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Chapter 3

Group Theory and Quantum Mechanics

As a refresher on various True Facts about linear algebra relevant to quantum mechanics, please review
the Appendix §3.3.

3.1 Hilbert Space and Group Symmetries

3.1.1 Classification of the basis states

The realization of symmetries in quantum mechanics is expressed through the action of unitary oper-
ator representations Û(G) of some symmetry group G which act on the Hilbert space H of states. If
[
Ĥ, Û(g)

]
= 0 for all g ∈ G , i.e. the Hamiltonian commutes with all symmetry operations from G, its

eigenspectrum arranges into multiplets, each of which transforms according to some IRREP Γ of G, with
corresponding degeneracy dΓ . Thus, at the outset, one thing group theory can do for us is to provide us
with a useful set of basis states |Γµ, l 〉 in H which are identified by three labels (Γ, µ, l):

(i) The representation index Γ labels am IRREP of the symmetry group G.

(ii) The basis index µ ∈ {1, . . . , dΓ } labels the basis states within the Γ representation.

(iii) The additional index l labels different invariant subspaces transforming according to the same
representation. This allows for other quantum numbers not associated with the group symmetry.

Where do these basis states come from? We can generate them via the projection method, which we will
discuss in §3.1.5 below.

Such a basis can greatly simplify the diagonalization of our quantum Hamiltonian Ĥ , because, as we
shall see,

〈
Γµ, l

∣
∣ Ĥ

∣
∣Γ ′µ′, l′

〉
= δΓΓ ′ δµµ′ HΓ

ll′ . (3.1)

1



2 CHAPTER 3. GROUP THEORY AND QUANTUM MECHANICS

However, in general the projection method does not guarantee that the basis states |Γµ, l 〉 are orthogo-
nal. Rather, we have

〈Γµ, l |Γ ′µ′, l′ 〉 = δΓΓ ′ δµµ′ OΓ
ll′ , (3.2)

where OΓ
ll′ is the overlap matrix. Group theory tells us that basis states which transform according to dif-

ferent IRREPs are necessarily orthogonal, but it says nothing about the overlap of basis states transform-
ing according to two copies of the same IRREP. Thus, we are left with the task of simultaneously diag-
onalizing the two Hermitian matrices HΓ and OΓ , i.e. solving the linear system HΓ

ll′ φ
Γs
l′ = EΓsO

Γ
ll′ φ

Γs
l′ ,

where s labels the eigenvalue and corresponding eigenfunctions of the sth occurrence of the IRREP Γ .
The eigenstates of Ĥ then satisfy Ĥ

∣
∣Γµ, s

〉
= EΓs

∣
∣Γµ, s

〉
with 〈Γµ, s |Γ ′µ′, s′ 〉 = δΓΓ ′ δµµ′ δss′ . The

index s is necessary because any given IRREP generally occurs several times in the eigenspectrum. This
means we can write

Ĥ =
∑

Γ,s

EΓ, s Π̂
Γ, s , Π̂Γ, s ≡

∑

µ

∣
∣Γµ, s

〉 〈
Γµ, s

∣
∣ , (3.3)

where Π̂Γ, s is the projector onto the sth occurrence of IRREP Γ .

Example : The Hamiltonian Ĥ = p2

2m + V (x) commutes with the operators {1, P}, where P = P
−1 = P

† is

the parity operator, with Px P = −x and P p P = −p . Thus, [Ĥ, P] = 0 and we can classify all eigenstates
of Ĥ by representations of Z2 , of which there are only two : Γ1 (trivial) and Γ2 (sign). Both IRREPs are
one-dimensional, so the µ index is unnecessary. Starting with any set

{
ψl(x)

}
of L2-integrable functions

on R, we can project onto the trivial (symmetric) and sign (antisymmetric) representations of Z2, forming
ϕl,± ≡ ψl(x) ± ψl(−x). While the Z2 symmetry guarantees that 〈ϕl,σ |ϕl′,σ′ 〉 vanishes if σ 6= σ′, there is

no symmetry consideration guaranteeing that basis states within the same IRREP are orthonormal1.

Diagonalizing Ĥ within each of these subspaces yields the orthonormal eigenfuntionsψ
(Γ1)
s (x) = 〈x |Γ1s 〉

and ψ
(Γ2)
s (x) = 〈x |Γ2s 〉 may be taken to be the sth lowest energy eigenfunctions in the even and odd

parity sectors, respectively. These energy eigenstates interleave, with the nth energy level having n − 1
nodes and parity eigenvalue P = (−1)n−1.

Example’ : In later chapters we shall discuss representations of Lie groups, but you already know that
for G = SU(2), the representations are classified by total spin S ∈ 1

2Z , and that the dimension of each
spin-S representation is dS = 2S + 1. In a system of N spin-12 objects, with N even, one can form
representations with integer S ∈

{
0, 1, . . . , 12N

}
. The number of spin-S multiplets is given by2

MS =

(
N

1
2N + S

)

−
(

N
1
2N + S + 1

)

. (3.4)

Each of theseMS multiplets is (2S+1)-fold degenerate. The Hilbert space basis vectors may be expressed
as |S,m, l 〉 , where S labels the representation, m ∈ {−S, . . . ,+S} is the polarization, and l labels the
MS different spin-S multiplets.

1For example, we could take ϕl,+(x) = Alx
2l e−x and ϕl,−(x) = Blx

2l+1 e−x.
2This expression counts the difference in the number of states with Sz = S and with Sz = S + 1. The difference is the number
of multiplets in which Sz = S appears but not Sz = S + 1, and is therefore the number of spin-S multiplets.
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3.1.2 Accidental degeneracies

In general,

⋄ For a Hamiltonian Ĥ where
[
Ĥ, Û (G)

]
= 0 , each group of eigenstates transforming according to a

representation Γ is dΓ -fold degenerate. Any degeneracies not associated with the group symmetry
are said to be accidental.

Accidental degeneracies can be removed by varying parameters in the Hamiltonian without breaking
the underlying symmetry. As an example, consider the case of a Hilbert space with six states, labeled
{
|u1 〉, | v1 〉, |u2 〉, | v2 〉, |u3 〉, | v3 〉

}
and the Hamiltonian

Ĥ = −
3∑

n=1

[

t0

(

|un 〉〈un+1 |+|un+1 〉〈un |+| vn 〉〈 vn+1 |+| vn+1 〉〈 vn |
)

+t1

(

|un 〉〈 vn |+| vn 〉〈un |
)]

(3.5)

where |u4 〉 ≡ |u1 〉 and | v4 〉 ≡ | v1 〉 . The geometry is sketched in Fig. 3.1.

Figure 3.1: Six site cluster withD3h symmetry. Solid bonds between orbitals signify matrix element −t0,
while dashed bonds signify matrix element −t1.

The Hamiltonian is symmetric under the symmetry group C3v , which has six elements, corresponding
to the symmetries of the equilateral triangle. In fact, this model has an enlarged symmetry, since it is also
symmetric under a reflection σh in the horizontal plane, which interchanges the orbitals |un 〉 ↔ | vn 〉 ,
corresponding to the group D3h . The group Dnh has 4n elements and is generated by three elements: a
2π
n rotation r, a vertical reflection σv , and a horizontal reflection σh. Its presentation is

Dnh :
〈
r , σv , σh

∣
∣ rn, σ2v , σ

2
h ,

(
σv r

)2
,
(
σv σh

)2
, σh r σh r

n−1
〉

. (3.6)

The character table for D3h is given in Tab. 3.1.

The Hamiltonian Ĥ in Eqn. 3.5 is known as a ”tight binding model” and its diagonalization is suffi-
ciently simple that those with a rudimentary background in solid state physics can do so by inspection.
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Explicitly, define the states

| ûj 〉 =
1√
3

3∑

n=1

e−2πijn/3 |un 〉 , | v̂j 〉 =
1√
3

3∑

n=1

e−2πijn/3 | vn 〉 . (3.7)

with j ∈ {−1, 0,+1}. This is a simple discrete Fourier transform whose inverse is

|un 〉 =
1√
3

1∑

j=−1

e2πijn/3 | ûj 〉 , | vn 〉 =
1√
3

1∑

j=−1

e2πijn/3 | v̂j 〉 . (3.8)

One then has

Ĥ = −
1∑

j=−1

[

2t0 cos(2πj/3)
(

| ûj 〉〈 ûj |+ | v̂j 〉〈 v̂j |
)

+ t1

(

| ûj 〉〈 v̂j |+ | v̂j 〉〈 ûj |
)]

. (3.9)

Next, define

| ψ̂j,± 〉 = 1√
2

(

| ûj 〉 ± | v̂j 〉
)

, (3.10)

in which case

Ĥ =

1∑

j=−1

(

εj,+ | ψ̂j,+ 〉〈 ψ̂j,+ |+ εj,− | ψ̂j,− 〉〈 ψ̂j,− |
)

, (3.11)

where the six eigenvalues of H are given by

εj,± = −2t0 cos(2πj/3) ∓ t1 . (3.12)

For generic t0 and t1 , we have that the eigenstates | ψ̂0,± 〉 are each singly degenerate with energies
ε0,± = −2t0 ∓ t1 , respectively. They transform according to the A1 and A′

2 representations of D3h ,

respectively. The eigenstates | ψ̂±1,+ 〉 are doubly degenerate, with energy ε±1,+ = t0− t1, and transform

according to the E representation. Finally, the states | ψ̂±1,− 〉 are also doubly degenerate, with energy
ε±1,− = t0 + t1 , and transform according to E′ (see Tab. 3.1).

To elicit an accidental degeneracy, we set ε0,− = −2t0 + t1 equal to ε±1,+ = t0 − t1 , i.e. t1 = 3
2 t0. For

this special ratio of t1/t0, there is a threefold degeneracy, due to a crossing of A′
2 and E levels. The

multiplicity of this degeneracy is therefore dA′
s
+ dE = 3, which corresponds to none of the dimensions

of the IRREPs of D3h. The degeneracy is accidental and is removed whenever t1 6= 3
2 t0.

Finally, we can break the D3h symmetry back down to C3v by choosing different matrix elements t0,u
and t0,v for the two triangles3. Mutatis mutandis4, one finds that the degeneracy structure is the same,
and the eigenspectrum is given by

εj,± = −(t0,u + t0,v) cos(2πj/3) ∓
√

(t0,u − t0,v)
2 cos2(2πj/3) + t21 . (3.13)

3Here we should recall the careful discussion at the end of §1.2.4 regarding the difference between Dn and Cnv .
4Vah! Denuone Latine loquebar?
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D3h E 2C3 3C ′
2 σh 2S3 3σv

A1 1 1 1 1 1 1

A2 1 1 −1 1 1 −1

E 2 −1 0 2 −1 0

A′
1 1 1 1 −1 −1 −1

A′
2 1 1 −1 −1 −1 1

E′ 2 −1 0 −2 1 0

Table 3.1: Character table for the groupD3h. The upper left 3×3 block is the character table forD3 . Take
care not to confuse the identity element E and its class with the two-dimensional IRREP also labeled E.

The eigenstates are now classified in terms of representations of C3v
∼= D3. The two nondegenerate

levels each transform according to A1, and the two sets of doubly degenerate levels each transform
according to E.

In general, identical IRREPs cannot be coaxed into degeneracy by terms in the Hamiltonian which pre-
serve the full symmetry group G. This is due to level repulsion. Accidental degeneracy, when it occurs,
is in general between distinct IRREPs, and therefore the size of the resulting supermultiplet is given by
dΓa

+dΓb
, where Γa 6∼= Γb . We note that this sort of degeneracy requires the fine tuning of one parameter

in the Hamiltonian, such as t1 (or the dimensionless ratio t1/t0) in our above example.

Can we tune further for even greater degeneracy? Yes we can! Mathematically, if Ĥ = Ĥ(λ), where λ =
{λ1, . . . , λK} is a set of parameters living in some parameter space manifold M, and

[
Ĥ(λ) , Û(g)

]
= 0

for all λ ∈ M and all g ∈ G, then requiring that the multiplets for p > 1 distinct IRREPs are simultane-
ously degenerate imposes p− 1 equations of the form

EΓa , la
(λ1, . . . , λK) = EΓ

b
, l

b
(λ1, . . . , λK) , (3.14)

and therefore such a degeneracy, whose multiplicity is d =
∑p

j=1 dim(Γaj ) , has codimension p− 1, mean-
ing that the solution set in M is of dimension K − p + 1. It may be that this value of d corresponds to
dΓ for some other IRREP Γ , but this is not necessarily the case. And of course, it may be that there are

no solutions at all. In the above example with symmetry group D3h , we had Ĥ = Ĥ(t0, t1), so K = 2,
and degeneracy of the p (= 2) multiplets A′

2 and E imposed p − 1 (= 1) conditions on {t1, t2}, with a
one-dimensional solution set of the form t1 =

3
2t0.

Accidental degeneracy in the C60 molecule

Mathematical appetizer : There is a marvelous result in graph theory, due to Euler, which says that for
any connected graph on a surface of genus g, the number of faces f , edges e, and vertices v are related
according to

f − e+ v = 2− 2g . (3.15)

The genus g is the number of holes, hence a sphere has genus g = 0, a torus g = 1 , etc. It turns out
that for the plane we should take g = 1

2 , which we can understand identifying the points at infinity and
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thereby compactifying the plane to a sphere. Then the area outside the original graph counts as an extra
face. Try sketching some connected graphs on a sheet of paper and see if Euler’s theorem holds.

Consider now a threefold coordinated graph on the sphere S2. Every site is linked to three neighboring
sites. Furthermore, let’s assume that every face is either a pentagon or a hexagon. The number of faces
is then f = p + h, where p is the number of pentagons and h the number of hexagons. If we add 5p to
6h, we count every edge twice, so 5p + 6h = 2e. Similarly, 5p + 6h = 3v because the same calculation
counts each vertex three times. Thus e = 5

2p+3h and v = 5
3p+2h. Now apply Euler’s theorem and find

that h drops out completely and we are left with p = 12. Any three-fold coordinated graph on the sphere with
pentagonal and hexagonal faces will always have twelve pentagons. Amazing! Take a close look at a soccer
ball sometime and you will notice it has 12 pentagonal faces and 20 hexagonal ones, for a total of f = 32
faces to go along with e = 90 edges and v = 60 vertices.

Physics entree : There is a marvelous molecule with chemical formula C60, also known as Buckmin-
sterfullerene5 (colloquially a buckyball ) which consists of 60 carbon atoms arranged in a soccer ball
pattern6. See the left panel of Fig. 3.2. Each atom is threefold coordinated, meaning it has three nearest
neighbors. As you know, carbon has the electronic structure 1s22s22p2. In the planar form graphene,
which has the structure of a honeycomb lattice, the 2s and 2px,y orbitals engage in sp2 hybridization.
For each carbon atom, three electrons in each atom’s sp2 orbitals are distributed along bonds connecting
to its neighbors7. Thus each bond gets two electrons (of opposite spin), one from each carbon atom at
its ends, which form what chemists call a σ-bond. The 1s orbitals are of course filled, so this leaves one
remaining electron from each pz orbital (the π orbital to our chemist friends) to roam about. The situa-
tion is much the same with the buckyball, although unlike graphene it is curved. The single (π) orbital
tight binding model is

Ĥ = −
∑

〈ij〉

(

tij
∣
∣ πi

〉 〈
πj

∣
∣+ t∗ij

∣
∣ πj

〉 〈
πi

∣
∣

)

, (3.16)

where 〈ij〉 denotes a nearest neighbor bond on the lattice between sites i and j and tij is the hopping

integral, which may be complex so long as Ĥ itself is Hermitian8.

The eigenspectrum of Ĥ will be arranged in multiplets whose sizes are given by the dimensions of the
IRREPs of the symmetry group of the buckyball. The discrete rotational symmetries of C60 belong to
the icosahedral group, I . You can look up the character table for I and see that it is a nonabelian group
with 60 elements, five classes, and five IRREPs A, T1, T2, G, and H , with dimensions 1, 3, 3, 4, and 5,
respectively. Note that 60 = 12 + 32 + 32 + 42 + 52. The icosahedron also has an inversion symmetry,
so its full symmetry group, including the improper rotations, has 120 elements and is called Ih.9 The
group Ih has ten classes and ten IRREPs, such that each of the five IRREPs in I is doubled within Ih into

5After Buckminster Fuller, the American architect who invented the geodesic dome.
6”The icosahedral group . . . has no physical interest, since for crystals 5-fold axes cannot occur, and no examples of molecules
with this symmetry are known.” - M. Hamermesh, Group Theory and its Application to Physical Problems (1962), p. 51.

7In diamond, the carbon atoms are fourfold coordinated, and the orbitals are sp3 hybridized.
8A local gauge transformation of the orbitals |πi 〉 → eiθi |πi 〉 is equivalent to replacing tij by tij e

i(θi−θj ). The product∏
〈ij〉∈κ tij of the tij around a plaquette κ is therefore gauge invariant, and the phase of the product is equal to the total

magnetic flux through κ in units of ~c/e.
9Recall that Dn has 2n elements, but adding a horizontal reflection plane yields Dnh with 4n elements. The icosahedron has 15
reflection planes, appearing as class σ in its character tables. Each such reflection can be written as the product of an inversion
and a proper rotation. Fun facts : I ∼= A5 and Ih ∼= Z2 × A5, where A5 is the alternating group with five symbols.
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Γ d
Γ
n
Γ

A
g 1 1

T
1g 3 1

T
2g 3 1

G
g 4 2

H
g 5 3

A
u 1 0

T
1u 3 2

T
2u 3 2

G
u 4 2

H
u

5 2

T
2g

G
u

G
g

H
g

H
u

T
2u

T
1u

T
1g

G
g

H
g

H
u

G
u

T
2u

H
g

A
g

T
1u

E
n
e
rg

y
 (
t 0

)

-3

-2

-1

0

1

2

3

HOMO

LUMO

Figure 3.2: Electronic structure of the C60 molecule. Left: C60 molecule, showing inequivalent bonds.
All red bonds lie along pentagons, while all blue bonds do not. Middle: Irreducible representations of
the icosahedral group Ih and their dimensions. Right: Tight binding energy spectrum when all bonds
have hopping amplitude t0. Note the accidental degeneracy between Gg and Hg levels, at E = −t0,
resulting in a nine-fold degenerate supermultiplet. When the hopping amplitudes along the blue and
red bonds differ, icosahedral symmetry is maintained, but the accidental degeneracy is resolved.

an even and an odd version with respect to the inversion10, sort of like the good and evil versions of
Mr. Spock in the original Star Trek series episode entitled ”Mirror, Mirror”. The IRREPs of Ih are labeled
with subscripts g and u, for gerade and ungerade, respectively (from the German for ”even” and ”odd”).

The eigenvalues for the C60 tight binding Hamiltonian are shown in Fig. 3.2 for the case tij = t0 for all
nearest neighbor bonds 〈ij〉. Each of the energy levels accommodates two electrons (spin ↑ and ↓), so
in the ground state the sixty π electrons fill the lowest 30 levels. HOMO and LUMO respectively refer to
”highest occupied molecular orbital” and ”lowest unoccupied molecular orbital”. The multiplicities of
the different energy states correspond to the dimension of the IRREPs, except for a ninefold degenerate
level at E = −t0. This is an accidental degeneracy between Gg and Hg IRREPs, whose dimensions are
four and five, respectively.

In order for the degeneracy to be accidental, we should be able to remove it by modifying the Hamilto-
nian while still preserving the Ih symmetry. One physical way to do this is to note that there are actually
two inequivalent sets of bonds (edges) on the buckyball: bonds that lie along pentagons (marked red in
Fig. 3.2, called 6:5 bonds, 60 in total), and bonds that do not lie along pentagons (marked blue, 6:6 bonds,
30 total). Clearly no symmetry operation can transform a red bond into a blue one, so why should their
hopping amplitudes be the same? The answer is that they are not the same. Indeed, the 6:6 bonds
are slightly shorter than the 6:5 bonds, and they have a slightly larger value of tij . By distinguishing

10See the discussion in §2.4.7.
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t0 ≡ t(6:6) and t1 ≡ t(6:5), one retains the Ih symmetry, but the aforementioned degeneracy occurs only

for t1 = t0 , precisely in analogy to what we found in our D3h example.

Note that in the tight binding eigenspectrum some IRREPs occur several times. There are threeHg levels,
for example, and Au isn’t present anywhere in the spectrum. The eigenfunctions form a reducible 60-
dimensional representation of the group Ih whose decomposition is

Γ elec = Ag ⊕ T1g ⊕ T2g ⊕ 2Gg ⊕ 3Hg ⊕ 2T1u ⊕ 2T2u ⊕ 2Gu ⊕ 2Hu . (3.17)

The number of times the IRREP Γ appears, nΓ , is also listed in the table in Fig. 3.2. For singly degenerate
atomic orbitals such as the π orbitals of C60 , the representation matrices Delec(g) are permutation matrices
of the site labels i, with

Delec
ij (g) =

〈
i
∣
∣ g

∣
∣ j

〉
≡

{

1 if g takes j to i

0 otherwise .
(3.18)

The character χelec(g) is then simply the number of sites i left invariant by the operation g. We can then
find nΓ using the representation decomposition formula. This will be discussed more fully in §6.4.

3.1.3 Operators and wavefunctions

Here we consider the transformation properties of the Hilbert space vectors |Γµ, l 〉 for fixed l. Accord-
ingly we suppress these indices throughout this discussion. Recall that

Û(g)
∣
∣Γν

〉
= |Γµ 〉

〈
Γµ

∣
∣ Û(g)

∣
∣Γν

〉
=

∣
∣Γµ

〉
DΓ

µν(g) . (3.19)

Taking the Hermitian conjugate, one has 〈Γν |U †(g) = DΓ ∗

µν (g) 〈Γµ | . Thus,

DΓ
µν(g) =

〈
Γµ

∣
∣ Û(g)

∣
∣Γν

〉
, DΓ ∗

µν (g) =
〈
Γµ

∣
∣ Û(g)

∣
∣Γν

〉∗
=

〈
Γν

∣
∣ Û †(g)

∣
∣Γµ

〉
. (3.20)

Note that the matrix representation is a group homomorphism:

Û(ga) Û(gb)
∣
∣Γν

〉
= Û(ga)

∣
∣Γρ

〉
DΓ

ρν(gb) =
∣
∣Γµ

〉
DΓ

µρ(ga)D
Γ
ρν(gb) =

∣
∣Γµ

〉
DΓ

µν(ga gb) . (3.21)

Acting on the state | r 〉, one has Û(g) | r 〉 = | g r 〉 , and therefore 〈 r |U(g) = 〈 g−1
r | . Therefore, with

ψ(r) = 〈 r |ψ 〉, we then have

Û(g)ψ(r) ≡
〈
r
∣
∣ Û(g)

∣
∣ψ

〉
= ψ(g−1

r) . (3.22)

We also have

Û(gh)ψ(r) = Û(g) Û (h)ψ(r) = Û(g)ψ(h−1
r) = ψ(h−1g−1

r) = ψ
(
(gh)−1

r
)

. (3.23)

Acting on a basis function ψΓ
ν (r) = 〈 r |Γν 〉, we have

ψΓ
ν (g

−1
r) = Û(g)ψΓ

ν (r) =
〈
r
∣
∣ Û(g)

∣
∣Γν

〉
= 〈 r |Γµ 〉DΓ

µν(g) = ψΓ
µ (r)D

Γ
µν(g) . (3.24)

Multiplying by DΓ ∗

να (g) and contracting on the index ν, this result entails ψΓ
α (r) = DΓ ∗

αν (g)ψ
Γ
ν (g

−1
r) .

Fun fact about bras and kets:
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⋄ While the ket |Γµ, l〉 transforms according to Γ , the bra 〈Γµ, l| transforms according to Γ ∗.

Recall also that the product of IRREPs Γ × Γ ′ contains the identity representation if and only if Γ ′ = Γ ∗ ,
with DΓ ∗

µν (g) =
[
DΓ

µν(g)
]∗

.

3.1.4 Projection operators

This section recapitulates the results of §2.4.2, now expressed in the form of abstract operators rather
than matrices. Consider a unitary representation DΓ (G) and define the operators

Π̂Γ
µν ≡ dΓ

NG

∑

g∈G
DΓ ∗

µν (g) Û (g) . (3.25)

which project onto the µ basis vector of the Γ representation. They satisfy the following three conditions.

First: Π̂Γ
µν Π̂

Γ ′

µ′ν′ = δΓΓ ′ δνµ′ Π̂Γ
µν′ . Second:

(
Π̂Γ

µν

)†
= Π̂Γ

νµ . Third:
∑

Γ

∑d
Γ

µ=1 Π̂
Γ
µµ = 1. The proof of these

relations is left as an exercise to the student.

Starting with an arbitrary collection of initial states
{
|ψl 〉

}
, one can form the states

∣
∣Γµ, l

〉
= Π̂Γ

µν

∣
∣ψl

〉
, (3.26)

where the index ν is held fixed for each l. One then has Π̂Γ
µν

∣
∣Γ ′ρ, l

〉
= δΓΓ ′ δνρ

∣
∣Γµ, l

〉
. Note that

Û(g) Π̂Γ
µν =

dΓ
NG

∑

h∈G
DΓ ∗

µν (h) Û (g) Û (h) =
dΓ
NG

∑

h∈G
DΓ ∗

µν (g
−1gh) Û (gh)

= DΓ ∗

µρ (g
−1)

Π̂Γ
ρν (rearrangement)

︷ ︸︸ ︷

dΓ
NG

∑

h∈G
DΓ ∗

ρν (gh) Û (gh) = DΓ ∗

µρ (g
−1) Π̂Γ

ρν = Π̂Γ
ρν D

Γ
ρµ(g) .

(3.27)

Applying this to |ψl〉, we have

Û(g) |Γµ, l 〉 = |Γρ, l 〉DΓ
ρµ(g) , (3.28)

which says that the states
{
|Γµ, l〉} transform as the Γ IRREP of G. Note further that

〈
Γµ, l

∣
∣Γ ′µ′, l′

〉
=

〈
ψl

∣
∣
(
Π̂Γ

µν

)†
Π̂Γ ′

µ′ν′
∣
∣ψl′

〉
=

〈
ψl

∣
∣ Π̂Γ

νµΠ̂
Γ ′

µ′ν′
∣
∣ψl′

〉

= δΓΓ ′ δµµ′

〈
ψl

∣
∣ Π̂Γ

νν′
∣
∣ψl′

〉
≡ δΓΓ ′ δµµ′ OΓ

ll′ ,
(3.29)

whereOΓ
ll′ =

〈
ψl

∣
∣ Π̂Γ

νν′

∣
∣ψl′

〉
. Recall that the column indices are held fixed for each choice of (Γ, l), inde-

pendent of the row indices. If the choice of ν for each (Γ, l) is considered implicit, we may suppress the
indices ν and ν ′ in the overlap matrix OΓ

ll′ . At any rate, we see that the states constructed by projection
in eqn. 3.26 are orthogonal only in their representation labels (Γ and Γ ′) and row labels (µ and µ′), but
not in the multiplicity labels l and l′.
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Figure 3.3: A projector from the early days of group theory. This projector belonged to Eugene Wigner.

Taking the trace of Π̂Γ
µν , we obtain, for unitary representations, the projection operator

Π̂Γ ≡
d
Γ∑

µ=1

Π̂Γ
µµ =

dΓ
NG

∑

g∈G
χΓ ∗

(g) Û (g) . (3.30)

If |ψ 〉 = ∑

Γ

∑

l

∑d
Γ

µ=1 C
l
Γµ |Γµ, l 〉 is a general sum over Hilbert space basis vectors, then

Π̂Γa |ψ 〉 =
∑

l

dΓ∑

µ=1

C l
Γa µ

∣
∣Γa µ , l

〉
(3.31)

projects |ψ 〉 onto the IRREP Γa.

3.1.5 Projecting arbitrary functions onto IRREPs

Here we describe a straightforward generalization of the method in §2.3.4 of projecting vectors, now
applied to functions. For any function ψ(r), define

ψ(Γν)
µ (r) ≡ Π̂Γ

µν ψ(r) =
dΓ
NG

∑

g∈G
DΓ ∗

µν (g)ψ(g
−1

r) . (3.32)

Here the representation label Γ as well as the column index ν serve as labels for a set of functions with
µ ∈ {1, . . . , dΓ }. Invoking Eqn. 3.27, we find

Û(g) Π̂Γ
µν = Π̂Γ

ρν D
Γ
ρµ(g) (3.33)
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and therefore

Û(g)ψ(Γν)
µ (r) = ψ(Γν)

ρ (r)DΓ
ρµ(g) . (3.34)

In other words, suppressing the (Γν) label, we have that the functions ψµ(r) transform according to the
Γ representation of the group. Thus, we have succeeded in projecting an arbitrary function ψ(r) onto
any IRREP Γ of G we please. This deserves a celebration with some unusual LATEX symbols: , ®oK .

Example: Z2

Let’s see how this marvelous projection machinery works with two examples. The first is rather trivial,
from the group G = Z2 , with elements {E,P}, where P 2 = E. We take P to correspond to parity, with
Px = −x. Thus for any function ψ(x) ,

Û(E)ψ(x) = ψ(x) , Û(P )ψ(x) = ψ(P−1x) = ψ(Px) = ψ(−x) . (3.35)

Z2 has two IRREPs, both of which are one-dimensional. In the identity representation Γ1 , the 1 × 1
matrices are ÛΓ1(E) = ÛΓ1(P ) = 1. In the sign representation Γ2 , and ÛΓ2(E) = 1 while ÛΓ2(P ) = −1.
The projectors are then

Π̂Γ1 =
1

2

[

Û(E) + Û(P )
]

, Π̂Γ2 =
1

2

[

Û(E)− Û(P )
]

. (3.36)

Now for the projection:

Π̂Γ1 ψ(x) = 1
2

[

ψ(x) + ψ(−x)
]

, Π̂Γ2 ψ(x) = 1
2

[

ψ(x)− ψ(−x)
]

. (3.37)

Example: C3v

Let’s now see how the projection onto basis functions works for a higher-dimensional representation of
a nonabelian group. We turn to our old and trusted friend, C3v , which has a two-dimensional represen-
tation, E.

Before we project onto E, let’s warm up by projecting onto the two one-dimensional representations A1

and A2. We have

Π̂A1 =
1

6

{

Û(E) + Û(R) + Û(W ) + Û(σ) + Û(σ′) + Û(σ′′)
}

Π̂A2 =
1

6

{

Û(E) + Û(R) + Û(W )− Û(σ)− Û(σ′)− Û(σ′′)
}

.
(3.38)

Thus the projection of an arbitrary initial function ψ(x, y) onto A1 will, according to Eqn. 3.32, be

ψ(A1)(x, y) =
1

6

{

ψ
(
x, y

)
+ ψ

(
− 1

2x+
√
3
2 y , −

√
3
2 x− 1

2y
)
+ ψ

(
− 1

2x−
√
3
2 y ,

√
3
2 x− 1

2y
)

(3.39)

+ ψ
(
− x , y

)
+ ψ

(
1
2x+

√
3
2 y ,

√
3
2 x− 1

2y
)
+ ψ

(
1
2x−

√
3
2 y , −

√
3
2 x− 1

2y
)}

.
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Similarly, projecting onto A2 yields

ψ(A2)(x, y) =
1

6

{

ψ
(
x, y

)
+ ψ

(
− 1

2x+
√
3
2 y , −

√
3
2 x− 1

2y
)
+ ψ

(
− 1

2x−
√
3
2 y ,

√
3
2 x− 1

2y
)

(3.40)

− ψ
(
− x , y

)
+ ψ

(
1
2x−

√
3
2 y ,

√
3
2 x− 1

2y
)
− ψ

(
1
2x−

√
3
2 y , −

√
3
2 x− 1

2y
)}

.

Note that Π̂A1 preserves all constant functions (e.g. ψ = 1) but annihilates all linear functions of the form
ψ(x, y) = ax + by.11 What happens if we take ψ(x, y) = x2 ? Then we find ψ(A1)(x, y) = 1

2(x
2 + y2) ,

which does indeed transform like the identity, but ψ(A2)(x, y) = 0. What do we need to do to get a
nontrivial representation of A2 ? Let’s try starting with ψ(x, y) = x3 . Now we find ψ(A1)(x, y) = 0 but

ψ(A2)(x, y) = 1
4x

3− 3
4xy

2. Eureka! Note that we may write ψ(A2)(x, y) = x
(
1
2x+

√
3
2 y

)(
1
2x−

√
3
2 y

)
, which

renders its transformation properties more apparent.

Now let’s roll up our sleeves and do the projection onto E. Recall the matrices for E :

DE(E) =

(
1 0
0 1

)

DE(R) =
1

2

(
−1 −

√
3√

3 −1

)

DE(W ) =
1

2

(
−1

√
3

−
√
3 −1

)

(3.41)

DE(σ) =

(
−1 0
0 1

)

DE(σ′) =
1

2

(
1

√
3√

3 −1

)

DE(σ′′) =
1

2

(
1 −

√
3

−
√
3 −1

)

.

We now select an arbitrary function ψ(r) which itself may have no special symmetry properties. Ac-
cording to Eqn. 3.32, the projection of ψ(r) onto the µ row of the E representation is given by

ψ(Eν)
µ (r) =

1

3

{

DE
µν(E)ψ(r) +DE

µν(R)ψ(R
−1

r) +DE
µν(W )ψ(W−1

r)

+DE
µν(σ)ψ(σ

−1
r) +DE

µν(σ
′)ψ(σ′−1

r) +DE
µν(σ

′′)ψ(σ′′−1
r)
}

.
(3.42)

Thus,

ψ(Eν)
µ (r) =

1

3

{(
1 0
0 1

)

ψ
(
x, y

)
+

1

2

(
−1 −

√
3√

3 −1

)

ψ
(
− 1

2x+
√
3
2 y , −

√
3
2 x− 1

2y
)

(3.43)

+
1

2

(
−1

√
3

−
√
3 −1

)

ψ
(
− 1

2x−
√
3
2 y ,

√
3
2 x− 1

2y
)
+

(
−1 0
0 1

)

ψ
(
− x , y

)

+
1

2

(
1

√
3√

3 −1

)

ψ
(
1
2x+

√
3
2 y ,

√
3
2 x− 1

2y
)
+

1

2

(
1 −

√
3

−
√
3 −1

)

ψ
(
1
2x−

√
3
2 y , −

√
3
2 x− 1

2y
)

}

µν

.

Let’s take ν = 1, which means we only use the first column of each of the matrices in the above expres-

sion. Starting with ψ(x, y) = x, we obtain ψ
(E,1)
1 (x, y) = x and ψ

(E,1)
2 (x, y) = y. Had we chosen instead

ψ(x, y) = y, we would have found ψ
(E,1)
1 (x, y) = ψ

(E,1)
2 (x, y) = 0, i.e. the projection annihilates the initial

state. Generically this will not occur – our choices here have been simple and nongeneric.

Had we chosen instead ν = 2, then taking the second column above we find that ψ(x, y) = x is anni-

hilated by the projection, while for ψ(x, y) = y we obtain ψ
(E,2)
1 (x, y) = x and ψ

(E,2)
2 (x, y) = y . At any

rate, the upshot of this analysis is that ψ1(x, y) = x and ψ2(x, y) = y are appropriate basis functions for
the E representation of C3v.

11Nasty stuff, these projectors.
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3.1.6 Partial diagonalization of H

Suppose we have a set of appropriately transforming basis vectors |Γµ 〉. One way to obtain such a set
is to start with an arbitrary function f(r) and then perform the projection onto row µ of representation

Γ , forming f
(Γκ)
µ (r) = Π̂Γ

µκ f(r) , and then defining

∣
∣Γµ

〉
= N Γ

µ

∫

ddr f (Γκ)
µ (r)

∣
∣ r

〉
, (3.44)

where N Γ
µ is a normalization constant. The column index κ is fixed for each Γ and is suppressed.

We assume that the projection of f(r) onto f
(Γκ)
µ (r) does not annihilate f(r) (else we try again with a

different f(r) function). We then have12

〈
Γµ

∣
∣Γ ′µ′

〉
= N Γ ∗

µ N Γ ′

µ′

∫

ddr
[
f (Γκ)
µ (r)

]∗
f
(Γ ′κ′)
µ′ (r) = N Γ ∗

µ N Γ ′

µ′

∫

ddr f∗(r)
(
Π̂Γ

µκ

)†
Π̂Γ ′

µ′κ′ f(r)

= N Γ ∗

µ N Γ ′

µ′

∫

ddr f∗(r) Π̂Γ
κµ Π̂

Γ ′

µ′κ′ f(r) = δΓΓ ′ δµµ′

∣
∣N Γ

µ

∣
∣2
∫

ddr f∗(r) Π̂Γ
κκ′ f(r) ,

(3.45)

which confirms that the basis vectors are orthogonal unless their representations (Γ, Γ ′) and basis indices
(µ, µ′) agree. We can therefore enforce the normalization 〈Γµ |Γ ′µ′ 〉 = δΓΓ ′ δµµ′ .

Now assuming
[
Ĥ, Û(G)

]
= 0, we may write Ĥ = Û(g)†Ĥ Û(g), and therefore

〈
Γµ

∣
∣H

∣
∣Γ ′µ′

〉
=

1

NG

∑

g∈G

〈
Γµ

∣
∣ Û(g)†Ĥ Û(g)

∣
∣Γ ′µ′

〉

=
1

NG

∑

g∈G
DΓ ∗

νµ (g)
〈
Γν

∣
∣ Ĥ

∣
∣Γ ′ν ′

〉
DΓ ′

ν′µ′(g)

= δΓΓ ′ δµµ′

1

dΓ

dΓ∑

ν=1

〈
Γν

∣
∣ Ĥ

∣
∣Γν

〉
,

(3.46)

where we have invoked the Great Orthogonality Theorem to collapse the sum over the group elements. Thus
we see that if we choose our basis functions accordingly, i.e. as transforming appropriately under the
group operations, the Hamiltonian will automatically be diagonal in the Γµ indices. Of course this isn’t
the entire Hilbert space, since in the eigenspectrum of Ĥ, a given representation Γ may occur many
times – perhaps even infinitely many. We could, for example, have started by projecting an entire family
of arbitrary initial functions,

{
fl(r)

}
, indexed by l, and create their corresponding basis states states,

which we would label |Γµ, l 〉. The overlaps and the Hamiltonian matrix elements between these two
different sectors will in general be nonzero provided the representations and the basis indices agree:

〈Γµ, l |Γ ′µ′, l′ 〉 = δΓΓ ′ δµµ′

1

dΓ

dΓ∑

ν=1

〈
Γν, l

∣
∣Γν, l′

〉
≡ OΓ

ll′ δΓΓ ′ δµµ′

〈Γµ, l | Ĥ |Γ ′µ′, l′ 〉 = δΓΓ ′ δµµ′

1

dΓ

dΓ∑

ν=1

〈
Γν, l

∣
∣ Ĥ

∣
∣Γν, l′

〉
≡ HΓ

ll′ δΓΓ ′ δµµ′ ,

(3.47)

12No sum on µ or µ′ in Eqn. 3.45.
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with no sum on Γ or µ. The first of these comes from the generalized version of Eqn. 3.46 upon replac-
ing Ĥ by 1. Here OΓ

ll′ and HΓ
ll′ are the overlap matrix and Hamiltonian matrix, respectively; note that

neither depends on the basis index µ. Our task is then to simultaneously diagonalize these two Hermi-
tian matrices, i.e. to solve the linear system HΓ

ll′ φ
Γs
l′ = EΓsO

Γ
ll′ φ

Γs
l′ , where a labels the eigenvalue and

corresponding eigenfunctions of the sth occurrence of the IRREP Γ . In systems with an infinite number
of degrees of freedom, both OΓ and HΓ will in general be of infinite rank for each IRREP Γ , i.e. each
IRREP will in general appear an infinite number of times in the eigenspectrum. Still, we have achieved a
substantial simplification by organizing the basis vectors in terms of group symmetry.

3.2 Product Representations

3.2.1 Direct product of two representations

In chapter 2 we discussed the direct product of IRREPs Γa × Γb. Recall the action of the group element g
on the direct product space Va ⊗ Vb is defined in terms of its action on the basis vectors,

Û(g)
∣
∣ eΓa×Γb

αβ

〉
=

∣
∣ e

Γa×Γ
b

α′β′

〉
DΓa

α′α(g)D
Γb

β′β(g) , (3.48)

where
∣
∣ e

Γa×Γ
b

αβ

〉
≡

∣
∣ eΓa

α

〉
⊗

∣
∣ eΓb

β

〉
, where

∣
∣ eΓµ

〉
=

∣
∣Γµ

〉
in our previous notation13. Thus the matrix of g

in the direct product representation Γa × Γb is given by

D
Γa×Γ

b

α′β′, αβ(g) = DΓa

α′α(g)D
Γb

β′β(g) , (3.49)

where αβ and α′β′ on the LHS are composite indices, each taking dΓa
×dΓb

possible values. The characters
in the product representation are given by the product of the individual characters, viz.

χΓa×Γb(g) = χΓa(g) χΓb(g) . (3.50)

3.2.2 Products of identical representations

Here we discuss three ways of taking the product of identical representations. Since we will be assuming
the same representation Γ throughout, might as well suppress the Γ label.

• Direct product : This is also called the simple product. Consider an IRREP Γ of a finite group
G and construct the tensor product basis | eµν 〉 = | eµ 〉 ⊗ | eν 〉 , where µ, ν ∈ {1, . . . , dΓ }. There
are d2Γ linearly independent basis states in the tensor product space V × V . In the direct product
representation Γ × Γ , one has

Û(g)
∣
∣ eµν

〉
=

∣
∣ eµ′ν′

〉
Dµ′µ(g)Dν′ν(g) ≡

∣
∣ eµ′ν′

〉
DD

µ′ν′, µν(g) . (3.51)

13When there are multiple occurrences of the IRREP Γ , we will use | eΓ, l
µ 〉 to always denote an orthonormal basis, with

〈 eΓ,l
µ | eΓ

′, l′

µ′ 〉 = δΓΓ ′ δll′ δµµ′ .
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Therefore the character of g in the direct product representation Γ × Γ is

χD(g) =
[
χΓ (g)

]2
, (3.52)

which is the square of the character in the Γ representation.

• Symmetrized product : Consider now the symmetrized basis states,

| eSµν 〉 =
1√
2

(

| eµ 〉 ⊗ | eν 〉+ | eν 〉 ⊗ | eµ 〉
)

. (3.53)

Clearly | eSµν 〉 = | eSνµ 〉 , so there are 1
2dΓ (dΓ +1) linearly independent basis states in the symmetric

product space (V ⊗ V)S. You might worry about the normalization, since
〈
eSµν

∣
∣ eSµ′ν′

〉
= δµµ′ δνν′ + δµν′ δνµ′ , (3.54)

and thus the diagonal basis vectors | eSµµ 〉 (no sum on µ) have norm
√
2 . It turns out that this

doesn’t matter, and we can always impose a proper normalization later on. Now let’s apply the
operator Û(g) :

Û(g)
∣
∣ eSµν

〉
=

1√
2

(

| eµ′ 〉 ⊗ | eν′ 〉Dµ′µ(g)Dν′ν(g) + | eν′ 〉 ⊗ | eµ′ 〉Dν′µ(g)Dµ′ν(g)
)

=
∣
∣ eSµ′ν′

〉
· 1
2

(

Dµ′µ(g)Dν′ν(g) +Dν′µ(g)Dµ′ν(g)
)

≡
∣
∣ eSµ′ν′

〉
DS

µ′ν′, µν(g) .

(3.55)

The character of g in this representation is then

χS(g) = DS
µν, µν(g) =

1

2

([
χΓ (g)

]2
+ χΓ (g2)

)

. (3.56)

• Antiymmetrized product : Consider now the antisymmetrized basis states,

| eAµν 〉 =
1√
2

(

| eµ 〉 ⊗ | eν 〉 − | eν 〉 ⊗ | eµ 〉
)

. (3.57)

Now we have | eAµν 〉 = −| eAνµ 〉 , so there are 1
2dΓ (dΓ − 1) linearly independent basis states in the

antisymmetric product space (V ⊗ V)A. We then have
〈
eAµν

∣
∣ eAµ′ν′

〉
= δµµ′ δνν′ − δµν′ δνµ′ . (3.58)

Note that the diagonal basis vectors | eAµµ 〉 = 0 (no sum on µ) vanish identically. Now let’s apply

the operator Û(g) :

Û(g)
∣
∣ eAµν

〉
=

1√
2

(

| eµ′ 〉 ⊗ | eν′ 〉Dµ′µ(g)Dν′ν(g) − | eν′ 〉 ⊗ | eµ′ 〉Dν′µ(g)Dµ′ν(g)
)

=
∣
∣ eAµ′ν′

〉
· 1
2

(

Dµ′µ(g)Dν′ν(g)−Dν′µ(g)Dµ′ν(g)
)

≡
∣
∣ eAµ′ν′

〉
DA

µ′ν′, µν(g) .

(3.59)

The character of g in this representation is then

χA(g) = DA
µν, µν(g) =

1

2

([
χΓ (g)

]2 − χΓ (g2)
)

. (3.60)

Note that this vanishes whenever Γ is a one-dimensional IRREP, because one-dimensional repre-
sentations cannot be antisymmetrized!



16 CHAPTER 3. GROUP THEORY AND QUANTUM MECHANICS

Note that χ
(
g2
)
= χ

(
(h−1gh)2

)
, and so the class structure is the same. In other words, if g and g′ belong

to the same class, then g2 and g′2 also belong to the same class. Let’s now use the equation

nΓ (Ψ) =
1

NG

∑

C
NC χ

Γ (C)∗ χΨ (C) (3.61)

to decompose some of these product representations. We’ll choose the group D3 , the character table
for which is the upper left 3 × 3 block of the character table for D3h provided in Tab. 3.1. We first
work out the direct product E × E, for which χD(E) = 4, χD(C3) = 1, and χD(C ′

2) = 0. Applying the
decomposition formula, we obtain E × E = A1 ⊕ A2 ⊕ E. This is consistent with a naı̈ve counting of
dimensions, since 22 = 1 + 1 + 2.

In order to decompose the symmetrized and antisymmetrized product representations (E × E)S,A, we
must compute the characters χΓ (g2) , and for this we need to invoke class relations [E]2 = E, [C3]

2 = C3 ,
and [C ′

2]
2 = E. These are easy to see, since C3 contains the rotations R and W , which satisfy R2 = W

and W 2 = R. The class C ′
2 consists of the three two-fold rotations (or mirrors, for C3v elements), each of

which squares to the identity. We then have14

χE
(
[E]2

)
= χE(E) = 2 , χE

(
[C3]

2
)
= χE(C3) = −1 , χE

(
[C ′

2]
2
)
= χE(E) = 2 . (3.62)

According to Eqns. 3.56 and 3.60, we then have

χS(E) = 3 χS(C3) = 0 χS(C ′
2) = 1 (3.63)

χA(E) = 1 χA(C3) = 1 χA(C ′
2) = −1 . (3.64)

We therefore conclude (E ×E)S = A1 ⊕E and (E ×E)A = A2 . Can you make sense of the dimensions?

3.2.3 Clebsch-Gordan Coefficients

Recall the decomposition formulae for the product representation Γa × Γb for any finite group G:

Γa × Γb =
⊕

Γ

nabΓ Γ (3.65)

where

nabΓ =
1

NG

∑

C
NC χ

Γ ∗
(C)χΓa(C)χΓb(C) . (3.66)

We may express the direct product of orthonormal basis states
∣
∣ e

Γa
α

〉
and

∣
∣ e

Γ
b

β

〉
, with 1 ≤ α ≤ dΓa

and

1 ≤ β ≤ dΓ
b

, in terms of the new orthonormal basis set
∣
∣ eΓ, sγ

〉
, viz.

∣
∣ e

Γa
α

〉
⊗
∣
∣ e

Γ
b

β

〉
=

∑

Γ

nab
Γ∑

s=1

dΓ∑

γ=1

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)
∣
∣ eΓ, sγ

〉
. (3.67)

14Remember that E labels the identity element and its class, as well as the two-dimensional representation. Take care not to
confuse the meaning of E in its appropriate context!
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Here, the label s indexes possible multiple appearances of the representation Γ in the decomposition

of the product Γa × Γb . The quantities
(
Γa
α

Γ
b
β

∣
∣
∣
Γ, s
γ

)

, known as Clebsch-Gordan coefficients (CGCs), are

unitary matrices relating the two orthonormal sets of basis vectors. Orthonormality of the bases means

〈

e
Γa
α

∣
∣
∣ e

Γa

α′

〉

= δαα′ ,
〈

e
Γ
b

β

∣
∣
∣ e

Γ
b

β′

〉

= δββ′ ,
〈

eΓ, sγ

∣
∣
∣ e

Γ ′, s′

γ′

〉

= δΓΓ ′ δss′ δγγ′ . (3.68)

The inverse basis transformation is

∣
∣ eΓ, sγ

〉
=

da∑

α=1

d
b∑

β=1

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)∗ ∣
∣ e

Γa
α

〉
⊗

∣
∣ e

Γ
b

β

〉
, (3.69)

where we abbreviate da ≡ dΓa
and db ≡ dΓ

b
. Note that the component IRREPs Γa and Γb are fixed

throughout this discussion.

Relations satisfied by CGCs

Orthonormality and completeness of the CGCs require

da∑

α=1

d
b∑

β=1

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)∗ (Γa
α

Γb
β

∣
∣
∣
∣

Γ ′, s′

γ′

)

= δΓΓ ′ δss′ δγγ′ (3.70)

and

∑

Γ

nab
Γ∑

s=1

dΓ∑

γ=1

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)∗ (Γa
α′

Γb
β′

∣
∣
∣
∣

Γ, s

γ

)

= δαα′ δββ′ . (3.71)

Applying the unitary operators Û(g) to the basis vectors in their respective representations, one then
obtains the relations

∑

Γ

nab
Γ∑

s=1

d
Γ∑

γ=1

d
Γ∑

γ′=1

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)∗
DΓ

γγ′(g)

(
Γa
α′

Γb
β′

∣
∣
∣
∣

Γ, s

γ′

)

= D
Γa

αα′(g)D
Γ
b

ββ′ (g) (3.72)

and

da∑

α=1

da∑

α′=1

d
b∑

β=1

d
b∑

β′=1

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)

D
Γa

αα′(g)D
Γ
b

ββ′(g)

(
Γa
α′

Γb
β′

∣
∣
∣
∣

Γ ′, s′

γ′

)∗
= DΓ

γγ′(g) δΓΓ ′ δss′ . (3.73)

3.2.4 Simply reducible groups

A group G is simply reducible if the multiplicities nabΓ in its IRREP product decompositions are all either
nabΓ = 0 or nabΓ = 1. In this case, we may drop the multiplicity index s. For simply reducible groups, we
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can obtain an explicit expression for the CGCs, courtesy of the Great Orthogonality Theorem :

dΓ
NG

∑

g∈G
D

Γa

αα′(g)D
Γ
b

ββ′(g)D
Γ ∗

γγ′(g) =
∑

Γ ′

∑

σ,σ′

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ ′

σ

)∗ (Γa
α′

Γb
β′

∣
∣
∣
∣

Γ ′

σ′

)

= δΓΓ ′ δσ γ δσ′γ′

︷ ︸︸ ︷

dΓ
NG

∑

g∈G
DΓ ′

σσ′(g)DΓ ∗

γγ′(g)

=

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ

γ

)∗ (Γa
α′

Γb
β′

∣
∣
∣
∣

Γ

γ′

)

. (3.74)

We now set α = α′ ≡ α0 , β = β′ ≡ β0, and γ = γ′ ≡ γ0 in such a way that the LHS of the above equation
is nonvanishing15 to obtain

(
Γa
α0

Γb
β0

∣
∣
∣
∣

Γ

γ0

)

=

√
√
√
√

dΓ
NG

∑

g∈G
D

Γa

α0α0
(g)D

Γ
b

β0β0
(g)D

Γ ∗

γ0γ0
(g) , (3.75)

with no sum on the repeated indices α0 , β0, and γ0 . We can choose
(
Γa
α0

Γ
b

β0

∣
∣
∣

Γ
γ0

)

to be real and positive,

which amounts to a phase convention for the CGCs. The general CGC is then given by
(
Γa
α

Γb
β

∣
∣
∣
∣

Γ

γ

)

=
1

(
Γa
α0

Γ
b

β0

∣
∣
∣

Γ
γ0

)
dΓ
NG

∑

g∈G
D

Γa

αα0
(g)D

Γ
b

ββ0
(g)D

Γ ∗

γγ0
(g) (3.76)

When G is not simply reducible and there are multiple appearances of the same representation in the
decomposition of the product Γa × Γb, the situation is more complicated. Tables of CGCs for physically
useful groups are listed in, e.g., Koster et al. (1963).

Example : C3v

As an example, consider the case of C3v, with representations A1, A2, and E. A1,2 are one-dimensional
and can be read off from the character table. For the two-dimensional IRREP E, we use the representation
matrices in Eqn. 3.41. Since A1 ×A1 = A2 ×A2 = A1 and A1 ×A2 = A2 , we have

(
A1

1

A1

1

∣
∣
∣
∣

A1

1

)

=

(
A1

1

A2

1

∣
∣
∣
∣

A2

1

)

=

(
A2

1

A2

1

∣
∣
∣
∣

A1

1

)

= 1 . (3.77)

Recall A1 ×E = A2 × E = E. We then have
(
A1

1

E

ν

∣
∣
∣
∣

E

ξ

)

=

(
1 0
0 1

)

νξ

,

(
A2

1

E

ν

∣
∣
∣
∣

E

ξ

)

=

(
0 1
−1 0

)

νξ

. (3.78)

Finally, E × E = A1 ⊕A2 ⊕ E, and we have
(
E

µ

E

ν

∣
∣
∣
∣

A1

1

)

=
1√
2

(
1 0
0 1

)

µν

,

(
E

µ

E

ν

∣
∣
∣
∣

A2

1

)

=
1√
2

(
0 1
−1 0

)

µν

(3.79)

and (
E

µ

E

ν

∣
∣
∣
∣

E

1

)

=
1√
2

(
0 1
1 0

)

µν

,

(
E

µ

E

ν

∣
∣
∣
∣

E

2

)

=
1√
2

(
1 0
0 −1

)

µν

. (3.80)

15See R. Winkler, Introduction to Group Theory (2015), p. 84.
Online at http://www.niu.edu/rwinkler/teaching/group-11/g-lecture.pdf

http://www.niu.edu/rwinkler/teaching/group-11/g-lecture.pdf


3.2. PRODUCT REPRESENTATIONS 19

3.2.5 Wigner-Eckart theorem

The transformation properties of basis vectors were defined in Eqn. 3.19: Û(g) |Γµ 〉 = |Γν 〉 DΓ
νµ(g).

Operators, too, may be classified by their transformation properties under group actions. Since we
would like

〈
φ′

∣
∣ Q̂′ ∣∣ψ′ 〉 =

〈
φ
∣
∣ Q̂

∣
∣ψ

〉
, where, dropping representation and basis indices, the primes

denote the transformed Hilbert space vectors and operators, the action of a group operation g ∈ G on
a general operator Q̂ is Q̂′ = Û(g) Q̂ Û †(g). We now consider the case of tensor operators, which form
families which transform among themselves under group operations.

DEFINITION : A tensor operator Q̂Γ
µ is a Hilbert space operator which transforms according to an

IRREP of some group G. Tensor operators carry representation and basis indices.

The tensor operator Q̂Γ
µ transforms as

Û(g) Q̂Γ
µ Û

†(g) = Q̂Γ
ν D

Γ
νµ(g) . (3.81)

We can think of families of tensor operators as invariant subspaces in operator space, End(H).

Now consider the action of tensor operators on basis vectors, such as Q̂Γa
α

∣
∣ eΓb

β

〉
. We ask how such an

object transforms under group operations. We have

Û(g) Q̂Γa
α

∣
∣ eΓb

β

〉
= Û(g) Q̂Γa

α Û †(g) Û (g)
∣
∣ eΓb

β

〉

= Q̂Γa

α′

∣
∣ eΓb

β′

〉
DΓa

α′α(g)D
Γb

β′β(g) = Q̂Γa

α′

∣
∣ eΓb

β′

〉
DΓa×Γb

α′β′, αβ(g) .
(3.82)

This tells us that Q̂Γa
α

∣
∣ eΓb

β

〉
transforms according to the product representation Γa×Γb . This means that

we can expand Q̂Γa
α

∣
∣ eΓb

β

〉
as a sum over its irreducible components, viz.

Q̂Γa
α

∣
∣ eΓb

β

〉
=

∑

Γ,s,γ

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)
∣
∣ΨΓ, s

γ

〉
, (3.83)

where
∣
∣ΨΓ, s

γ

〉
transforms according to the Γ IRREP of the symmetry group G, meaning

Û(g)
∣
∣ΨΓ, s

γ

〉
=

∣
∣ΨΓ, s

γ′

〉
DΓ

γ′ γ(g) . (3.84)

This will be explicitly demonstrated at the end of this section. Note that, upon invoking orthogonality
of the CGCs,

∣
∣ΨΓ, s

γ

〉
=

∑

α,β

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

γ

)∗
Q̂Γa

α

∣
∣ eΓb

β

〉
. (3.85)

Since states which transform according to different IRREPs are orthogonal, we must have

〈
eΓc
γ

∣
∣ΨΓ, s

σ

〉
=

〈
Γc

∥
∥QΓa

∥
∥Γb

〉

s
δΓΓc

δγσ , (3.86)
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Figure 3.4: Eugene P. Wigner, the Ph.D. thesis supervisor of the Ph.D. thesis supervisor of my Ph.D.
thesis supervisor.

where the reduced matrix element
〈
Γc

∥
∥QΓa

∥
∥Γb

〉

s
is independent of the basis indices γ and σ. We there-

fore have

〈
eΓc
γ

∣
∣ Q̂Γa

α

∣
∣ eΓb

β

〉
=

∑

s

(
Γa
α

Γb
β

∣
∣
∣
∣

Γc , s

γ

)
〈
Γc

∥
∥QΓa

∥
∥Γb

〉

s
(3.87)

a result known as the Wigner-Eckart theorem. Note that we have assumed that the ket vector
∣
∣ eΓµ

〉
is

conjugate to the bra vector
〈
eΓµ

∣
∣. In fact, they can come from different copies of each representation cor-

responding to different quantum numbers16. A more general expression of the Wigner-Eckart theorem
is then

〈
eΓc, lc
γ

∣
∣ Q̂Γa

α

∣
∣ eΓb, lb

β

〉
=

∑

s

(
Γa
α

Γb
β

∣
∣
∣
∣

Γc , s

γ

)
〈
Γc , lc

∥
∥QΓa

∥
∥Γb , lb

〉

s
. (3.88)

Appealing once again to the orthogonality of the CGCs, we obtain the following expression for the
Wigner-Eckart reduced matrix elements:

〈
Γc , lc

∥
∥QΓa

∥
∥Γb , lb

〉

s
δΓΓc

δσγ =
∑

α,β

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, s

σ

)∗
〈
eΓc , lc
γ

∣
∣ Q̂Γa

α

∣
∣ eΓb , lb

β

〉
. (3.89)

16Note that the multiplicity index s is not the same sort of animal as the index l in the state | eΓ, l
µ 〉. The essential difference

is that l labels states according to quantum numbers not associated with the group symmetry. The multiplicity index s, by
contrast, knows nothing of the other quantum numbers and arises purely from a group theoretic analysis of the product
representations.
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If different appearances of the same IRREP are not orthogonal, we still have

〈
Γc γ , lc

∣
∣Γb β , lb

〉
=

1

NG

∑

g∈G

〈
Γc γ , lc

∣
∣U †(g)U(g)

∣
∣ Γb β , lb

〉

=
1

NG

∑

g∈G
DΓc

γ′γ(g)
∗ 〈Γc γ

′, lc
∣
∣Γb β

′, lb
〉
DΓb

β′β(g)

=
1

dΓc

dΓb∑

µ=1

〈
Γc µ , lc

∣
∣Γb µ , lb

〉
δΓbΓc

δαβ ≡ 〈 Γc , lc ‖ Γb , lb 〉 δΓbΓc
δαβ .

(3.90)

The quantity 〈 Γ , la ‖Γ , lb 〉 is called the reduced overlap, or the overlap matrix OΓ
lalb

. Note that it does

not depend on the basis indices α and β. By the same token, we also have

〈
Γc γ , lc

∣
∣ΨΓ, s

σ

〉
=

1

dΓ

d
Γ∑

µ=1

〈
Γc µ , lc

∣
∣ΨΓ, s

µ

〉
δΓΓc

δγσ . (3.91)

Wigner-Eckart theorem for simply reducible groups

For simply reducible groups, there is no representation multiplicity index s for the direct products, and
we have the simpler expression

〈
eΓc, lc
γ

∣
∣ Q̂Γa

α

∣
∣ eΓb, lb

β

〉
=

(
Γa
α

Γb
β

∣
∣
∣
∣

Γc
γ

)
〈
Γc , lc

∥
∥QΓa

∥
∥Γb , lb

〉
. (3.92)

In this case, the ratios of matrix elements

〈
eΓc, lc
γ′

∣
∣ Q̂Γa

α′

∣
∣ eΓb, lb

β′

〉

〈
eΓc, lc
γ

∣
∣ Q̂Γa

α

∣
∣ eΓb, lb

β

〉 =

(
Γa

α′
Γb

β′

∣
∣
∣
Γc

γ′

)

(
Γa

α
Γb

β

∣
∣
∣
Γc

γ

) (3.93)

are independent of all details of the operators Q̂Γa
α other than the representation by which it transforms.

Proof that
∣
∣ΨΓ, l

γ

〉
transforms as advertised

Start with Eqn. 3.83 and apply Û(g) to both sides. The LHS transforms

Û(g) Q̂Γa
α

∣
∣ eΓb

β

〉
=

∑

α′,β′

Q̂Γa

α′

∣
∣ eΓb

β′

〉
DΓa

α′α(g)D
Γb

β′β(g) =
∑

Γ,l,γ

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, l

γ

)

Û(q)
∣
∣ΨΓ, l

γ

〉
. (3.94)

Now multiply by
(
Γa

α
Γb

β

∣
∣
∣
Γ ′, l′

γ′

)∗
and sum on α and β. Using orthogonality of the CGCs, and dropping

primes on the Γ ′, l′, and γ′ indices, we obtain

∑

α,β

∑

α′,β′

Q̂Γa

α′

∣
∣ eΓb

β′

〉
DΓa

α′α(g)D
Γb

β′β(g)

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, l

γ

)∗
= Û(g)

∣
∣ΨΓ, l

γ

〉
. (3.95)
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Finally, reexpress Q̂Γa

α′

∣
∣ eΓb

β′

〉
on the LHS above in terms of the

∣
∣ΨΓ, l

γ

〉
, to find

Û(g)
∣
∣ΨΓ, l

γ

〉
=

∑

Γ ′,l′,γ′

∑

α,β

∑

α′,β′

(
Γa
α′

Γb
β′

∣
∣
∣
∣

Γ ′, l′

γ′

)

DΓa

α′α(g)D
Γb

β′β(g)

(
Γa
α

Γb
β

∣
∣
∣
∣

Γ, l

γ

)∗ ∣
∣ΨΓ ′, l′

γ′

〉

=
∑

Γ ′,l′,γ′

∣
∣ΨΓ ′, l′

γ′

〉
DΓ ′

γ′ γ(g) ,

(3.96)

after invoking the CGC relation Eqn. 3.73.

3.2.6 Level repulsion and degeneracies

Consider a Hamiltonian Ĥ0 with
[
Ĥ0, Û (G)

]
= 0 whose eigenstates are labeled |Γµ, l 〉 ≡ | eΓ, lµ 〉. Sup-

pose two multiplets |Γa α, la 〉 and |Γb β, lb 〉 are in close proximity, with energiesEa andEb , respectively.
Can they be made degenerate by varying the Hamiltonian in a way which preserves the full symmetry
of G? Let’s write Ĥ(λ) = Ĥ0 + λV̂ , where

[
V̂ , Û (G)

]
= 0, and, neglecting all other multiplets which by

assumption lie much further away in energy than the gap |Ea−Eb| , we compute the Hamiltonian matrix

elements in the a, b multiplet basis. Since V̂ transforms as the Γ1 identity IRREP, we have Γ1 × Γb = Γb ,
and therefore

〈
Γa α, la

∣
∣ V̂

∣
∣Γb β, lb

〉
=

= δΓaΓb
δαβ

︷ ︸︸ ︷
(
Γb
β

Γ1
1

∣
∣
∣
∣

Γa
α

)
〈
Γa, la

∥
∥ V̂

∥
∥Γb, lb

〉
(3.97)

vanishes unless Γa = Γb, although we may have la 6= lb. When Γa = Γb ,

〈
Γa, la

∥
∥ V̂

∥
∥Γa, lb

〉
=

1

dΓa

d
Γa∑

µ=1

〈
Γa µ, la

∣
∣ V̂

∣
∣Γa µ, lb

〉
≡ Vab . (3.98)

Consider first the case Γa 6∼= Γb . Then there are no off-diagonal matrix elements in our basis, and the
energy shifts are given by

Ea(λ) = Ea + λVaa

Eb(λ) = Eb + λVbb
(3.99)

Setting Ea(λ) = Eb(λ), we obtain a degeneracy of the two multiplets when λ = λ∗ , with

λ∗ =
Eb − Ea

Vaa − Vbb
. (3.100)

The resulting supermultiplet has degeneracy d = dΓa
+ dΓb

.

When Γa = Γb , we have nonzero off-diagonal elements. The reduced basis Hamiltonian is given by

Ĥred =

(
Ea + λVaa λVab
λV ∗

ab Eb + λVbb

)

⊗ 1d
Γa

×d
Γa

. (3.101)
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Note that we still must distinguish the a and b multiplets, because while they belong to the same repre-
sentations, they are not identical multiplets, i.e. their wavefunctions are different17. There are then two
dΓa

-fold degenerate sets of states, with energies

Eab,± = 1
2(Ea + λVaa + Eb + λVbb)± 1

2

√

(Ea + λVaa − Eb − λVbb)
2 + 4λ2|Vab|2 . (3.102)

The only way for these multiplets to become degenerate is for the radical to vanish. But there is no
choice for λ which will make that happen. Therefore we have an avoided crossing. The best we can do
is to minimize the energy difference.

My personal advice: if you are ever caught being degenerate, say that it was an accident.

3.2.7 Example: C4v

Consider the problem of a particle in a two-dimensional L×L square box, with Ĥ0 =
p
2

2m +V (x, y) with

V (x, y) =

{

0 if |x| < 1
2L and |y| < 1

2L

∞ otherwise .
(3.103)

This problem has a C4v symmetry. Recall C4v
∼= D4 is the symmetry group of the square, and is gener-

ated by two elements, i.e. a counterclockwise rotation through 1
2π (r) and a reflection in the x-axis (σ).

One has r4 = σ2 = (rσ)2 = 1. There are five conjugacyclasses: {E}, {r, r3}, {r2}, {rσ, σr} (diagonal
reflections), and {σ, σr2} (reflections in the x and y axes). The character table is given in Tab. 3.2.

Note that

r

(
x
y

)

=

(
−y
x

)

, σ

(
x
y

)

=

(
x
−y

)

, r2
(
x
y

)

=

(
−x
−y

)

, rσ

(
x
y

)

=

(
y
x

)

. (3.104)

And recall that Û(g)Ψ(x, y) = Ψ(g−1x, g−1y). We define the functions

φn(u) =

√

2

L
cos

(
2
(
n− 1

2

)
πu

L

)

χn(u) =

√

2

L
sin

(
2nπu

L

)

,

(3.105)

where n ∈ Z>0 is a positive integer in either case. Note that the
{
φn(u)

}
are even under u→ −uwhereas

the
{
χn(u)

}
are odd, and that φn(±1

2L) = χn(±1
2L) = 0. We will find it convenient to define the energy

unit ε0 ≡ 2π2~2/mL2.

Let’s now write down all the possible wavefunctions for this problem. We’ll find there are basically five
different forms to consider:

17Think of the tower of even and odd states for the one-dimensional particle in a symmetric potential. All even states belong
to the same Γ1 representation, but have different wavefunctions.
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C4v E {r, r3} {r2} {rσ, σr} {σ, σr2}
A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1

B2 1 −1 1 −1 1

E 2 0 −2 0 0

Table 3.2: Character table for the group C4v.

(i) Ψ
(i)
nn(x, y) = φn(x)φn(y) : The energy is E

(i)
nn = 2n2ε0. The wavefunction is invariant under all

group operations, i.e.

Û(r)Ψ = Û(r2)Ψ = Û(rσ)Ψ = Û(σ)Ψ = Ψ , (3.106)

and thus corresponds to the A1 IRREP.

(ii) Ψ
(ii)
nn (x, y) = χn(x)χn(y) : The energy is E

(ii)
nn = 2(n− 1

2)
2ε0. We find

Û(r)Ψ = Û(σ)Ψ = −Ψ , Û(r2)Ψ = Û(rσ)Ψ = Ψ , (3.107)

corresponding to the B1 IRREP.

(iii) Ψ
(iii)
mn,±(x, y) =

1√
2

[
φm(x)φn(y) ± φm(y)φn(x)

]
with m < n. The energy for both states is given by

E
(iii)
mn = (m2 + n2)ε0. Is this a two-dimensional representation? We have

Û(r)Ψ± = Û(rσ)Ψ± = ±Ψ± , Û(r2)Ψ± = Û(σ)Ψ± = Ψ± , (3.108)

which tells us that Ψ+ transforms according to A1 and Ψ− according to B2. So we have two one-
dimensional IRREPs and no sign of the two-dimensional E IRREP yet.

(iv) Ψ
(iv)
mn,±(x, y) =

1√
2

[
χm(x)χn(y)± χm(y)χn(x)

]
with m < n. The energy for both states is given by

E
(iv)
mn =

(
(m− 1

2)
2 + (n− 1

2)
2
)
ε0. We find

Û(r)Ψ± = ∓Ψ± , Û(r2)Ψ± = Ψ± , Û(rσ)Ψ± = ±Ψ± , Û(σ)Ψ± = −Ψ± . (3.109)

which tells us that Ψ+ transforms as B1 according and Ψ− according to A2 . So again two one-
dimensional IRREPs and still no sign of the elusive E.

(v) Ψ
(v)
mn,±(x, y) =

1√
2

[
φm(x)χn(y)± φm(y)χn(x)

]
with m ≤ n. The energy for both states is given by

E
(v)
mn =

(
m2 + (n− 1

2)
2
)
ε0. We find

Û(r)Ψ± = ±Ψ∓ , Û(r2)Ψ± = −Ψ± , Û(rσ)Ψ± = ±Ψ± , Û(σ)Ψ± = −Ψ∓ . (3.110)

At long last, the E representation has shown itself! Note how in this basis,

DE(r) =

(
0 1
−1 0

)

, DE(r2) =

(
−1 0
0 −1

)

, DE(rσ) =

(
1 0
0 −1

)

, DE(σ) =

(
0 −1
−1 0

)

.

(3.111)
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Now suppose we add a perturbation which transforms as the identity IRREP Γ1. For example, we could
take Ĥ = Ĥ0 + V̂ with V̂ (x, y) = λx2y2. According to the Wigner-Eckart theorem, this won’t split any
of the E multiplets, but rather will simply lead to an equal energy shift for both E states. One only need
compute one matrix element, per Eqn. 3.97.

3.3 Appendix : Random True Facts About Linear Algebra

Normal matrices and eigenspectra : Quantum mechanical Hamiltonians can be represented as Hermi-
tian matrices. In elementary school linear algebra class, we all learned that any Hermitian matrix H is
diagonalizable by a unitary transformation, its eigenvalues are real, and eigenvectors corresponding to
different eigenvalues are necessarily orthogonal. In the case of degenerate eigenvalues, their associated
eigenvectors may be chosen to be mutually orthogonal via the Gram-Schmidt process. In the following
discussion, we will assume our matrices are in general complex, but we can of course restrict to the real
case, as is appropriate for real linear dynamical systems.

Any complex square matrix A which satisfies A†A = AA† is called normal. Hermitian matrices are
normal, but so are antihermitian and unitary matrices18. Real symmetric, antisymmetric, and orthogonal
matrices satisfy ATA = AAT. The Schur decomposition theorem guarantees that any n×n matrix A may be
decomposed as A = V TV †, where V ∈ U(n) and T is upper triangular. Now if A is normal, [A,A†] =
V [T, T †]V † = 0, hence T is normal. However, it is easy to show that any normal upper triangular matrix
must be diagonal19, so A = VDV †, which means D = V †AV is the diagonal matrix of eigenvalues of
A. Conversely, if A = VDV † is unitarily equivalent to a diagonal matrix, it is trivial to show that A is
normal. Thus any n×nmatrixA is diagonalizable by a unitary transformation if and only ifA is normal.

There is a real version of Schur decomposition whereby a real matrix B satisfying BTB = BBT may
be decomposed as B = RSRT, where R is a real orthogonal matrix, and S is block upper triangular.
The diagonal blocks of S are either 1 × 1, corresponding to real eigenvalues, or 2 × 2, corresponding
to complex eigenvalues. One eventually concludes that real symmetric matrices have real eigenvalues,
real antisymmetric matrices have pure imaginary (or zero) eigenvalues, and real orthogonal matrices
have unimodular complex eigenvalues.

Now let’s set A = VDV † and consider different classes of matrix A. If A is Hermitian, A = A† immedi-
ately yields D = D†, which says that all the eigenvalues of A must be real. If A† = −A, then D† = −D
and all the eigenvalues are purely imaginary. And if A† = A−1, then D† = D−1 and we conclude that all

the eigenvalues are unimodular, i.e. of the form eiωj . This analysis also tells us that any unitary matrix
U can be written in the form U = exp(iH) for some Hermitian matrix H .

Jordan blocks : What happens when an n×nmatrixA is not normal? In this caseA is not diagonalizable

18There are many examples of normal matrices which are neither Hermitian, antihermitian, nor unitary. For example, any
diagonal matrix with arbitrary complex diagonal entries is normal.

19T †T = TT † says that
∑

j
|Tij |

2 =
∑

j
|Tji|

2 , i.e. the sum of the square moduli of the elements in the ith row is the same as

that for the ith column. Starting with i = 1, the only possible nonzero entry in the first column is T1,1, hence all the remaining
entries in the first row must vanish. Filling in all these zeros, proceed to i = 2. Since we just showed T1,2 = 0, we conclude
that the only possible nonzero entry in the second column is T2,2 , hence all remaining entries in the second row must vanish.
Continuing in this manner, we conclude that T is diagonal if it is both normal and upper triangular.



26 CHAPTER 3. GROUP THEORY AND QUANTUM MECHANICS

by a unitary transformation, and while the sum of the dimensions of its eigenspaces is generically equal
to the matrix dimension dim(A) = n, this is not guaranteed; it may be less than n. For example, consider
the matrix

A =

(
a 1
0 a

)

. (3.112)

The eigenvalues are solutions to det(λI − A) = 0, hence λ = a, but there is only one eigenvector,

ψ =

(
1
0

)

. What is always true for any complex matrix A is that it can be brought to Jordan canonical form

by a similarity transformation J = P−1AP , where P is invertible, and

J =






J (1)

. . .

J (b)




 , (3.113)

where b is the number of Jordan blocks and where each block J (r) is an nr × nr matrix of the form

J (r) =









λr 1

λr
. . .

. . . 1
λr









. (3.114)

Thus each J (r) is tridiagonal, with diagonal elements all given by λr and each element directly above
the diagonal equal to one. Clearly J (r) has only one eigenvalue, λr , and writing the corresponding right

eigenvector as ~R(r), the condition J (r) ~R(r) = λ(r) ~R(r) yields the equations

λr R
(r)
1 +R

(r)
2 = λr R

(r)
1 , λr R

(r)
2 + ψ3 = λr R

(r)
2 . . . λr R

(r)
nr−1 +R

(r)
nr

= λr R
(r)
nr−1 , (3.115)

where nr = dim(J (r)) . These equations entail R
(r)
2 = R

(r)
3 = · · · = R

(r)
nr

= 0 , which says that there is only

one such eigenvector, whose components are R
(r)
j = δj,1. Note that the corresponding left eigenvector

~L(r) then has components L
(r)
j = δj,nr

. If nr > 1 we then have 〈L(r) |R(r) 〉 ≡ ~L(r) · ~R(r) = 0, which
means that the left and right eigenvectors of A which correspond to the Jordan blocks with nr > 1 are
orthogonal. Nota bene : It may be the case that there are degeneracies among the eigenvalues {λr}.

To summarize20, for every general complex n× n matrix A,

• A may be brought to Jordan canonical form by a similarity transformation J = P−1AP , where
J = bdiag

(
J (1), . . . , J (b)

)
is block diagonal, with each (J (r))ij = λr δi,j+ δi,j−1 with dim

(
J (r)

)
= nr,

for r ∈ {1, . . . , b}.

• There are b ≤ n eigenvalues {λ1, . . . , λb} (again, not necessarily all distinct) and b corresponding

eigenvectors
{
~R(1), . . . , ~R(b)

}
. If b = n then the matrix is diagonalizable.

• The dimension n of the matrix A satisfies n = n1 + . . . + nb , i.e. it is the sum of the dimensions of
all its Jordan blocks.

20See https://en.wikipedia.org/wiki/Jordan_normal_form .

https://en.wikipedia.org/wiki/Jordan_normal_form
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• Let λ ∈ {λ1, . . . , λb} be an eigenvalue, and define

tk(λ) = dim ker(A− λ)k , (3.116)

which is the dimension of the null space of the matrix A− λI . Then

⋄ tk(λ) is the number of Jordan blocks corresponding to the eigenvalue λ.

⋄ The number of Jordan blocks of size greater than k is tk+1(λ) − tk(λ). Thus the number of
Jordan blocks of size k for the eigenvalue λ is

Nk(λ) = 2 tk(λ)− tk+1(λ)− tk−1(λ) . (3.117)

Singular value decomposition : Note the difference between the decomposition into Jordan canonical

form and singular value decomposition (SVD), in which we write an m × n matrix A as A = US V †,
where U is m× k, V is n× k (hence V † is k × n), U †U = V †V = Ik×k , and S = diag(s1, . . . , sk) is a k × k
real matrix with k ≤ min(m,n) and each sj > 0. The elements sj are the singular values and the rows of

U and V are the singular vectors. Note that A†A = V S2 V † is n × n and AA† = US2 U † is m×m. If we
define

F (λ) =

k∏

j=1

(
λ− s2j

)
, (3.118)

Then

P (λ) ≡ det(λ−A†A) = λn−kF (λ) , Q(λ) ≡ det(λ−AA†) = λm−kF (λ) . (3.119)

Some comments:

• When A ∈ R is real, then both U and V may be chosen to be real, and we may write A = US V T.

• We may also adopt a convention where U is m×m, V is n× n, and S to be m× n, where only the
first k diagonal elements Sii are the (nonzero and real) singular values. In this case, U †U = Im×m

and V †V = In×n.

• For any square n× n complex matrix A we therefore have two decompositions, via JCF and SVD,
viz.

A = PJP−1 = US V † , (3.120)

where J is the Jordan canonical form of A. When A is normal, k = n and U = V = P , which says
that the two decompositions are equivalent.

Example : As an example highlighting the difference between eigenvalues and singular values, consider

A =





1 0 1
0 1 1
0 0 0



 = RDLT = US V T , (3.121)
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where

LT =





1 −1 0
0 1 1
0 0 1



 , D =





1 0 0
0 1 0
0 0 0



 , R =





1 1 −1
0 1 −1
0 0 1



 (3.122)

and

U =
1√
2





1 −1
1 1
0 0



 , S =

(√
3 0
0 1

)

, V T =
1√
6

(
1 1 2

−
√
3

√
3 0

)

. (3.123)

Note that U and V T are both chosen to be real, which is a consequence of the fact thatA itself is real. One
can check that R is the matrix or right column eigenvectors, LT is the matrix of left row eigenvectors,
and Λ is the matrix of eigenvalues. Thus, the three eigenvalues are

{
λ1, λ2, λ3

}
=

{
1, 1, 0

}
. One also

has LTR = I, i.e. LT = R−1, which says that L
(a)
i R

(b)
i = δab – the row and column eigenvectors satisfy

orthonormality. Thus R−1AR = D and A is diagonalizable by R, which is a consequence of there being
no Jordan blocks. Note that there are only two singular values,

{
s1, s2

}
=

{√
3, 1

}
, and that U has

dimensions 3× 2 while V T has dimensions 2× 3. One can further check that UTU = V TV = I2×2 .

Had we adopted the convention where both U and V are square, we would have

U =
1√
2





1 −1 0
1 1 0

0 0
√
2



 , S =





√
3 0 0
0 1 0
0 0 0



 , V T =
1√
6





1 1 2

−
√
3

√
3 0

−
√
2 −

√
2

√
2



 , (3.124)

for which UTU = V TV = I3×3 . The extra zeroes in the matrix S are padding, and there are only two

singular values,
√
3 and 1.

For this example, both the set of eigenvalues and the set of singular values are distinct. Furthermore,

A†A =





1 0 1
0 1 1
1 1 2



 = V S2 V T , AA† =





2 1 0
1 2 0
0 0 0



 = US2 U † . (3.125)

The singular values ofA are thus the positive square roots of the eigenvalues of the nonnegative definite
Hermitian matrix A†A (or, equivalently, of AA†). In general, the eigenvalues λj of a non-normal matrix
A may not be real, even if A ∈ GL(n,R) is itself real. (In this case the eigenvalues are either real or come
in complex conjugate pairs.) The singular values, however, are always real and positive.

As a second example, consider the matrix

B =

(
1 1
−3 3

)

= RDLT = US V T , (3.126)

where

LT =
i

2
√
2

(
+
√
3 e−iφ −1

−
√
3 e+iφ 1

)

, D =

(
2 + i

√
2 0

0 2− i
√
2

)

, R =

(
1 1√

3 e+iφ
√
3 e−iφ

)

(3.127)

with eiφ = 1√
3

(
1 + i

√
2
)

and

U =

(
1 0
0 1

)

, S =

(
3
√
2 0

0
√
2

)

, V T =
1√
2

(
1 1
−1 1

)

. (3.128)
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Note that the two right eigenvectors form a complex conjugate pair, as do the two left eigenvectors.
This situation pertains for every complex eigenvalue, since if λr ∈ C is an eigenvalue then so is λ∗r .
Again, since B ∈ GL(2,R), the U and V matrices may be chosen real. There are two singular values
{
s1, s2

}
=

{
3
√
2,
√
2
}

. But unlike the matrix A in the previous example, B has complex eigenvalues

λ± = 2± i
√
2, and the matrices LT and R of the left (row) and right (column) eigenvectors are complex.

As in the previous case, LT = R−1, hence R−1BR = D, i.e. B is diagonalized by the matrix R, which is
possible because there are no nontrivial Jordan blocks when it is brought to canonical form.

Selection rules : Suppose [H,A] = 0 where H = H† and A is general. Then in the basis of H eigenstates,
〈n|A|n〉 = 0 if Em 6= En . The proof is elementary. In the eigenbasis of H ,

0 = 〈m | [H,A] |n 〉 = (Em − En) 〈m |A |n 〉 . (3.129)

This result helps us establish that H and A can be simultaneously diagonalized, for expressed in the
eigenbasis ofH , the operatorAmust be block diagonal, where the sizes of each of the blocks correspond
to the degrees of degeneracy in the eigenspectrum of H . But then a separate unitary transformation can
be applied to each of these blocks in order to bring each to diagonal form, without any effect on H .

Degeneracies and nonabelian symmetries : Suppose [H,A] = [H,B] = 0 but [A,B] 6= 0, where H is
a Hamiltonian, and A,B are general operators. A and B might represent different generators of a
nonabelian symmetry, for example, such as the components of the total spin operator S, which sat-
isfy [Sα, Sβ ] = iǫαβγ S

γ . We conclude that the spectrum of H must be degenerate. The reason is that in
the eigenbasis of H , both A and B are block diagonal, with the dimensions of the blocks corresponding
to the degree of degeneracy in the spectum of H . If H had a nondegenerate spectrum, then A and B
would also be diagonal in the H eigenbasis, which would contradict the fact that [A,B] 6= 0. When
degeneracies are present, the A blocks and B blocks occur in the same locations, and cannot in general
be simultaneously diagonalized. So nonabelian symmetries entail degenerate energy eigenvalues. We
will study this in great detail in subsequent chapters.

Polar decomposition : Any matrix A may be decomposed in the form A = HU , where H is Hermitian

and U is unitary. This is reminiscent of writing any complex number z as z = r eiθ. The proof is
surprisingly simple. First, note that the matrix AA† is nonnegative definite. Therefore one can write
AA† = V D2V † whereD is a real diagonal matrix and V is unitary. Now defineH ≡ V DV †, in which case
AA† = H2. This must mean U = H−1A. We just need to check that U is unitary: UU † = H−1AA†H−1 =
H−1H2H−1 = E, so we are done.

Matrix direct product : Given the n × n matrix A and the r × r matrix Θ, the direct product matrix
M ≡ A⊗Θ is defined by its matrix elements Mia,jb = Aij Θab . Multiplication is a snap:

(A⊗Θ)(A′ ⊗Θ′) = AA′ ⊗ΘΘ′ . (3.130)

Expressed as a single matrix, we can write the composite indices ia and jb as µ ≡ (i − 1)r + a and
ν ≡ (j − 1)r+ b. Note µ, ν ∈ {1, . . . , nr} as i, j, a, b range over their allowed values. Thus i, j refer to the
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larger block structure and a, b to the structure within the blocks. The general structure is then

A⊗Θ =










A11 Θ · · · A1n Θ

...
. . .

...

An1Θ · · · AnnΘ










, (3.131)

where each Θ is an r × r matrix.

As an example, consider the matrices

Γ1 = σx ⊗ E , Γ2 = σy ⊗ E , Γ3 = σz ⊗ σx , Γ4 = σz ⊗ σy , Γ5 = σz ⊗ σz . (3.132)

We can express these in 4× 4 form as

Γ1 =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







, Γ2 =







0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0







, Γ3 =







0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0







(3.133)

and

Γ4 =







0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0







, Γ5 =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







. (3.134)

These matrices form a Clifford algebra, defined by the anticommutator {Γa,Γb} = 2δab. Note that for any
Hamiltonian H =

∑

a da Γ
a that H2 =

∑

a d
2
a 1. If H is of rank 2k, then its eigenspectrum consists of two

k-fold degenerate levels with λ = ±|d|.

3.4 Jokes for Chapter Three

I feel I am running out of math/physics-related jokes, and soon I may have to draw upon my inex-
haustible supply of rabbi jokes.

PHILOSOPHER JOKE : Jean-Paul Sartre is sitting in a coffeeshop. A waitress comes by and asks,
”What can I get for you today, Professor Sartre?” ”Coffee. Black. No cream,” comes the reply. A
few minutes later the waitress returns. ”I’m very sorry, Professor, but we are all out of cream,” she
says, ”Can I bring your coffee with no milk instead?”

RABBI JOKE : (Actually this is something of a math riddle appropriate for children and, sadly,
certain undergraduates, but it happens to involve a rabbi.) An old Jew named Shmuel died in the
shtetl and his will gave his estate to his three sons. It specified that the eldest son should get one
half, the middle son one third, and the youngest one ninth. The problem was that Shmuel’s entire
estate consisted of seventeen chickens, and, well, seventeen is a prime number.
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So the sons met to discuss what they should do and the eldest says, ”let’s ask the rabbi - he is very
wise and he will tell us how best to proceed.” So they go to the rabbi, who starts to think and think
and finally he says, ”this is a very difficult problem. But I’ll tell you what. Your father was a very
good man who always helped out at the shul21, and it just so happens that I have an extra chicken
which I am willing to donate to his estate. Now you have eighteen chickens and can execute his
will properly. Zei gezunt!22”

The sons were overjoyed and agreed that the rabbi was indeed wise, and generous as well. So they
divided the eighteen chickens. The eldest got half, or nine chickens. The middle got a third, which
is six. And the youngest got a ninth, which is two. But nine plus six plus two is seventeen, so they
had a chicken left over.

So they gave it back to the rabbi.

21I.e. the local synagogue.
22A Yiddish benediction meaning ”be healthy”.
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