + ê2 sin θ dφ

n̂× dn̂ = −ê1 sin θ dφ+ ê2 dθ ,
(4.99)
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and we have

U−1(ξ, n̂) dU(ξ, n̂) = − i

2

(
dξ dθ dφ

)



n̂

sin ξ ê1 + (1− cos ξ) ê2
(1− cos ξ) sin θ ê1 − sin ξ sin θ ê2


 · σ . (4.100)

Thus, we have

ρ(ξ, θ, φ) ∝ n̂ ·
[
sin ξ ê1 + (1− cos ξ) ê2

]
×

[
(1− cos ξ) ê1 − sin ξ ê2

]
sin θ = −4 sin2(12ξ) , (4.101)

where ξ ∈ [0, 2π]. Normalizing, we have the invariant measure

dµ(ξ, θ, φ) =

ρ(ξ, θ, φ)︷ ︸︸ ︷
1

8π2
(1− cos ξ) sin θ dξ dθ dφ =

(1− cos ξ) dξ

2π

dn̂

4π
. (4.102)

We can also compute the invariant measure using the Euler angle parameterization,

U(α, β, γ) = exp
(
− i

2 ασ
z
)
exp

(
− i

2 β σ
y
)
exp

(
− i

2 γ σ
z
)

. (4.103)

One finds

U−1 ∂U

∂α
= − i

2

[
− sin β cos γ σx + sin β sin γ σy + cos β σz

]

U−1 ∂U

∂β
= − i

2

[
sin γ σx + cos γ σy

]

U−1 ∂U

∂γ
= − i

2
σz ,

(4.104)

and so

M = − i

2



− sin β cos γ sin β sin γ cos β

− sin γ − cos γ 0
0 0 −1


 . (4.105)

Thus, det(M) = i
8 sin β and the normalized invariant measure in the Euler angle representation is

dµ(α, β, γ) =
sin β dα dβ dγ

vol(G)
, (4.106)

where vol(G) is the group volume, i.e. the integral of the numerator over the allowed range of the angles
(α, β, γ) . Remember that α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 4π) for SU(2), hence vol

(
SU(2)

)
= 16π2, but

for SO(3),

R(α, β, γ) = exp
(
− iαJz

)
exp

(
− iβJy

)
exp

(
− iγJz

)
, (4.107)

we have γ ∈ [0, 2π), and accordingly vol
(
SO(3)

)
= 8π2.
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4.3.5 Peter-Weyl theorem

Armed with the invariant measure, we can now express the Great Orthogonality Theorem for Lie groups. It
goes by the name of the Peter-Weyl theorem, and says that the functions

VΓ ik(g) =
√
dΓ D

Γ
ik(g) (4.108)

form a complete and orthonormal basis in the space of square-integrable functions on the group mani-
fold. This means

∫

G

dµ(g) V ∗
Γ ik(g)VΓ ′i′k′(g) =

√
dΓ dΓ ′

∫

G

dµ(g)DΓ ∗

ik (g)DΓ ′

i′k′(g) = δΓΓ ′ δii′ δkk′

∑

Γ,i,k

VΓ ik(g)V
∗
Γ ik(g

′) =
∑

Γ ik

dΓ D
Γ
ik(g)D

Γ ∗

ik (g′) = δ(g, g′)

(4.109)

where the symbol δ(g, g′) satisfies

∫

G

dµ(g′) δ(g, g′)F (g′) =
∑

Γ,i,k

〈
VΓ ik

∣∣F
〉
VΓ ik(g) = F (g) , (4.110)

where 〈VΓ ik |F 〉 =
∫
G

dµ(g)V ∗
Γ ik(g)F (g), and where the last inequality must be understood in terms

of ”convergence in the L2 norm”. In other words, the convergence is in the norm, and not necessarily
pointwise, just like in the analogous case of the Fourier transform. For any function F (g) which can be
expanded in terms of the basis functions VΓ ik(g), one has

∫

G

dµ(g′) δ(g, g′)

F (g′)︷ ︸︸ ︷
∑

Γ,i,k

CΓ ik VΓ ik(g
′) =

F (g)︷ ︸︸ ︷
∑

Γ ik

CΓ ik VΓ ik(g) . (4.111)

4.3.6 Projection operators

In analogy with the case for discrete groups, we can construct projectors onto the µ row of the Γ IRREP

for any compact Lie group G, viz.

Π̂Γ
µν = dΓ

∫

G

dµ(g)DΓ ∗

µν (g) Û (g) . (4.112)

Again, these satisfy

Π̂Γ
µνΠ̂

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ Π̂Γ
µν′ , (4.113)

and
Û(g) Π̂Γ

µν = Π̂Γ
ρν D

Γ
ρµ(g) . (4.114)
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Projection matrices are defined in analogous fashion, with

ΠΓ
µν = dΓ

∫

G

dµ(g)DΓ ∗

µν (g)∆(g) (4.115)

satisfying ΠΓ
µν Π

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ ΠΓ
µν′ and ∆(g)ΠΓ

µν = ΠΓ
ρν D

Γ
ρµ(g) . Here ∆(G) is a matrix representation

of the Lie group.

As an example, consider the group SO(2). To project an arbitrary periodic function f(φ) onto the j IRREP,
we useD(j)(α) = exp(−ijα) and Û(α) = exp(−iαLz) = exp(−α∂φ). The IRREPs are all one-dimensional.
We then have

Π̂(j)f(φ) =

2π∫

0

dα

2π
eijα e−α ∂

∂φ f(φ) =

2π∫

0

dα

2π
eijα f(φ− α) = f̂j e

ijφ , (4.116)

where

f̂j =

2π∫

0

dα

2π
e−ijα f(α) . (4.117)

is the discrete Fourier transform of the function f(α). Note that Û(α) has eigenvalue e−ijα = D(j)(α)
when acting on the projected function f̂j e

ijφ.

4.3.7 Product representations for SU(2)

In the product basis, we have

Û(g)
[ ∣∣ j1,m1

〉
⊗

∣∣ j2 ,m2

〉 ]
=

∑

m′

1,m
′

2

∣∣ j1,m′
1

〉
⊗

∣∣ j2 ,m′
2

〉
D

j1×j2
m′

1m
′

2 ,m1m2
(g)

︷ ︸︸ ︷
D

j1
m′

1,m1
(g)D

j2
m′

2 ,m2
(g) . (4.118)

Taking traces, we have

χj1×j2(g) = χ(j1)(g)χ(j2)(g) . (4.119)

Generalizing the decomposition formula to the case of continuous groups,

nΓ (Ψ) =

∫

G

dµ(g) χΓ ∗

(g)χΨ (g) . (4.120)

For SU(2), the invariant measure is dµ(ξ, n̂) = 1
π sin2(12ξ) dξ · dn̂

4π .
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Recall that χ(j)(ξ) = sin
[
(j + 1

2) ξ
]/

sin(12ξ). Thus, according to the decomposition rule,

n
j1×j2
j =

2

π

π∫

0

dξ sin2
(
1
2ξ
)
χ(j)(ξ)χj1(ξ)χj2(ξ)

=
2

π

π∫

0

dξ

j∑

m=−j

e−imξ sin
(
(j1 +

1
2) ξ

)
sin

(
(j2 +

1
2 ) ξ

)
(4.121)

=
1

π

π∫

0

dξ

j∑

m=−j

e−imξ
{
cos

[
(j1 − j2) ξ

]
− cos

[
(j1 + j2 + 1) ξ

]}
=

{
1 if |j1 − j2| ≤ j ≤ (j1 + j2)

0 otherwise .

Thus, for each j with |j1−j2| ≤ j ≤ (j1+j2), there is one representation within the direct product j1×j2.
Note that

j1+j2∑

|j1−j2|
(2j + 1) = 1

2 (j1 + j2)(j1 + j2 + 1)− 1
2

(
|j1 − j2| − 1

)
|j1 − j2|+ (j1 + j2)− |j1 − j2|

= (2j1 + 1)(2j2 + 1) ,

(4.122)

which says that the dimension of the product representation is the product of the dimensions of its
factors.

The direct product of two representations j1 and j2 is expanded as

∣∣ j1,m1

〉
⊗

∣∣ j2 ,m2

〉
=

∑

j,m

(
j1
m1

j2
m2

∣∣∣∣
j

m

) ∣∣ j,m
〉

. (4.123)

The CGCs are nonzero only if |j1 − j2| ≤ j ≤ (j1 + j2) and m = m1 + m2. They are tabulated in
various publications (e.g., see Wikipedia). To derive the CGCs, one starts with the state with m1 = j1
and m2 = j2, which corresponds to j = j1 + j2 and m = m1 +m2. Since

∣∣ j1 + 2, j1 + j2
〉
=

∣∣ j1, j1
〉
⊗

∣∣ j2 , j2
〉

, (4.124)

we have, trivially, that (
j1
m1

j2
m2

∣∣∣∣
j1 + j2
j1 + j2

)
= δm1 , j1

δm2 , j2
. (4.125)

Now apply the lowering operator Ĵ− to get

Ĵ− ∣∣ j1 + j2 , j1 + j2
〉
=

[
2(j1 + j2)

]1/2 ∣∣ j1 + j2 , j1 + j2 − 1
〉

=
[
Ĵ− ∣∣ j1, j1

〉 ]
⊗

∣∣ j2, j2
〉
+

∣∣ j1, j1
〉
⊗

[
Ĵ− ∣∣ j2, j2

〉 ]

=
√

2j1
∣∣ j1 , j1 − 1

〉
⊗

∣∣ j2 , j2
〉
+

√
2j2

∣∣ j1 , j1
〉
⊗

∣∣ j2 , j2 − 1
〉

.

(4.126)

Thus,

∣∣ j1 + j2 , j1 + j2 − 1
〉
=

√
j1

j1 + j2

∣∣ j1, j1 − 1
〉
⊗

∣∣ j2, j2
〉
+

√
j2

j1 + j2

∣∣ j1, j1
〉
⊗

∣∣ j2, j2 − 1
〉

. (4.127)
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Taking the inner product with eqn. 4.123 then gives

(
j1
m1

j2
m2

∣∣∣∣
j1 + j2

j1 + j2 − 1

)
=

√
j1

j1 + j2
δm1,j1−1 δm2,j2

+

√
j2

j1 + j2
δm1 , j1

δm2 , j2−1 . (4.128)

Continue to apply Ĵ− to generate all the states | j1 + j2 , m 〉 for m ∈
{
− j1 − j2 , . . . , j1 + j2

}
.

Next, consider the state

∣∣ j,m
〉
=

√
j2

j1 + j2

∣∣ j1, j1 − 1
〉
⊗
∣∣ j2, j2

〉
−

√
j1

j1 + j2

∣∣ j1, j1
〉
⊗
∣∣ j2, j2 − 1

〉
, (4.129)

which clearly has m = j1 + j2 − 1 but which is orthogonal to the state in Eqn. 4.127. We conclude that
the above state is none other than

∣∣ j1 + j2 − 1 , j1 + j2 − 1
〉

, and consequently

(
j1
m1

j2
m2

∣∣∣∣
j1 + j2 − 1

j1 + j2 − 1

)
=

√
j2

j1 + j2
δm1 , j1−1 δm2 , j2

−
√

j1
j1 + j2

δm1 , j1
δm2 , j2−1 . (4.130)

Applying the lowering operator to this state, one creates a state with j = j1 + j2 − 1 and m = j1 + j2 − 2,
and one may continue to apply Ĵ− to generate the entire family of basis states for the j = j1 + j2 − 1
representation. One then constructs a new state ψ withm = j1+j2−2 which is normalized and orthogo-
nal to both

∣∣ j1 + j2 , j1 + j2 − 2
〉

and
∣∣ j1 + j2 − 1 , j1 + j2 − 2

〉
. This must be

∣∣ j1 + j2 − 2 , j1 + j2 − 2
〉
.

Continuing in this manner, one eventually constructs all the basis states
∣∣ j,m

〉
in terms of the product

states, from which one can read off the CGCs.

4.3.8 Spherical harmonics

The angular momentum operators,

L̂x = i

(
z
∂

∂y
− y

∂

∂z

)
, L̂y = i

(
x
∂

∂z
− z

∂

∂x

)
, L̂z = i

(
y
∂

∂x
− x

∂

∂y

)
, (4.131)

satisfy the SO(3) algebra
[
L̂a, L̂b

]
= iǫabc L̂

c. Clearly Laf(r) = 0 when acting on a spherically symmetric

function. Therefore we may express the L̂a in terms of derivatives with respect to θ and φ, viz.

L± = e±iφ

(
i ctn θ

∂

∂φ
± ∂

∂θ

)
, Lz = −i ∂

∂φ
, L̂

2
= − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
. (4.132)

We then have

L̂
2
Ylm(n̂) = l(l + 1)Ylm(n̂) , L̂z Ylm(n̂) = mYlm(n̂) , (4.133)

with l ∈ N, where Ylm(n̂) is the spherical harmonic. The spherical harmonics are related to the rotation
matrices. If we define ∣∣ n̂

〉
≡ R̂(φ, θ, 0)

∣∣ ẑ
〉

, (4.134)
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where | ẑ 〉 is the ket vector corresponding to an orientation along ẑ11, then

〈
l,m

∣∣ n̂
〉
=

l∑

m′=−l

〈
l,m

∣∣ R̂(φ, θ, 0)
∣∣ l,m′ 〉 〈 l,m′ ∣∣ ẑ

〉
. (4.135)

We then have Ylm(n̂) = 〈 n̂ | l,m 〉. Now

〈
l,m

∣∣ ẑ
〉
= Ylm(ẑ) =

√
2l + 1

4π
δm,0 (4.136)

and therefore

Ylm(n̂) =

√
2l + 1

4π

[
D

(l)
m0(φ, θ, 0)

]∗
=

√
2l + 1

4π
d
(l)
m0(θ) e

imφ . (4.137)

Note that Yl,−m(n̂) = (−1)m Y ∗
lm(n̂) and that D

(l)
m0(φ, θ, ψ) = D

(l)
m0(φ, θ, 0) because e−im′γ = 1 for m′ = 0.

The spherical harmonics are normalized according to

∫
dn̂ Y ∗

lm(n̂)Yl′m′(n̂) = δll′ δmm′ . (4.138)

Note that there is no factor of 4π in the denominator of the measure, which is dn̂ = sin θ dθ dφ. The
associated Legendre polynomials12 Plm(cos θ) are related to the d(l) matrices by

Plm(cos θ) = (−1)m

√
(l +m)!

(l −m)!
d
(l)
m0(θ) , (4.139)

and therefore we have

Ylm(n̂) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ) eimφ . (4.140)

See https://en.wikipedia.org/wiki/Table_of_spherical_harmonics for explicit expressions of Ylm(n̂)
for low orders of the angular momentum l. Finally, note that

〈
n̂
∣∣ R̂(ξ, ξ̂)

∣∣ l,m
〉
=

l∑

m′=−l

Ylm(n̂)D
(l)
m′m(φξ, θξ, ψξ) , (4.141)

where (φξ, θξ, ψξ) are the Euler angles corresponding to the rotation R̂(ξ, ξ̂). Writing | n̂′ 〉 = R̂(−ξ, ξ̂) | n̂ 〉
as the ket vector | n̂ 〉 rotated by −ξ about the direction ξ̂, and taking m = 0, we obtain the spherical har-
monic addition formula,

Yl0(n̂
′) =

√
4π

2l + 1

l∑

m=−l

Ylm(n̂)Y ∗
lm(n̂ξ) , (4.142)

11That is, we suppress the radial coordinate in | r 〉 ≡ | r, n̂ 〉.
12Wisconsin Senator Joseph McCarthy was famous for his aggressive questioning of witnesses before the U.S. Senate Sub-

committee on Investigations in 1954, theatrically haranguing them by demanding, ”Are you now or have you ever been
associated with the Legendre polynomials?” Those who answered in the affirmative or refused to answer were blacklisted
and forbidden from working on special functions. A similar fate befell those who associated with Laguerre, Jacobi, or Gegen-
bauer polynomials.

https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
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where n̂ξ is the unit vector whose polar and azimuthal angles are (θξ, φξ). Note that n̂ξ 6= ξ̂ in general!
Since Pl0(cos θ) = Pl(cos θ), we have

Pl(cos ϑ) =
4π

2l + 1

l∑

m=−l

Ylm(n̂)Y ∗
lm(n̂ξ) , (4.143)

where, as the student should confirm, ϑ is the angle between n̂ and n̂ξ .

4.3.9 Tensor operators and the Wigner-Eckart theorem for SU(2)

An irreducible tensor operator Q̂J
M is one which transforms according to the J IRREP of SU(2), meaning

R̂ Q̂J
M R̂† =

J∑

M ′=−J

Q̂J
M ′ D

(J)
M ′M (R) , (4.144)

where R̂ is the unitary operator corresponding to the group element R. Writing R̂ = exp(iǫ · Ĵ) where
Ĵ are the operator generators of su(2), and expanding for infinitesimal ǫ, one finds

[
Ĵa , Q̂J

M

]
=

J∑

M ′=−J

Q̂J
M ′

〈
J,M ′ ∣∣Ja

∣∣ J,M
〉

. (4.145)

Mercifully, as we have seen, SU(2) is simply reducible, meaning that the product representation j1 × j2
contains representations with j ∈

{
|j1 − j2| , . . . , j1 + j2

}
where each j IRREP occurs only once. This

means that we can decompose the state Q̂J
m | j′,m′;λ′ 〉 as

Q̂J
M

∣∣ j′,m′;λ′
〉
=

∑

j,m

(
J

M

j′

m′

∣∣∣∣
j

m

) ∣∣Ψj,λ′

m

〉
. (4.146)

Here and below, λ and λ′ are extra indices corresponding to quantum numbers not associated with the

group symmetry. The state |Ψj;λ′

m 〉 transforms as

R̂
∣∣Ψj,λ′

m

〉
=

j∑

m′=−j

∣∣Ψj,λ′

m′

〉
D

(j)
m′m(R) . (4.147)

It follows that
〈
j,m;λ

∣∣ Q̂J
M

∣∣ j′,m′ ;λ′
〉
=

∑

j′′,m′′

(
J

M

j′

m′

∣∣∣∣
j′′

m′′

)〈
j,m ;λ

∣∣Ψj′′,λ′

m′′

〉
(4.148)

where

〈
j,m ;λ

∣∣Ψj′′,λ′

m′′

〉
= δjj′′ δmm′′ × 1

2j + 1

j∑

m̃=−j

〈
j, m̃;λ

∣∣Ψj,λ′

m̃

〉
(4.149)
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We now define13

〈
j ;λ

∥∥ Q̂J
∥∥ j′ ;λ′

〉
≡ 1√

2j + 1

j∑

m̃=−j

〈
j, m̃;λ

∣∣Ψj,λ′

m̃

〉
, (4.150)

in which case we have the Wigner-Eckart theorem for SU(2):14

〈
j,m;λ

∣∣ Q̂J
M

∣∣ j′,m′ ;λ′
〉
=

(
J

M

j′

m′

∣∣∣∣
j

m

) 〈
j ;λ

∥∥ Q̂J
∥∥ j′ ;λ′

〉
√
2j + 1

. (4.151)

All the M , m, and m′ dependence is in the CGC.

4.4 Joke for Chapter Four

A rabbit one day managed to break free from the laboratory where he had been born and raised.
As he scurried away from the fencing of the compound, he felt grass under his little feet and saw
the dawn breaking for the first time in his life. ’Wow, this is great,’ he thought. It wasn’t long
before he came to a hedge and, after squeezing under it he saw a wonderful sight: lots of other
bunny rabbits, all free and nibbling on the lush green grass.

’Hey,’ he called. ’I’m a rabbit from the laboratory and I’ve just escaped. Are you wild rabbits?’

’Yes. Come and join us!’ they cried.

He hopped over to them and started eating the grass. It was delicious. ’What else do you wild
rabbits do?’ he asked.

’Well,’ one of them said. ’You see that field there? It’s got carrots growing in it. We dig them up
and eat them.’

This, he couldn’t resist and he spent the next hour eating the most succulent carrots. They were
scrumptious – out of this world.

Later, he asked them again, ’What else do you do?’

’You see that field there? It’s got lettuce growing in it. We eat that as well.’

The lettuce was as yummy as the grass and the carrots, and he returned a while later completely
full. ’Is there anything else you guys do?’ he asked.

One of the other rabbits came a bit closer to him and spoke softly. ’There’s one other thing you
must try. You see those rabbits there?’ he said, pointing to the far corner of the field. ’They’re lady
rabbits. We shag them. Check it out.’

The rabbit spent the rest of the morning screwing his little heart out until, completely exhausted,
he staggered back to the group.

’That was awesome,’ he panted.

13Where does j′ come from in the reduced matrix element on the LHS when it doesn’t appear on the RHS? Well, you see, the

RHS does know about j′, as a check of Eqn. 4.146 should make clear. I’ve suppressed this label in the state |Ψj,λ′

m̃ 〉 just to
keep you on your toes.

14Look, I’m very sorry about the awkward
√
2j + 1 factors. In my defense, it’s a convention which was established long before

I was even born.
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’So are you going to live with us then?’ one of them asked.

’I’m sorry, I had a great time – but I just can’t.’

The wild rabbits all stared at him, a bit surprised. ’Why? We thought you liked it here.’

’I do,’ he said. ’But I’ve got to get back to the lab. I’m dying for a cigarette.’
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