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Chapter 1

Introduction to Groups

1.1 Disclaimer

This is a course on applications of group theory to physics, with a strong bias toward condensed matter
physics, which, after all, is the very best kind of physics. Abstract group theory is a province of math-
ematics, and math books on the subject are filled with formal proofs, often rendered opaque due to the
efficient use of mathematical notation, replete with symbols such as ∩, ⋊, ∃, ⊕, ⊳, ♭, c©, ♠, ♥, ✸, ♣, etc. In
this course I will keep the formal proofs to a minimum, invoking them only when they are particularly
simple or instructive. I will try to make up for it by including some good jokes. If you want to see the
formal proofs, check out some of the texts listed in Chapter 0.

1.2 Why Study Group Theory?

1.2.1 Discrete and continuous symmetries

Group theory – big subject! Our concern here lies in its applications to physics (see §1.1).

Why is group theory important? Because many physical systems possess symmetries, which can be
broadly classified as either continuous or discrete. Examples of continuous symmetries include space
translations and rotations in homogeneous and isotropic systems, Lorentz transformations, internal ro-
tations of quantum mechanical spin and other multicomponent quantum fields such as color in QCD,
etc. Examples of discrete symmetries include parity, charge conjugation, time reversal, permutation sym-
metry in many-body systems, and the discrete remnants of space translations and rotations applicable
to crystalline systems.

In each case, the symmetry operations are represented by individual group elements. Discrete sym-
metries entail discrete groups, which may contain a finite or infinite number of elements1. Continuous

1An example of a finite discrete group is the two-element group consisting of the identity I and space inversion (parity) P ,
otherwise known as Z2. An example of a discrete group containing an infinite number of elements is the integers Z under

1
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Figure 1.1: Western theories of beauty date to the pre-Socratic Greek philosophers (6th - 5th c. BCE),
such as the Pythagoreans, who posited a connection between aesthetic beauty and mathematical prop-
erties of symmetry and proportion. Left: Symmetry in the natural world (aloe vera plant). Center: The
beautiful Rose Window at the Durham Cathedral (originally 15th c.). Right: A non-symmetric image.

symmetries entail continuous (Lie) groups. Lie groups are themselves smooth manifolds endowed with a
group structure. Necessarily, they contain an infinite number (continuum) of elements, and they can be
either compact or noncompact2.

1.2.2 Symmetries in quantum mechanics

In quantum mechanics, symmetries manifest themselves as unitary operators U which commute with the
system Hamiltonian, H . (An important exception which we shall study later is the case of anti-unitary
symmetries, such as time-reversal.) Any operator Θ transforms under the symmetry as Θ′ = U †ΘU .
The simplest example is space inversion, also known as parity, and denoted by the symbol P. One then
has P†r P = −r and P†p P = −p. Clearly P2 = 1, so P† = P−1 = P, i.e. P is Hermitian as well as unitary.

For a single particle Hamiltonian of the form H = p2

2m + V (r) , we have [H, P] = 0 if V (r) = V (−r).
This means that H and P are simultaneously diagonalizable, which means that energy eigenstates may
be chosen to be parity eigenstates. Clearly the eigenvalues of P are ±1.

Now let |n 〉 denote any one-body quantum state, i.e. a vector in Hilbert space. The position space
wavefunction is ψn(r) = 〈 r |n 〉. Since P | r 〉 = | −r 〉, we have that the parity-flipped wavefunction is
given by3 ψ̃n(r) = 〈 r | P |n 〉 = ψn(−r) . If |n 〉 is a parity eigenstate, i.e. if P |n 〉 = ±|n 〉, then we have

ψ̃n(r) = ψn(−r) = ±ψn(r). Furthermore, if |n 〉 and |n′ 〉 are parity eigenstates with eigenvalues σ and
σ′, respectively, then for any even parity (parity-invariant) operator Θe = P†Θe P, we have

〈n |Θe |n′ 〉 = 〈n | P†Θe P |n′ 〉 = σσ′〈n |Θe |n′ 〉 , (1.1)

addition.
2In mathematical parlance, compact means ‘closed and bounded’. An example of a compact Lie group is SU(2), which describes
spin rotation in quantum mechanics. An example of a noncompact Lie group is the Lorentz group, O(3,1).

3Note 〈r | P |n 〉 = 〈−r |n 〉 .
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and therefore if σσ′ = −1, meaning that |n 〉 and |n′ 〉 are states of opposite parity, then 〈n |Θe |n′ 〉 = 0.
This is an example of a selection rule : operators which preserve a symmetry cannot mix states which
transform differently under that symmetry. Another consequence of this analysis is that any odd-parity
operator, for which P†Θo P = −Θo , will only have nonzero matrix elements between opposite parity
states. Thus, if [H, P] = 0, and the eigenstates are all chosen to have definite parity, any perturbation
V = λΘo will result in no energy shifts within first order perturbation theory.

1.3 Formal definition of a discrete group

1.3.1 Group properties

What is a group? A discrete group G consists of distinct elements ga and a group operation called multi-
plication, satisfying the following conditions:

(i) Closure : The product of two group elements is also a group element.

(ii) Associativity : In taking the product of three group elements, it doesn’t matter if you first multiply
the two left ones and then the right one, or first the two right ones and then the left one.

(iii) Identity : There exists a unique identity element, which is the same for both left and right multi-
plication.

(iv) Inverse : Each group element has its own unique inverse, which is both a left and a right inverse4.

Mathy McMathstein says it this way:

(i’) ∀ ga, gb ∈ G, ∃ gc ∈ G s.t. ga gb = gc .

(ii’) ga gb gc = (ga gb) gc = ga (gb gc) ∀ a, b, c.

(iii’) ∃! E ∈ G s.t. gaE = Ega = ga ∀ a.

(iv’) ∀ ga ∈ G, ∃ g−1
a ∈ G s.t. ga g

−1
a = g−1

a ga = E.

These properties hold for continuous groups as well, in which case the group elements g(λ) are labeled
by a continuous parameter. Some remarks:

• If ga gb = gb ga for all a, b, the group is said to be abelian. Otherwise, it is nonabelian.

• For discrete groups, |G| ≡ NG denotes the number of elements in G, which is the order of G. This
may be finite

(
|S3| = 6

)
, finite but ridiculously large

(
|M | ∼ 8 × 1053 for the Monster group

)
, or

infinite
(
Z under addition

)
.

4Tony Zee pithily summarizes this property as “there’s nothing you can do that can’t be undone”. Real life is not like this!
There is no inverse operation applicable to late homework, for example.
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1.3.2 The Cayley table

All the information about any discrete group is provided by its multiplication table (also called a Cayley
table). Our convention for group multiplication tables is given in Tab. 1.1 We shall write the group
elements as {g1, g2, . . . , gNG

}, where g1 ≡ E is always taken to be the identity, and where NG is the

number of elements in the group. Note the following salient features of the Cayley table:

• The rows and columns range over all the symmetry operations (i.e. group elements) g, so that the
entry for row ga and column gb is the result of the combined operation ga · gb ≡ ga gb.

• The identity occurs once in each row and in each column; furthermore ga gb = E means gb ga = E
as well. Thus, each element g has a unique inverse g−1, which is both a left and a right inverse.

• Indeed, each group element occurs precisely once in each row and in each column. If the same
element h were to appear more than once in the gth row, it would mean that there would exist two
distinct elements, ga and gb such that gga = ggb = h. But applying the inverse g−1 on the left says
ga = gb, which contradicts our assumption that these elements are distinct. Such a table is called a
Latin square, i.e. an n × n array of n different symbols, each of which appears exactly once in each
row and column.

If the Cayley table is symmetric, the multiplication operation is commutative. Alas, there is no simple
test to check, from a given Cayley table, whether the multiplication operation is associative, which is
necessary in order for G to be a group. In principle, one must test whether g · (h · k) = (g · h) · k for all
g, h, k ∈ G, which involves verifying |G|3 equalities5.

G g1 g2 g3 g4 · · ·
g1 g1 g2 g3 g4 · · ·
g2 g2 g22 g2 g3 g2 g4 · · ·
g3 g3 g3 g2 g23 g3 g4 · · ·
g4 g4 g4 g2 g4 g3 g24 · · ·
...

...
...

...
...

. . .

Table 1.1: Convention for group multiplication tables. The identity element is E ≡ g1.

1.3.3 Loops and groups

A finite loop6 is a set L consisting of |L| ≡ NL elements plus a binary operation (i.e. multiplication) such
that if ℓ, ℓ′ ∈ L, then each of the equations ℓ ·x = ℓ′ and y ·ℓ = ℓ′ has a unique solution in L. Furthermore,
the loop possesses a unique identity element E such that E · ℓ = ℓ · E = ℓ for all ℓ ∈ L. If we order

5A procedure known as Light’s associativity test can sometimes simplify this tedious task.
6See ”Non-Associative Loops for Holger Bech Nielsen”, https://arxiv.org/pdf/hep-th/0111292.pdf .

https://arxiv.org/pdf/hep-th/0111292.pdf
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the loop elements as
{
ℓ1, ℓ2, . . . , ℓNL

}
, with ℓ1 = E, then the multiplication table for L is a Latin square

whose first row and first column are identical. If the multiplication operation is associative, then the
loop is a group!

It turns out that all loops with |L| ≤ 4 are associative, i.e. they are groups. At order N = 5 there is one
discrete group, Z5 , corresponding to clock arithmetic modulo 5. There are also four non-associative loops.
At order |L| = 6 there are two groups: Z2 × Z3, which is abelian, and C3v

∼= D3, which is nonabelian
and which we shall discuss in detail in §1.3.4 below. There are also 107 non-associative loops. A non-
associative loop may nevertheless be abelian! A particularly interesting and beautiful non-associative
loop is that of the eight element octonions7. In Tabs. 1.2 and 1.3, we present the Cayley tables for two
non-associative loops, one (L5) of order 5 and one (L6) of order 6. In each case the identity element is
denoted as a. Note that within L5 we have (c · d) · e = b · e = c , but c · (d · e) = c · b = e . The Cayley table
for L6 is symmetric, hence the loop L6 is abelian, but (b · c) · d = f · d = c while b · (c · d) = b · b = a , so it
is non-associative.

L5 a b c d e

a a b c d e

b b a d e c

c c e a b d

d d c e a b

e e d b c a

Table 1.2: A non-associative loop of order 5.

L6 a b c d e f

a a b c d e f

b b a f e c d

c c f a b d e

d d e b a f c

e e c d f a b

f f d e c b a

Table 1.3: A non-associative loop of order 6.

1.3.4 The equilateral triangle : C3v and C3

Contemplating the symmetries of the lowly equilateral triangle is an instructive introductory exercise.
Consider the left panel of Fig. 1.2. The equilateral triangle has the following six symmetries:

(i) identity E (ii) rotation by 2π
3 , R (iii) rotation by −2π

3 , W

(iv) reflection σ (v) reflection σ′ (vi) reflection σ′′

Taken together, these symmetry operations constitute a discrete group known as C3v
8. Note that R and

W commute, since they are rotations about the same axis. Indeed, W = R−1 = R2. However, staring at
the figure for a little while, one can deduce that Rσ = σ′′ while σR = σ′ , so R and σ do not commute!
Thus, the group C3v is nonabelian.

To construct the Cayley table of C3v , we must evaluate the binary products of various group operations.
Clearly R2 = W since two 120◦ rotations combine to give a 240◦ rotation. Similarly, W 2 = R, since
rotating twice by 240◦ yields a 480◦ ∼= 120◦ rotation. More attention is required when working out the

7See http://math.ucr.edu/home/baez/octonions/ .
8In the group Cnv , the C stands for “cyclic”, the subscript n refers to the n-fold symmetry axis, and the subscript v signifies
the presence of n reflection planes, each containing that axis.

http://math.ucr.edu/home/baez/octonions/
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Figure 1.2: Left: The symmetry group C3v of the equilateral triangle contains six elements, which are
the identity E, counterclockwise and clockwise 120◦ rotations R and W , and three reflections σ, σ′, and
σ′′. Right: The black regions break the reflection symmetries, resulting in a lower symmetry group C3,
which contains only the two rotations and the identity.

products of the rotations {R,W} and the mirrors {σ, σ′, σ′′}. For example, consider the product Rσ.
First applying the σ operation, the labels of the vertices are permuted from {1, 2, 3}, starting at the top
and proceeding counterclockwise, to {1, 3, 2}. Rotating by 120◦ results in the labeling {2, 1, 3}, which is
also obtained by applying the σ′′ operation to the labels {1, 2, 3}. Reasoning thusly, one obtains the full
Cayley table for C3v , given in Tab. 1.4 below.

C3v E R W σ σ′ σ′′

E E R W σ σ′ σ′′

R R W E σ′′ σ σ′

W W E R σ′ σ′′ σ

σ σ σ′ σ′′ E R W

σ′ σ′ σ′′ σ W E R

σ′′ σ′′ σ σ′ R W E

Table 1.4: Multiplication table for the group C3v.

Group representations : first encounter

We can represent the various symmetry operations via a map D(2) : C3v → O(2) from C3v to the space of
2× 2 orthogonal matrices:

D(2)(E) =

(
1 0
0 1

)
D(2)(R) =

1

2

(
−1 −

√
3√

3 −1

)
D(2)(W ) =

1

2

(
−1

√
3

−
√
3 −1

)
(1.2)
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Figure 1.3: A function f : X → Y maps a set X (the domain) to a set Y (the codomain). The range of
a function f is the set f(X). (a) Are you f’ing kidding me?! This is not a function. (b) This function
is injective (one-to-one), i.e. f(x) 6= f(x′) whenever x 6= x′. (c) This function is surjective (onto), i.e.
f(X) = Y . (d) This function is bijective (one-to-one and onto).

and

D(2)(σ) =

(
−1 0
0 1

)
D(2)(σ′) =

1

2

(
1

√
3√

3 −1

)
D(2)(σ′′) =

1

2

(
1 −

√
3

−
√
3 −1

)
. (1.3)

Here the superscript (2) denotes the fact that our representation is in terms of two-dimensional matrices.
One can check that D(2)(g)D(2)(g′) = D(2)(gg′) for all g and g′. Restricted to this subset of O(2), the
mapping D(2) is bijective (i.e. one-to-one and onto), which means that D(2)(C3v) is a faithful representation
of our group C3v. See Fig. 1.3 for a reminder of the meanings of the terms injective, surjective, and
bijective.

Formally, a representation of a group G on a vector space V over a field F is a group homomorphism ρ
from G to GL(V), the general linear group on V , i.e.

ϕ : G→ GL(V) (1.4)

such that ϕ(ga gb) = ϕ(ga)ϕ(gb). The vector space V is then called a G-module. If the module V has
a nontrivial invariant proper subspace, the representation is said to be reducible. When V is of finite
dimension n ∈ Z+ , we may identify GL(V) with GL(n,F), which is the group of invertible n×nmatrices
on F. Typically the field F is the real or complex numbers under addition and multiplication. In the case
of D(2)(C3v), the vector space is V = R

2, the field is R, and n = 2.

1.3.5 Symmetry breaking

Breaking C3v to C3

Consider now the right panel of Fig. 1.2. The figure is still fully symmetric under the operations
{E,R,W}, but no longer is symmetric under any of the reflections {σ, σ′, σ′′}. The remaining sym-
metry group is denoted C3, and consists only of the identity and the two rotations, since the reflection
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symmetries are broken. This corresponds to restricting ourselves to the upper left 3×3 block of Tab. 1.4,
which satisfies all the desiderata for a multiplication table of a group with three elements. One says that
C3v has been broken down to its subgroup C3. Note that the cyclic group C3 is equivalent to modulo 3
arithmetic, i.e. C3

∼= Z3 .

Upon inspection of Tab. 1.4, it is apparent that C3v has other subgroups. For example, the elements
{E, σ} form a closed set under multiplication, with E2 = σ2 = E and Eσ = σE = σ. This corresponds
to the group Z2 (equivalent to C2). What is special about the C3 subgroup {E,R,W} is that it is a normal
(or invariant) subgroup. More on this in §1.4 below.

Spontaneous symmetry breaking

In quantum mechanics, as we shall see, the eigenstates of a Hamiltonian H0 which commutes with all
the generators of a symmetry group G may be classified according to the representations of that group.
Typically this entails the appearance of degeneracies in the eigenspectrum, with degenerate states trans-
forming into each other under the group operations. Adding a perturbation V to the Hamiltonian which
breaks G down to a subgroup H will accordingly split these degeneracies, and the new multiplets of
H = H0 + V are characterized by representations of the lower symmetry group H .

In quantum field theory, as a consequence of the infinite number of degrees of freedom, symmetries may
be spontaneously broken. This means that even if the Hamiltonian H (or action S) for the field theory is
invariant under a group G of symmetry transformations, the ground state may not be invariant under
the full symmetry group G. The presence or absence of spontaneous symmetry breaking (SSB), and its
detailed manifestations, will in general depend on the couplings, or the temperature in the case of quan-
tum statistical mechanics. SSB is usually associated with the presence of a local order parameter which
transforms nontrivially under some group operations, and whose whose quantum statistical average
vanishes in a fully symmetric phase, but takes nonzero values in symmetry-broken phase9. The parade
example is the Ising model,H = −∑i<j Jij σi σj , where each σi = ±1, the subscript i indexes a physical
location in space, such as a site Ri on a particular lattice. The model is explicitly Z2 symmetric under
σi → εσi for all i, where ε ∈ {+1,−1}, yet if the interaction matrix Jij = J(Ri − Rj) is short-ranged
and the space dimension d is greater than one, there is a critical temperature Tc below which SSB sets in,
and the system develops a spontaneous magnetization φ = 〈σi〉. You know how in quantum mechan-
ics, the eigenstates of a particle moving in one-dimensional double-well potential V (x) = V (−x) can
be classified by their parity eigenvalues, and the lowest two energy states are respectively symmetric
(P = +1) and antisymmetric (P = −1) , and are delocalized among both wells. For a quantum field
theory, however, with (Euclidean) Lagrangian density L

E
= 1

2(∇φ)2 + V (φ), for d > 1 and T < Tc ,
the system actually picks the left or the right well, so that 〈φ(r)〉 6= 0. Another example is the sponta-
neously broken O(2) invariance of superfluids, where the boson annihilation operator ψ(r) develops a
spontaneous average

〈
ψ(r)

〉
=

√
n0 e

iθ, where n0 is the condensate density and θ the condensate phase.

Truth be told, the above description is a bit of a swindle. In the ferromagnetic (Jij > 0) Ising model, for
example, at T = 0, there are still two ground states, |⇑ 〉 ≡ |↑↑↑ · · · 〉 and |⇓ 〉 ≡ |↓↓↓ · · · 〉 . The (ergodic)
zero temperature density matrix is ρ0 = 1

2 |⇑ 〉〈 ⇑| + 1
2 |⇓ 〉〈 ⇓| , and therefore 〈σi〉 = Tr

(
ρ0 σi

)
= 0. The

9While SSB is generally associated with the existence of a phase transition, not all phase transitions involve SSB. Exceptions
include topological phases, which have no local order parameter.
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order parameter apparently has vanished. WTF?! There are at least two compelling ways to resolve this
seeming conundrum:

(a) First, rather than defining the order parameter of the Ising model, for example, to be the ex-
pected value m = 〈σi〉 of the local spin10, consider instead the behavior of the correlation function
Cij = 〈σi σj〉 in the limit dij = |Ri − Rj | → ∞ . In a disordered phase, there is no correla-
tion between infinitely far separated spins, hence limdij→∞Cij = 0 . In the ordered phase, this is
no longer true, and we define the spontaneous magnetization m from the long distance correlator:
m2 ≡ limdij→∞〈σi σj〉 . In this formulation, SSB is associated with the emergence of long-ranged

order in the correlators of operators which transform nontrivially under the symmetry group.

(ii) Second, we could impose an external field which explicitly breaks the symmetry, such as a Zeeman
termH ′ = −h∑i σi in the Ising model. We now compute the magnetization (per site)m(T, h, V ) =
〈σi〉 as a function of temperature T , the external field h, and the volume V of our system. The order
parameter m(T ) in zero field is then defined as

m(T ) = lim
h→0

lim
V→∞

m(T, h, V ) . (1.5)

The order of limits here is crucially important. The thermodynamic limit V → ∞ is taken first,
which means that the energy difference between |⇑ 〉 and |⇓ 〉, being proportional to hV , diverges,
thus infinitely suppressing the |⇓ 〉 state if h > 0 (and the |⇑ 〉 state if h < 0). The magnitude of the
order parameter will be independent on the way in which we take h→ 0, but its sign will depend
on whether h → 0+ or h → 0−, with sgn(m) = sgn(h). Physically, the direction in which a system
orders can be decided by the presence of small stray fields or impurities. An illustration of how
this works in the case of ideal Bose gas condensation is provided in the appendix §1.6 below.

Note that in both formulations, SSB is necessarily associated with the existence of a local operator Oi

which is identified as the order parameter field. In (i) the correlations
〈
Oi Oj

〉
exhibit long-ranged order

in the symmetry-broken phase. In (ii) Oi is the operator to which the external field hi couples.

1.3.6 The dihedral group Dn

In the mathematics literature, the symmetry group of the planar n-gon is called the dihedral group11, Dn.
Elements of Dn act on two-dimensional space as (i) rotations about a central point by multiples of 2π/n
and (ii) reflections in any of n lines each containing the central point, and oriented at multiples of π/n
from some fiducial axis. Dn thus contains 2n elements. If we denote by r the group element which
rotates (counterclockwise, say) by 2π/n, and we denote by σ any one of the mirror symmetries of the
n-gon, then the following are True Facts: (i) rn = 1, (ii) σ2 = 1, and (iii) σrσ = r−1. The first two
are obvious. The third is also obvious after a moment’s thought: by reflecting, rotating, and reflecting
again, the sense of rotation is reversed. One says that r and σ are the generators of Dn, and the three
True Facts are relations satisfied by the generators. Below in §1.4.6, we shall discuss how the full group
multiplication table, which can be quite unwieldy for groups with many elements, can be replaced by a

10We assume translational invariance, which means 〈σi〉 is independent of the site index i.
11The word dihedral means “two faces” and probably has its origins in Greek political rhetoric.
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group presentation, denoted 〈 G |R 〉, where G are the generators and R the relations. Thus, the presentation
for Dn is 〈 r , σ | rn = 1 , σ2 = 1 , σrσ = r−1 〉. Dn’s 2n elements then nicely divide into two subsets:
{E , r , . . . , rn−1} and {σ , σr , . . . , σrn−1}. The first of these is itself the group Cn

∼= Zn.

Apologia pro vita mea : Dn versus Cnv

What is the difference betweenDn and Cnv? As we’ve just definedDn above, it is identical to Cnv. Each
of the reflections is an improper rotation, i.e. it is represented by a 2 × 2 orthogonal matrix whose deter-
minant is −1. According to crystallographers, however, the definition of Dn is the group of symmetry
operations consisting of a single n-fold axis plus n equally splayed twofold axes each perpendicular to
the n-fold axis. In other words, Dn in three space dimensions is a subgroup of SO(3), and as such it
involves only proper rotations. Could anything be more awful?12 We will revisit the distinction when we
discuss crystallographic point groups, but at the level of group theory this is all a tempest in a teapot,
because Dn and Cnv are isomorphic – their elements may be placed in one-to-one correspondence, and
their multiplication tables are the same. One way to think about it is to take the six 2×2 matrices D(2)(g)
faithfully representing the elements of C3v and add a third row and column, padding the additional
entries with zeroes except in the lower right (3, 3) corner, where we place a 1. Clearly the multiplication
table is the same. But we could also choose to place a 1 in the (3, 3) slot for g ∈ {E,R,W}, and a (−1)
there for g ∈ {σ, σ′, σ′′}. The multiplication table remains the same! The representation is still faithful!
And now each of our six 3× 3 matrices has determinant +1. So let’s all just chill and accept that Cnv is a
perfectly acceptable notation for the symmetries of the planar n-gon, as our crystallographer forebears
have wisely decreed13.

1.3.7 The permutation group Sn

A permutation of the symbols {1, 2, . . . , n} is a rearrangement {σ1, σ2, . . . , σn} of those same symbols,
commonly denoted by

σ ≡
(

1 2 3 · · · n
σ(1) σ(2) σ(3) · · · σ(n)

)
. (1.6)

The meaning of the above notation is the following. We are to imagine an ordered set of n boxes, each
of which contains an object14. Applying the operation σ means that the contents of box 1 are placed in
box σ(1), the contents of box 2 are placed in box σ(2), etc. The inverse operation is given by

σ−1 =

(
σ(1) σ(2) σ(3) · · · σ(n)
1 2 3 · · · n

)
, (1.7)

12Well, of course it could. Cancer, for example.
13Crystallography is a subset of solid state physics, and solid state physics is a subset of condensed matter physics. And

condensed matter physics is the very best kind of physics, as we pointed out in §1.1.
14The objects are arbitrary, and don’t necessarily have to be distinct themselves. Some boxes could contain nothing at all.

Others might contain a magnificent present for your group theory instructor.
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and the rule for composition (multiplication) of permutations is then

µσ =

(
1 2 · · · n

µ(1) µ(2) · · · µ(n)

)(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

=

(
1 2 · · · n

µ
(
σ(1)

)
µ
(
σ(2)

)
· · · µ

(
σ(n)

)
)

,

(1.8)

and thus the initial contents of box k wind up in box µ
(
σ(k)

)
. These operations form a discrete group,

since the composition of two rearrangements is another rearrangement, and since, as anyone who has
rearranged furniture to satisfy the whims of a fussy spouse can attest, you can always “just put it back
the way it was”, i.e. each element has its inverse. This group of operations is known as the permutation
group (or symmetric group), and is abbreviated Sn.

Clearly Sn has n! elements, so the size of the multiplication table is n!×n! . Furthermore, we can represent
each element σ ∈ Sn as an n×nmatrix consisting of zeros and ones, such that

[
D(n)(σ)

]
ij
= 1 if i = σ(j)

and 0 otherwise. This generates the desired permutation when acting on the column vector v whose
transpose is vT = (1 2 3 · · · n).

We will study Sn in more detail below (see §1.4.3), but for now let’s consider the case n = 3, which is
the permutation group for three objects. Consulting the left panel of Fig. 1.2 once more, we see to each
element of C3v there corresponds a unique element of S3:

E =

(
1 2 3
1 2 3

)
R =

(
1 2 3
2 3 1

)
W =

(
1 2 3
3 1 2

)

(1.9)

σ =

(
1 2 3
1 3 2

)
σ′ =

(
1 2 3
3 2 1

)
σ′′ =

(
1 2 3
2 1 3

)
.

Note we can write R = (123), W = (132), σ = (23), σ′ = (13), and σ′′ = (12), using the cycle notation.
The above relations constitute a bijection between elements ofC3v and elements of S3. The multiplication
tables therefore are the same. Thus, in essence, S3 is C3v. In mathematical notation, we write S3

∼= C3v ,
where the symbol ∼= denotes group isomorphism.

We mentioned above how Sn has a representation in terms of n × n matrices. We may write the 3 × 3
matrices D(3)(g) for S3 as

D(3)(E) =



1 0 0
0 1 0
0 0 1


 D(3)(R) =



0 0 1
1 0 0
0 1 0


 D(3)(W ) =



0 1 0
0 0 1
1 0 0




(1.10)

D(3)(σ) =



1 0 0
0 0 1
0 1 0


 D(3)(σ′) =



0 0 1
0 1 0
1 0 0


 D(3)(σ′′) =



0 1 0
1 0 0
0 0 1


 .

One can check that these matrices yield the same multiplication table as for S3
∼= C3v . Thus, we have thus

far obtained two faithful representations of this group, one two-dimensional and one three-dimensional.
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Remember the interpretation that the permutation σ places the former contents of box j into box σ(j)
for all j. We can arrange these boxes in a column vector of length n. If in our n = 3 case we start with ♣
in box 1, ✶ in box 2, and ✵ in box 3, application of the element R results in



0 0 1
1 0 0
0 1 0





♣
✶

✵


 =



✵

♣
✶


 , (1.11)

and now we have ♣ in box 2, ✶ in box 3, and ✵ in box 1.

1.3.8 Our friend, SU(2)

SU(2) is an example of a continuous group known as a Lie group. We shall introduce Lie groups more
thoroughly in §1.5 below. For the moment, recall that a matrix U ∈ U(2) is a 2×2 complex-valued matrix
which satisfies U † = U−1, i.e. U †U = E, where E is the identity matrix. This entails |detU | = 1, and
requiring U ∈ SU(2) imposes the additional constraint detU = 1. Now let us parameterize U , initially
in terms of four complex numbers, and examine the matrices U † and U−1:

U =

(
w x
y z

)
⇒ U † =

(
w∗ y∗

x∗ z∗

)
, U−1 =

1

detU

(
z −x
−y w

)
. (1.12)

Since detU = 1, we conclude z = w∗ and y = −x∗, hence we may parameterize all matrices in SU(2) in
terms of two complex numbers, w ∈ C and x ∈ C, viz.

U =

(
w x

−x∗ w∗

)
, U−1 = U † =

(
w∗ −x
x∗ w

)
(1.13)

and subject to the constraint
detU = |w|2 + |x|2 = 1 . (1.14)

Thus, SU(2) is topologically equivalent to the 3-sphere S3 sitting inside C
2 ∼= R

4.

We can check the closure:

U1U2 =

(
w1 x1
−x∗1 w∗

1

)(
w2 x2
−x∗2 w∗

2

)
=

(
w1w2 − x1x

∗
2 w1x2 + x1w

∗
2

−w∗
1x

∗
2 − x∗1w2 w∗

1w
∗
2 − x∗1x2

)
. (1.15)

Thus, U1U2 is of the appropriate form, provided its determinant is indeed unity. We have

det (U1U2) = |w1w2 − x1x
∗
2|2 + |w1x2 + x1w

∗
2|2

= |w1|2 |w2|2 + |x1|2 |x2|2 + |w1|2 |x2|2 + |x1|2 |w2|2

=
(
|w1|2 + |x1|2

)(
|w2|2 + |x2|2

)
= detU1 detU2 = 1 ,

(1.16)

and so closure is verified. Of course, we knew in advance this would work out, i.e. that determinant of
a product is the product of the determinants.

Another useful parameterization of SU(2) is in terms of the Pauli matrices:

g(α, n̂) ≡ exp
(
− i

2 α n̂ · σ
)
= cos α

2 − i sin α
2 n̂ · σ , (1.17)
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where n̂ is a three-dimensional unit vector and where α ∈ [0, 2π). The inverse operation is given by
g−1(α, n̂) = exp

(
i
2 α n̂ ·σ

)
. Recall that g(α, n̂) rotates a spinor by an angle α about the n̂ axis in internal

spin space. Note that g(2π, n̂) = −1, so rotation by 2π about any axis is equivalent to multiplication by
−1. We shall comment more fully on this in future chapters. Writing the unit vector n̂ in terms of a polar
angle θ and azimuthal angle φ, note that

w = cos α
2 − i sin α

2 cos θ , x = −i sin α
2 sin θ e

−iφ . (1.18)

and thus
(
Reω, Imω,Re x, Im x

)
is a real four-component unit vector lying on S3.

We already know that it must work out, but it is somewhat instructive to verify closure in this parame-
terization. This means that g(α, n̂) g(β, m̂) = g(γ, k̂) for some angle γ and unit vector k̂. We can evaluate
the product explicitly:

g(α, n̂) g(β, m̂) =
(
cos α

2 − i sin α
2 n̂ · σ

)(
cos β

2 − i sin β
2 m̂ · σ

)
(1.19)

= cos α
2 cos

β
2 − i

(
sin α

2 cos β
2 n̂+ cos α

2 sin
β
2 m̂

)
· σ − sin α

2 sin β
2 (n̂ · σ)(m̂ · σ)

=
(
cos α

2 cos
β
2 − sin α

2 sin
β
2 n̂ · m̂

)

− i
(
sin α

2 cos β
2 n̂+ cos α

2 sin β
2 m̂+ sin α

2 sin β
2 n̂× m̂

)
· σ ,

where we have invoked σασβ = δαβ + i ǫαβγ σ
γ . We therefore have

cos γ
2 = cos α

2 cos
β
2 − sin α

2 sin
β
2 n̂ · m̂

sin γ
2 =

∣∣ sin α
2 cos β

2 m̂+ cos α
2 sin β

2 n̂+ sin α
2 sin β

2 n̂× m̂
∣∣

=
√

1
2(1− cosα cosβ) + 1

2 sinα sin β n̂ · m̂+ 1
4 (1− cosα)(1 − cos β)

[
1− (n̂ · m̂)2

]
,

(1.20)

from which one verifies cos2
(γ
2

)
+ sin2

(γ
2

)
= 1. The vector k̂ is then given by

k̂ =

sin α
2 cos β

2 m̂+ cos α
2 sin β

2 n̂+ sin α
2 sin β

2 n̂× m̂

∣∣ sin α
2 cos β

2 m̂+ cos α
2 sin β

2 n̂+ sin α
2 sin β

2 n̂× m̂
∣∣

(1.21)

and the angle γ by

γ = 2cos−1
(
cos α

2 cos
β
2 − sin α

2 sin
β
2 n̂ · m̂

)
(1.22)

with γ ∈ [0, 2π). We see that
[
g(α, n̂) , g(β, m̂)

]
= 0 if n̂ × m̂ = 0, i.e. if the two rotations are about the

same axis.
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1.4 Aspects of Discrete Groups

1.4.1 Basic features of discrete groups

Here we articulate a number of key concepts in the theory of discrete groups.

GROUP HOMOMORPHISM : A group homomorphism is a map φ : G 7→ G′ which respects multiplication,
i.e. φ(ga)φ(gb) = φ(ga gb), where ga,b ∈ G and φ(ga,b) ∈ G′. If φ is bijective (one-to-one and onto), it is an

isomorphism, and we write G ∼= G′. This means that G and G′ are the same group. The maps D(2)(C3v) and
D(3)(C3v) discussed above in §1.3.4 and §1.3.7 are isomorphisms.

The kernel of a homomorphism φ is the set of elements in G which get mapped to the identity in G′,
whereas the image of φ is the set of elements in G′ which have a pre-image in G . Thus15,

ker(φ) =
{
g ∈ G

∣∣φ(g) = E′} , im(φ) =
{
φ(g)

∣∣ g ∈ G
}

. (1.23)

As an example, consider the homomorphism which maps C3v to Z2 , where φ(E) = φ(R) = φ(W ) = +1
and φ(σ) = φ(σ′) = φ(σ′′) = −1. Then ker(φ) =

{
E,R,W

}
. Consider next the map D(2) : C3v 7→ O(2) in

Eqn. 1.2. Clearly, not every element in O(2) has a preimage in C3v , as O(2) is a continuous group with
an infinite number of elements! im

(
D(2)

)
is then the six matrices defined in Eqn. 1.2.

REARRANGEMENT THEOREM : Let the set of group elements be
{
E, g2, g3 , . . . , gN

}
, where N = |G|.

Call this particular ordering the sequence S1. Then for any ga ∈ G, the sequenceS2 =
{
gaE, ga g2 , . . . , ga gN

}

contains every element in G.

The proof is elementary. First note that each element occurs in S2 at least once, since for any b one has
g−1
a gb ∈ G, hence ga

(
g−1
a gb

)
= gb is a member of S2. This is all we need to show, since S1 and S2 contain

the same number N of elements, and every element in S1 is contained in S2. Therefore S2 is merely a
rearrangement of S1.16

SUBGROUPS : A collectionH of elements {hj} is called a subgroup ofG if each hj ∈ G and ifH itself forms
a group under the same multiplication law. One expresses this as H ⊂ G. Some examples: C3 ⊂ C3v ,
SO(2) ⊂ SO(3) , Sn ⊂ Sn′ if n < n′. Note Z2 ⊂ Z4 but Z2 6⊂ Z5 (more on this below)17. The identity
element {E} always forms its own (trivial) subgroup18.

COSETS AND LAGRANGE’S THEOREM : If G is of finite order, and H ⊂ G, then M ≡ |H| is a divisor
of N ≡ |G|. The proof is somewhat instructive. Consider some ordering

{
E, g2, g2 , . . . , gN

}
of all the

elements ofG and pick the first element in this set which is not a member ofH . Call this element g. Then
form the left coset gH ≡

{
gE, g h2 , . . . , g hM

}
. Note that gH is not a group because it cannot contain the

identity19. Note also that gH contains M unique elements, none of which is a member of H . To see this,

15Be aware, in my notation, that im means ’image’, whereas Im means ’imaginary part’.
16Just to put a fine point on it, suppose there is a repeating element in S2 , i.e. suppose ga gb = ga gc for b 6= c . Then applying
g−1
a on the left, we have gb = gc , which is a contradiction.

17Recall Zn, the group of “clock arithmetic base n”, is the same group as Cn , i.e. n-fold rotations about a single axis, or the set
{

e2πij/n
∣

∣ j ∈ {0, 1, . . . , n− 1}
}

under complex multiplication.
18If you do not understand why, please kill yourself .
19By assumption g /∈ H , so g 6= h−1

j for all j, meaning ghj 6= E for all j.
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first assume ghj = ghk for some distinct j and k (with h0 = E). Applying g−1 on the left yields hj = hk,

which is a contradiction. Next, assume ghj = hk. This means g = h−1
j hk, which is again a contradiction

since H is a group and therefore h−1
j hk ∈ H , but by assumption g /∈ H . Now take the first element from

G which is neither a member of H nor of gH , and call this g′. We form the corresponding coset g′H . By
the same arguments, g′H contains M distinct elements, none of which appears in H . But is g′H distinct
from gH? Indeed it is, for if ghj = g′hk for some j and k, then g′ = ghjh

−1
k ∈ gH , since hjh

−1
k ∈ H . But

this contradicts our assumption that g′ /∈ gH . We iterate this procedure, forming g′′H , etc. Since G is of
finite order, this business must eventually end, say after the construction of l such cosets. But then we
have managed to divide the entire N elements of G into l+1 sets, each of size M (H plus its l iteratively
constructed cosets). We then say that H is a subgroup of index l + 1. QED

Thus, Z2 6⊂ Z5 , and furthermore no group of prime order can have a nontrivial subgroup.

ABELIAN SUBGROUPS : Let G be a finite discrete group. Then for any g ∈ G, there exists n > 0
such that gn = E (prove it!). The smallest such n is called the order of the element g. Therefore the set{
E, g, g2 , . . . , gn−1

}
constitutes an abelian subgroup of G, itself of order n. For example,

{
E, σ

}
⊂ C3v is

the abelian subgroup Z2.
{
E,R,W = R2

}
⊂ C3v is the abelian subgroup C3.

CENTER OF A GROUP : The center Z(G) of a groupG is the set of elements which commute with all other
elements. I.e.

Z(G) =
{
z ∈ G

∣∣ zg = gz ∀g ∈ G
}

. (1.24)

Clearly Z(G) ⊂ G. The center of any abelian groupG isG itself. For the dihedral groupsDn, the content
of the center depends on whether n is even or odd. One has Z(D2k+1)

∼= {E} and Z(D2k)
∼= {E,Rk} ,

where R rotates by π/k about the central axis. I.e. Z(D2k)
∼= Z2 .

CENTRALIZER AND NORMALIZER : The centralizer CG(z) of a group element z ∈ G is the set of all
elements of G which commute with z , i.e. CG(z) =

{
g ∈ G

∣∣ gz = zg
}

. The centralizer of a subgroup
H ⊂ G is the set of all elements of G which commute with every element of H . Clearly the centralizer
of any element or of any subgroup will contain Z(G), the center of the group.

The normalizer of a subgroup H ⊂ G, denoted NG(H), is the set of all g ∈ G such that g−1Hg = H ,
which is equivalent to gH = Hg. Note that CG(H) ⊆ NG(H), because g ∈ CG(H) requires gh = hg for
all h ∈ H , but g ∈ N (G) satisfies the weaker requirement that for all h ∈ H , there exists h′ ∈ H with
gh = h′g.

DIRECT PRODUCTS : Given two groupsG andH , one may construct the product group F = G×H , whose
elements are ordered pairs (g, h) where g ∈ G and h ∈ H . Multiplication in the product group is given
by the natural extension (g, h)(g′, h′) = (gg′, hh′). Note |F | = |G| · |H|.

CONJUGACY : Two elements g and g′ are said to be conjugate to each other if ∃ f ∈ G such that g′ = f−1gf .
This has odors of the similarity transformation from linear algebra. Note that if g is conjugate to g′

and g′ is conjugate to g′′, then ∃ f, h such that g′ = f−1gf and g′′ = h−1g′h, from which we derive
g′′ = (hf)−1g(fh), i.e. g and g′′ are also conjugate. Thus, conjugacy is transitive.

The set of distinct elements
{
f−1gf

∣∣ f ∈ G
}

is called the conjugacy class (or equivalency class) of the
element g. Note that g0 ≡ E is always in its own conjugacy class, with no other elements. Similarly, in
abelian groups, each element is its own class. For C3v there are three conjugacy classes:

{
E
}

,
{
R,W

}
,
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and
{
σ, σ′, σ′′

}
. All elements in a given conjugacy class have the same order, for if gn = E, then clearly(

f−1gf
)n

= f−1Ef = E.

NORMAL (INVARIANT) SUBGROUPS : A subgroup H ⊂ G is called a normal (or invariant) subgroup if
g−1Hg = H for all g ∈ G. Thus, any normal subgroup must be expressible as the union of some
conjugacy classes. For example, C3 ⊂ C3v is a normal subgroup, and the union of conjugacy classes {E}
and {R,W}. But Z2 ⊂ C3v consisting of (E, σ) is not, because W−1σW = σ′. Instead of writing “H is an
invariant subgroup of G,” Mathy McMathstein writes H ⊳ G. Note that if F = G ×H , then G ⊳ F and
H ⊳ F .

SIMPLE GROUP : Any group G which contains no invariant subgroups is said to be simple. Tony Zee
explains this beautifully. He says that we’d like to be able to articulate a notion of simplicity, mean-
ing that a group can’t be broken up into smaller groups. One might think we should then demand
that G have no nontrivial subgroups20 at all in order for it to be simple. Alas, as Zee points out,
“subgroups are a dime a dozen”. Indeed, as we’ve already seen, one can form an abelian subgroup{
E, g, g2 , . . . , gn−1

}
, where n is the order of g, starting with any group element. But while you find

subgroups everywhere, invariant subgroups are quite special. Clearly any group of prime order is sim-
ple. So are the alternating groups21 An for n > 4. The classification of all finite simple groups has
been a relatively recent triumph in mathematics22. Other examples of finite simple groups include the
classical and exceptional Chevalley groups, the Mathieu groups, the McLaughlin group23, the Baby
Monster group, with 4154781481226426191177580544000000 elements, and the Monster group24, which
has 808017424794512875886459904961710757005754368000000000 elements25.

COSETS AND FACTOR GROUPS : We have already introduced the concept of a left coset, gH , formed by
multiplying each element of a subgroupH ⊂ G on the left by a given element g ∈ G. (Of course, one can
just as well define the right cosets ofH , i.e. {Hg}.) Consider now the left cosets of an invariant subgroup
H ⊳ G. Now here’s something cool and mathy: cosets can be multiplied. The result is rather simple:

(gahm)(gbhn) = ga gb (g
−1
b hm gb)hn ≡ ga gb hl hn , (1.25)

where hl ≡ g−1
b hm gb ∈ H , since H is an invariant subgroup. Thus, (gaH)(gbH) = (ga gb)H . This means

the left cosets {gH} themselves form a group under multiplication. This group is called the quotient
group, G/H . Note that |G/H| = |G|/|H| , because there are |H| elements in each coset, and therefore
there must be |G|/|H| cosets in total. In general, the quotient group is not a normal subgroup of G.
Example: C3v/C3 = Z2.

COMMUTATOR SUBGROUP : Recall the algebraic notion of the commutator [X,Y ] = XY − Y X. For
group operations, the commutator

〈
•, •
〉

is defined as
〈
g, h
〉
= g−1h−1gh . (1.26)

20I.e. no subgroups other than the identity and G itself.
21In §1.4.3 we will learn that An is the subgroup consisting of all even permutations in Sn.
22See https://en.wikipedia.org/wiki/List_of_finite_simple_groups
23See e.g. https://www.youtube.com/watch?v=mx9Ue9XLGW8 . I always thought the McLaughlin group had five members, but

Wikipedia says it has 898128000.
24The Monster group is the largest of the sporadic simple groups.
25If, as a summer student project, one endeavored to associate each atom contained in planet earth with a unique element of

the Monster group, one would eventually run out of atoms.

https://en.wikipedia.org/wiki/List_of_finite_simple_groups
https://www.youtube.com/watch?v=mx9Ue9XLGW8
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The inverse of this operation is
〈
g, h
〉−1

=
〈
h, g
〉
. Note that if gh = hg, then

〈
g, h
〉
= E. Also note that

upon conjugation,

s−1
〈
g, h
〉
s =

〈
s−1gs, s−1hs

〉
. (1.27)

Now the product of two commutators under group multiplication is not in general another commutator.
However, we can use the commutators

〈
ga, gb

〉
to generate a closed set under group multiplication, i.e.

〈
G,G

〉
=
{〈
ga

1
, ga

2

〉〈
ga

3
, ga

4

〉
· · ·
〈
ga

2n−1
, ga

2n

〉 ∣∣∣n ∈ N, gak
∈ G ∀ k

}
(1.28)

Clearly
〈
G,G

〉
satisfies all the axioms for a group, and is a subgroup ofG. We call

〈
G,G

〉
the commutator

(or derived) subgroup of G. And because the set of commutators is closed under conjugation,
〈
G,G

〉
is

an invariant subgroup of G :
〈
G,G

〉
⊳ G. Some examples:

(i)
〈
Sn, Sn

〉 ∼= An , the group of even permutations (see §1.4.3 below).

(ii)
〈
An, An

〉 ∼= An for n > 4, but
〈
A4, A4

〉 ∼= Z2 × Z2 .

(iii)
〈
Q,Q

〉 ∼= Z2 , where Q is the quaternionic group (see §1.4.5 below).

As Zee explains, the size of the commutator subgroup tells us roughly how nonabelian the group itself
is. For abelian groups,

〈
G,G

〉 ∼= {E}. When
〈
G,G

〉 ∼= G, the group is maximally nonabelian in some
sense. The quotient group Gab ≡ G/

〈
G,G

〉
is called the abelianization of G. A group is called perfect if it

is isomorphic to its own commutator subgroup. The smallest nontrivial perfect group is A5.

GROUP ALGEBRA : The group algebra G for any finite discrete group G is defined to be the set of linear
combinations of the form x =

∑
g∈G xg g , where each xg ∈ C is a complex number. Note that both

addition and multiplication are defined for elements of G, for if y =
∑

g∈G yg g , then

x+y =
∑

g∈G
(xg+yg) g , x ·y =

∑

g∈G

∑

h∈G
xg yh hg =

∑

g∈G

(xy)g︷ ︸︸ ︷(
∑

h∈G
xh−1g yh

)
g ≡

∑

g

(xy)g g . (1.29)

We can think of the group elements as basis elements of a vector space A which acts on itself by multi-
plication as well as addition26. This structure we have just described is known in mathematical parlance
as an algebra. An (associative) algebra is a linear vector space which is closed under some multiplication
law. Thus there are two types of multiplication in an algebra. As a vector space over a field F, one has
ordinary multiplication by scalars in F, e.g. real or complex numbers. But the individual basis elements,
which in our case are group elements, have their own multiplication rule, specified by the Cayley ta-
ble for the group. Another example which will be relevant to us is that of a Lie algebra, which, for our
purposes, is also a vector space over R or C, but where multiplication of two elements X and Y in the
algebra is defined by the Lie bracket,

[
X,Y

]
. We will mainly be concerned with matrix Lie groups, in

which case the Lie bracket is the familiar commutator.

26The vector space spanned by g ∈ G is not necessarily normed.
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The concept of an algebra is very close to that of another mathematical structure known as a ring. A ring
R is a set endowed with the binary operations of addition and multiplication which is an abelian group
under addition, a monoid under multiplication27, and where multiplication distributes over addition28.

1.4.2 Other math stuff

Here are some other math definitions which may be useful to clarify before going forward. They don’t
really belong in this section on discrete groups, but I thought it would be fun to hide them here anyway.

MONOID : A monoid is a triple (M , · , 1) where M is a set which is closed under the associative binary
product ·, and where 1 is the multiplicative identity (i.e.m · 1 = 1 ·m = m for all m ∈M ).

RING : A ring is a set R where (R , + , 0) is an abelian group under addition, (R , · , 1) is a monoid, and
multiplication distributes over addition, viz.

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c .

(1.30)

Examples of rings include Z, R, C, the set
{
m+n

√
2 |m,n ∈ Z

}
, real continuous functions f : [0, 1] → R

with f(x) = 0 the additive identity and f(x) = 1 the multiplicative identity, etc.

IDEAL : A left ideal I is a subset of a ring I ⊂ R where (I , + , 0) is an abelian group, and where ri ∈ I
for all r ∈ R and i ∈ I . For a right ideal the requirement is that ir ∈ I . If we require both ir ∈ I and
ri ∈ I , this defines an ideal (i.e. no need to specify left or right). Example: I = 2Z ⊂ Z , i.e. the set of even
integers, is an ideal in the ring Z.

QUOTIENT RING : If I ⊂ R is an ideal in R, the quotient ring R ≡ R/I is the set of elements of R modulo
I , any of which we can write in the form a+ I where a ∈ R. Thus, two elements a and a′ in the quotient
ring R are equivalent if their difference lies in I (i.e. a ≡ a′ ⇔ a− a′ ∈ I). Within R we then have

(a+ I) + (b+ I) = a+ b+ I

(a+ I) · (b+ I) = a · b+ I .
(1.31)

Thus, Z/2Z = {0, 1}.

DOMAIN : LetR be a ring and R∗ = R− 0 the set of its nonzero elements (using − for set subtraction). If
(R∗ , · , 1) is a monoid then R is a domain. How on earth could (R∗ , · , 1) fail to form a monoid, I hear
you thinking. Well, let R be the ring of real smooth functions29 and define f(x) =

(
1
2 − x

)
Θ
(
1
2 − x

)
and

27A monoid is a set with a closed, associative binary operation and with an identity element. The difference between a monoid
and a group is that each element of the monoid needn’t have an inverse. In physics, the ”renormalization group” should
more appropriately be called the ”renormalization monoid” since RG processes have no inverse.

28The formal difference between a ring R an an algebra A is that in a ring, the algebraic structure is entirely internal, but in
an algebra there is additional structure because it allows for multiplication by an external ring R

′ in such a way that the two
multiplication properties are compatible. So an algebra is actually two compatible rings. If this is confusing, take comfort in
the fact that for our purposes, the external ring R

′ is just the complex numbers.
29Parsing disambiguation: by ”real smooth functions” I mean functions f(x) which are both real and in the class C∞, as

opposed to functions which are somehow like Luther Vandross.
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g(x) =
(
x − 1

2

)
Θ
(
x − 1

2

)
, where Θ(u) is the step function. Then both f(x) and g(x) lie within R∗, but

their product f(x) · g(x) = 0 6∈ R∗. So R is not a domain.

DIVISION RING : Let R be a ring and again let R∗ = R − 0. If (R∗, ·, 1) is a group, we say that R is a
division ring. A commutative division ring is a field.

VECTOR SPACE : A vector space V over a scalar field F consists of a set V and operations + and · such that
(i) (V , + , 0) is an abelian group, (ii) V is closed under scalar multiplication by any c ∈ F, (iii) scalars
and vectors may be multiplied, and the · operation is, commutative, associative, and distributes over
addition, and (iv) for all v ∈ V , 1 · v = v · 1 = v.

ASSOCIATIVE ALGEBRA : As mentioned above, an associative algebra is a vector space which is closed
under some multiplication law. Thus there are two types of multiplication in an algebra.

1.4.3 More about permutations

Recall the general form of a permutation of n elements:

σ ≡
(

1 2 3 · · · n
σ(1) σ(2) σ(3) · · · σ(n)

)
. (1.32)

Each such permutation can be factorized as a product of disjoint cycles, a process known as cycle decompo-
sition. A k-cycle involves cyclic permutation of k elements, so (i1 i2 · · · ik) means σ(i1) = i2 , σ(i2) = i3 ,
etc., and finally σ(ik) = i1. Consider, for example, the following element from S7 :

σ =

(
1 2 3 4 5 6 7 8
7 2 6 8 1 3 5 4

)
= (1 7 5) (2) (3 6) (4 8) . (1.33)

Thus σ is written as a product of one three-cycle, two two-cycles, and two one-cycles. The one-cycles of
course do nothing. Written in this way, the cycle decomposition obeys the following sum rule: the sum
of the lengths of all the cycles is the index n of Sn. Denoting all the one-cycles is kind of pointless, though,
and typically we omit them in the cycle decomposition; in this case we’d just write σ = (1 7 5) (3 6) (4 8).
Alas, by virtue of suppressing the one-cycles, the sum rule no longer holds.

In fact, any k-cycle may be represented as a product of k − 1 two-cycles (also called transpositions):

(i1 i2 · · · ik) = (i1 i2)(i2 i3) · · · (ik−1 ik) . (1.34)

Note that the two-cycles here are not disjoint. The decomposition of a given k-cycle into transpositions
is not unique, save for the following important feature: the total number of transpositions is preserved
modulo 2. This feature allows us to associate a sign sgn(σ) with each permutation σ, given by (−1)r ,
where r is the number of transpositions in any complete decomposition of σ into two-cycles. An equiv-
alent definition: sgn(σ) = ǫσ(1) σ(2) ···σ(n) , where ǫα

1
α
2
···αn

is the completely antisymmetric tensor of

rank n , with ǫ1 2 3 ···n = +1. Note that sgn(σσ′) = sgn(σ) sgn(σ′). This distinction allows us to define a
subgroup of Sn known as An , the alternating group, consisting of all the even permutations in Sn. Clearly
An contains the identity, and since the product of two even permutations is itself an even permutation,
we may conclude that An is itself a group. Indeed, since sgn(σ̃−1σσ̃) = sgn(σ), conjugacy preserves the
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sign of any element of Sn , and we conclude An ⊳ Sn , i.e. the alternating group is a normal subgroup of
the symmetric group.

Let me conclude with a few other details about the symmetric group. First, the mapping sgn : Sn 7→ Z2

is a group homomorphism. This means that D(1)(σ) = sgn(σ) is a one-dimensional representation of
Sn, called the sign representation. Of course it is not a faithful representation, but fidelity is so 1990s30.
Second, recall from §1.3.7 the representation D(n)(Sn) in terms of n× n matrices, where

[
D(n)(σ)

]
ij
= 1

if i = σ(j) and 0 otherwise. This is called the defining representation, and it is faithful. One then has
that sgn(σ) = det

[
D(n)(σ)

]
. Finally, we consider a cyclic decomposition of any permutation σ into ν1

1-cycles, ν2 2-cycles, etc. The sum rule is then
∑n

k=1 k νk = n. Now any such decomposition is invariant
under (i) permuting any of the k-cycles, and (ii) cyclic permutation within a k-cycle. Consider our friend
σ = (1 7 5) (2) (3 6) (4 8) from Eqn. 1.33. Clearly n1 = 1 , n2 = 2 , and n3 = 1 with 1 ·n1+2 ·n2+3 ·n3 = 8 .
Furthermore, we could equally well write σ = (1 7 5) (2) (4 8) (3 6), permuting the two 2-cycles, or as
σ = (7 5 1) (2) (4 8) (6 3), cyclically permuting within the 3-cycle and one of the 2-cycles. This leads us to
the following expression for the number N(ν1, ν2, . . . , νn) of possible decompositions into ν1 1-cycles, ν2
2-cycles, etc. :

N(ν1, ν2, . . . , νn) =
n!

1ν1 ν1! 2
ν
2 ν2! · · · nνn νn!

. (1.35)

The sign of each permutation is then uniquely given by its cyclic decomposition:

sgn(σ) = (+1)ν1(−1)ν2(+1)ν3(−1)ν4 · · · = (−1)# of cycles of even length . (1.36)

Finally, let’s check that the sum over all possible decompositions gives the order of the group, i.e. that

∞∑

ν
1
=0

· · ·
∞∑

νn=0

N(ν1, ν2, . . . , νn) δν
1
+2ν

2
+...+nνn , n = n! , (1.37)

or, equivalently,

Fn ≡
∞∑

ν
1
=0

· · ·
∞∑

νn=0

δν
1
+2ν

2
+...+nνn , n

1ν1 ν1! 2
ν
2 ν2! · · · nνn νn!

= 1 . (1.38)

This must be true for all nonnegative integers n, with F0 ≡ 1. In dealing with the constraint, recall the
treatment of the grand canonical ensemble in statistical physics. We write the generating function

F (z) ≡
∞∑

n=0

Fnz
n =

∞∏

k=0

∞∑

νk=0

zkνk

kνk νk!
, (1.39)

in which case

Fn =

∮

|z|=1

dz

2πiz

F (z)

zn
. (1.40)

30Please don’t tell my wife I wrote that.
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Thus, Fn is simply the coefficient of zn in the Taylor expansion of F (z). But now,

F (z) =
∞∏

k=0

∞∑

νk=0

1

νk!

(
zk

k

)νk
=

∞∏

k=0

exp
(
zk/k

)

= exp

( ∞∑

k=0

zk

k

)
= e− ln(1−z) =

1

1− z
= 1 + z + z2 + . . . ,

(1.41)

and so indeed Fn = 1 for all n ≥ 0. Ta da!

1.4.4 Conjugacy classes of the dihedral group

Let’s count the conjugacy classes of Dn. First, we note that Dn = Zn ∪ σZn , where Zn
∼= Cn is the cyclic

group of order n, which is abelian, and σ is any one of the n twofold axes. Let r denote the primitive
rotation by 2π/n, and consider any of the elements rk ∈ Zn, with k ∈ {1, . . . , n − 1}.31 If we conjugate
rk → g−1rkg by any g ∈ Zn, we recover rk because Zn is abelian. So consider g = σrl ∈ σZn. Using
σrσ = r−1, we readily obtain g−1rkg = r−k. We conclude that for n odd, there are 1

2(n + 1) two element

conjugacy classes of the form
{
r, rn−1

}
through

{
r(n−1)/2, r(n+1)/2

}
, to which we add the one element

class
{
E
}

. For n even, though, there are 1
2 (n + 2) such classes: two element classes

{
r, rn−1

}
through{

r(n−2)/2, r(n+2)/2
}

plus one element classes
{
E
}

and
{
rn/2

}
.

Next, we start with a general element σrk ∈ σZn and generate its conjugates. If g = rl, we have
g−1σrkg = σr2l+k, whereas if g = σrl, we have g−1σrkg = σr2l−k. Thus if n is odd, we obtain one more
conjugacy class, which is σZn itself, with n elements. If, on the other hand, n is even, then σZn splits
into two conjugacy classes: {σr2j

}
and σr2j+1

}
, each with j ∈ {0, . . . , 12n − 1}, each of which has 1

2n
elements. In the latter case, the two classes consist of all twofold axes which preserve a pair of vertices,
and all twofold axes which preserve a pair of edges.

Putting it all together, we conclude that for n odd, Dn has 1
2(n + 5) conjugacy classes, while for n even

Dn has 1
2(n+ 6) conjugacy classes.

1.4.5 Quaternion group

The group Q is a nonabelian group consisting of eight elements, {±1,±i,±j,±k}, where E = 1. Its
multiplication table is defined by the relations

i2 = j2 = k2 = −1 , ij = −ji = k , jk = −kj = i , ki = −ik = j . (1.42)

Note that Q has the same rank as C4v ( ∼= D4), but has a different overall structure, i.e. Q is not isomor-
phic toD4. Indeed,D4 andQ are the only two non-Abelian groups of order eight32. Q has five conjugacy
classes: {1}, {−1}, {i,−i}, {j,−j}, and {k,−k}. It has six subgroups, all of which are invariant sub-
groups:

{1} , {1,−1} , {1,−1, i,−i} , {1,−1, j,−j} , {1,−1, k,−k} , (1.43)

31Recall that the identity E is always its own conjugacy class.
32Hence if G is a nonabelian group of order eight, then either G ∼= D4 or G ∼= Q.
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as well as Q itself. The quaternion group can be faithfully represented in terms of the Pauli matrices,
with i → −iσx, j → −iσy , and k → −iσz .

Incidentally, how do we know that Q 6∼= D4 ? Both groups have eight elements and both have five
conjugacy classes! However, upon further inspection, Q has one element of order two (−1) and six of
order four (±i,±j,±k). D4 , on the other hand, has five elements of order two (r2, σ, σr, σr2, σr3} and
two of order four (r, r3). So the groups cannot have identical multiplication tables.

When we speak of quaternions, or of quaternionic numbers, we refer to an extension of complex numbers
z = x+ iy to h = a+ ib+ jc+ kd , with a, b, c, d ∈ R, and the set of quaternionic numbers is denoted H.
The quaternion algebra is not commutative! If u = u0 + iu1 + ju2 + ku3 and v = v0 + iv1 + jv2 + kv3 ,
then representing these in terms of the Pauli matrices, u = u0 − iu · σ and v = v0 − iv · σ, and therefore

uv = (u0 − iu · σ)(v0 − iv · σ)
= u0 v0 − u · v − i(u0 v + v0 u− u× v) · σ ,

(1.44)

which differs from vu whenever u × v 6= 0. Hence multiplication is not commutative for quaternions.
Complex conjugation of quaternions is defined as h∗ = a− ib− jc− kd. Note that h∗∗ = h, which says
that conjugation is its own inverse operation, as in the case of complex numbers (Mathy McMathstein
says it this way: conjugation is an involution.) Note however that (h1h2)

∗ = h∗2 h
∗
1 , i.e. the conjugate

of a product of quaternions is the product of their conjugates, but in the reverse order. The norm of a
quaternion is defined as

|h| =
√
h∗h =

√
a2 + b2 + c2 + d2 , (1.45)

and the distance between two quaternions is accordingly d(h1, h2) = |h1 − h2| . The inverse of the
quaterion h = a+ ib+ jc+ kd is

h−1 =
a− ib− jc− kd

a2 + b2 + c2 + d2
=

h∗

|h|2 . (1.46)

Recall that the real numbers R and complex numbers C are fields. A field is a set together with the
operations of addition and multiplication such that both operations are individually commutative (i.e.
a+ b = b+ a and ab = ba), both operations are associative, both operations have identities and inverses,
and that multiplication distributes over addition. Since multiplication within H is not commutative, H is
not a field. Rather, Mathy McMathstein tells us, H is an associative division algebra over the real numbers.

A unit quaternion u = exp(−i ξ n̂ ·σ/2) = cos(ξ/2)−i sin(ξ/2) n̂ ·σ may be used to effect rotations. Define
the quaternion R = −iR · σ with no constant component. Then one can show directly that

R′ = uRu−1 = −iR′ · σ
R′ = cos ξR+ (1− cos ξ) (n̂ ·R) n̂− sin ξ n̂×R

(1.47)

which is the rotation of R about n̂ by θ. Thus the algebra of SO(3) rotations is simply the algebra of unit
quaternions!

True story: Alexander Hamilton invented quaternions while he was Treasury Secretary of the United
States, and his quaternionic arithmetic proved so useful in reducing the computational effort involved
in overseeing the Treasury Department that he was honored by having his portrait on the $10 bill33.

33This is not a true story.
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order abelian G nonabelian G order abelian G nonabelian G

2 Z2
∼= S2

∼= D1 none 9 Z
2
3 , Z9 none

3 Z3
∼= A3 none 10 Z2 × Z5 D5

4 Z2 × Z2
∼= V , Z4 none 11 Z11 none

5 Z5 none 12 Z
2
2 × Z3 , Z3 × Z4 D6 , A4

6 Z2 × Z3 S3 13 Z13 none

7 Z7 none 14 Z2 × Z7 D7

8 Z
3
2 , Z2 × Z4 , Z8 D4 ; Q 15 Z3 × Z5 none

Table 1.5: Table of discrete groups up to order |G| = 15. Note that Zn
∼= Cn and that Zp × Zq

∼= Zpq

when p and q are relatively prime.

1.4.6 Group presentations

Tab. 1.5 lists all discrete groups up to order 15. Note that at order |G| = 4 there are two distinct groups,
Z4 and Z2 × Z2; the latter is also called the Klein group, V . Both are abelian, but Z4 is not the same group
as Z2 × Z2. These two groups have different multiplication tables. Z4 is generated by a single element r
which satisfies r4 = 1. Z2×Z2 is generated by two elements σ and τ such that σ2 = τ2 = 1 and στ = τσ.

While Z4 6∼= Z2 × Z2, it is the case that Z6
∼= Z2 × Z3. Let’s understand why this is the case. The group

Z2 × Z3 is generated by two elements, σ and ω, where σ2 = ω3 = 1 and σω = ωσ. Now define r ≡ σω.
Clearly the order of the element r is six, i.e. r6 = 1. One can write σ = r3 and ω = r4, as well as ω2 = r2

and σω2 = r5. That accounts for all the elements once we include the identityE. Similarly, Z10
∼= Z2×Z5

and Z15
∼= Z3 × Z5. Can you see a generalization to cyclic groups whose order is a product of unique

prime factors?

At order eight, there are three inequivalent abelian groups: Z2 ×Z2 ×Z2 (i.e. Z3
2 ), Z2 ×Z4 , and Z8. Z3

2 is
generated by elements (σ, τ, ρ) which all mutually commute and for which σ2 = τ2 = ρ2 = 1. Z2 × Z4

is generated by (σ, δ) which mutually commute and which satisfy σ2 = δ4 = 1. Finally, Z8 has a single
generator r satisfying r8 = 1.

Indeed, more economically than providing the full group multiplication table with its |G|2 entries, a
group can be defined by a presentation in which one specifies a set G of generators and a set R of relations
which the generators satisfy. We then say that the group G has the presentation

〈
G
∣∣R
〉
. The group

elements are then given by all possible products of the generators, subject to the relations R. For ex-
ample, the presentation for Cn

∼= Zn would be
〈
r
∣∣ rn = 1

〉
, which is usually abbreviated simply as

〈 r | rn 〉. The dihedral group Dn has the presentation
〈
r, σ

∣∣ rn, σ2, (rσ)2
〉
. Z2 × Z4 has the presentation〈

σ, δ
∣∣σ2, δ4, σδ = δσ

〉
. Note how in the last example we had to specify in R that σ and δ commute.

While every group has a presentation, presentations are not necessarily unique. More examples are
presented (hah!) in Tab. 1.6. The free group FG on the set G of generators is simply all possible products.
For example, if G = {a, b}, FG would be an infinite nonabelian group with elements

FG =
{
E, a, b, a−1, b−1, a2, ab, ba, b2, a3, a2b, aba, ba2, . . .

}
. (1.48)
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group order presentation group order presentation

Zn n
〈
r
∣∣ rn

〉
S3 6

〈
a, b
∣∣ a2, b3, (ab)2

〉

Zm × Zn mn
〈
r, s
∣∣ rm, sn, rs = sr

〉
T ∼= A4 12

〈
a, b
∣∣ a2, b3, (ab)3

〉

Dn 2n
〈
r, σ

∣∣ rn, σ2, (rσ)2
〉

O ∼= S4 24
〈
a, b
∣∣ a2, b3, (ab)4

〉

DCn 4n
〈
r, σ

∣∣ r2n, rn = σ2, σrσ−1 = r−1
〉

E ∼= A5 60
〈
a, b
∣∣ a2, b3, (ab)5

〉

Q 8
〈
a, b
∣∣ aba = b , bab = a

〉
SL(2,Z) ∞

〈
a, b
∣∣ aba = bab, (aba)4

〉

Q16 16
〈
a, b, c

∣∣ a4 = b2 = c2 = abc
〉

PSL(2,Z) ∞
〈
a, b
∣∣ a2, b3

〉

π1(S) ∞
〈
{xn, yn}

∣∣ 〈x1, y1〉 · · · 〈xg, yg〉
〉

FG ∞
〈
G
∣∣ ∅
〉

Table 1.6: Examples of discrete group presentations. DCn is the dicyclic group, which is order 4n. T , O,
and E are the tetrahedral, octahedral (cubic), and icosahedral groups, respectively, which describe the
rotational symmetries of those regular polyhedra. Q16 is the generalized quaternion group. π1(S) is the
fundamental group of a surface of genus g, which is generated by 2g loops and 〈•, •〉 is the commutator.

Note that if G has presentation
〈
G
∣∣R
〉

and H has presentation
〈
H
∣∣S
〉
, then the direct product G×H

has presentation
〈
G,H

∣∣R,S, [G,H]
〉
. where [G,H] signifies that all generators from the set G commute

with all generators from the set H. The free product G ⋆H has presentation
〈
G,H

∣∣R,S
〉
. Thus, since the

presentation of the dihedral group D4 is
〈
r, σ

∣∣ r4, σ2, (rσ)2
〉
, the presentation of D4h = D4 × Z2 is

〈
r, σ, c

∣∣ r4, σ2, (rσ)2, c2, rc = cr, σc = cσ
〉

. (1.49)

In the presentation for Q, a = i and b = j. How can we show a4 = 1 ? From a = bab and b = aba,
we have a2 = a(bab) = (aba)b = b2. Then a3 = a2a = b2a = b(bab)b−1 = bab−1. It follows that
a4 = a(bab−1) = (aba)b−1 = bb−1 = 1, and of course b4 = (b2)2 = (a2)2 = a4 = 1 as well. Similarly,
from the above presentation for Q16, one can show that a4 = b2 = c2 = abc are all of order two, and
an equivalent presentation is

〈
a, b
∣∣ a4 = b2 = abab

〉
. Note that some groups have no finite presentation,

but necessarily they must be of infinite order.

1.5 Lie Groups

1.5.1 Definition of a Lie group

Algebra and topology – two great tastes that taste great together! A Lie group is a manifold34 G which
is endowed with a group structure such that multiplication G × G 7→ G : (g, g′) → gg′ and inverse
G 7→ G : g → g−1 are smooth.

34There are two broad classifications of manifolds: intake manifolds, which distribute fuel and air to engine cylinders, and
exhaust manifolds, which direct exhaust to the rear of the vehicle. Also a manifold is a topological space that is everywhere
locally homeomorphic to R

n for some fixed integer n.
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This definition is perhaps a bit too slick. Let’s say we have a smooth manifold M and a map g : M 7→ G,
where G is our Lie group. That is to say, the group operations consists of

{
g(x)

∣∣ x ∈ M
}

where
g(x) g(y) = g(z) for some z(x, y). Here x, y, and z are points on M. There are two important axioms:

(i) smoothness of group composition : The function z(x, y) is differentiable.

(ii) smoothness of inverse : The function y = ψ(x), where
[
g(x)

]−1
= g(y), is differentiable.

As an example, consider the group SL(2,R), which is the set of real 2 × 2 matrices with determinant 1,

also known as ”the special linear group of rank two over the reals”. Each element g =

(
a b
c d

)
∈ SL(2,R)

can be parameterized by the three real numbers {a, b, c}, since ad − bc = 1 requires d = (1 + bc)/a. (A
different parameterization much be chosen in the vicinity of a = 0.) SL(2,R) is an example of a matrix
group. Other examples include GL(n,R) (real invertible n×nmatrices), O(3) (rank three real orthogonal
matrices), Sp(4,R) (rank four real symplectic matrices), SU(3)×SU(2)×U(1) (some contrived group the
particle physicists seem to think is important - as if ! ), etc. See §1.3.8 above on SU(2).

Lie groups that are not matrix groups

It is quite convenient that every Lie group we will study is a matrix group, hence algebraically the only
operations we will need are matrix multiplication and matrix inversion. The metaplectic group Mp(2n,R),
which is a double cover of the symplectic group Sp(2n,R), is an example of a Lie group which is not a
matrix group, but, truth be told, I have no idea what the hell I’m talking about here.

Hall35 provides a concrete example of a Lie group which is not a matrix group:

G = R× R× S2 =
{
g ≡ (x, y, w)

∣∣ x ∈ R, y ∈ R, w ∈ S1 ⊂ C

}
(1.50)

under the group operation G×G 7→ G defined by

(x1, y1, w1) · (x2, y2, w2) = (x1 + x2 , y1 + y2 , e
ix

1
y
2 w1w2) . (1.51)

Note that w1,2 are expressed as unimodular complex numbers. The inverse operation is

g−1 = (−x , −y , eixyw) . (1.52)

One can check that G under the above multiplication law satisfies the axioms for a Lie Group. Yet it can
be proven (see Hall, §4.8) that there is no continuous injective homomorphism of G into any GL(n,C),
so G is not a matrix Lie group.

1.5.2 The big happy family of matrix Lie groups

First, a mathy definition:

35B. C. Hall, Lie Groups, Lie Algebras, and their Representations, 2nd edition, p. 25. (Henceforth ”Hall”.)
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DEFINITION : A matrix Lie group is any subgroup G of GL(n,C) (i.e. complex invertible n × n
matrices) such that if An is any sequence of matrices in G and An converges to some matrix A,
then either A ∈ G or A is noninvertible36. Thus, G is a closed subgroup of GL(n,C).

Perhaps the best way to appreciate the content of this definition is to provide some examples of sub-
groups of GL(n,C) which fail to be Lie groups37. Consider, for example the group G of all real n × n
invertible matrices with all rational entries. Since the limit of a sequence of rational numbers may be
irrational, this group is not a Lie group. Another example: let G be the set of 2 × 2 matrices of the form

M(θ) = diag
{
eiθ, eiθ

√
2
}

with θ ∈ R. Clearly the matrix −1 /∈ G, since eiθ = −1 requires θ = (2n + 1)π,

and since (2n+1)
√
2π is not an odd multiple of π for any n. However, one can easily find a sequence of

rationals of the form (2k+1)/(2n+1) with converges to
√
2 , so the corresponding sequence of matrices

converges to an invertible matrix, −1, which is not in G.

Now let’s meet the family:

• General and special linear groups : The Lie group GL(n,R) denotes the group of invertible n × n
matrices A with real entries. It is a manifold of dimension n2, corresponding to the number of real
freedoms associated with a general n × n matrix38. Similarly, GL(n,C) is the group of invertible
n× n matrices A with complex entries, of real dimension 2n2. One can also define the quaternionic
general linear group GL(n,H) to be all invertible n × n matrices A with quaternionic entries. Its
dimension is then 4n2.

In each case, we can apply the further restriction that the determinant is detA = 1. This im-
poses one real constraint on GL(n,R), resulting in the MLG SL(n,R), whose real dimension is
dimSL(n,R) = n2 − 1 . Applied to GL(n,C), the determinant condition amounts to one com-
plex constraint, hence the real dimension is dimSL(n,C) = 2(n2 − 1) . For quaternionic matrices,
detA = 1 imposes four real constraints, so dimSL(n,H) = 4(n2 − 1) .

• Orthogonal and special orthogonal groups : The orthogonal group O(n) consists of all matrices

R ∈ GL(n,R) such that RTR = E, where RT denotes the matrix transpose of R , i.e. R†
ij = Rji.

Orthogonal transformations of vectors preserve the inner product 〈x|y〉 =∑i xi yi , i.e. 〈Rx|Ry〉 =
〈x|RTR|y〉 = 〈x|y〉. Note that this entails detR = ±1. Orthogonal matrices with detR = +1
are known as proper rotations, while those with detR = −1 are improper rotations. This distinction
splits the O(n) into two disconnected components. One cannot continuously move throughout the
group manifold of O(n) between a proper and an improper rotation. The special orthogonal group
SO(n) consists of proper rotations only. Thus SO(n) ⊂ O(n) ⊂ GL(n,R).

We can count the real dimension of O(n) by the following argument. The condition RTR = E
entails n constraints along the diagonal and 1

2n(n− 1) constraints above the diagonal39. Thus, we
have 1

2n(n+1) constraints on n2 real numbers, and we conclude dimO(n) = dimSO(n) = 1
2n(n−1).

36Convergence of the matrix sequence An → A means that each matrix element of An converges to the corresponding element
of A.

37Hall, ch. 1.
38The invertibility condition does not change the dimension.
39Since RTR is symmetric by construction, there are no new conditions arising from those elements below the diagonal.
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• Generalized orthogonal groups : The general orthogonal group O(n, k) is defined to be the sub-
group of matrices L ∈ GL(n+ k,R) such that LTIn,kL = In,k , where

In,k =

(
1n×n 0n×k

0k×n −1k×k

)
. (1.53)

This is a generalization of the orthogonality condition, and one which preserves the metric

〈x|y〉 =
n∑

i=1

xi yi −
n+k∑

j=n+1

xj yj . (1.54)

One can check that again one has detL = ±1 and that dimO(n, k) = 1
2 (n+ k)(n + k − 1). Perhaps

the most famous example is the Lorentz group O(3, 1). Whereas O(n) and SO(n) are compact Lie
groups, O(n, k) is noncompact when nk 6= 0.

• Unitary and special unitary groups : The unitary group U(n) consists of all matrices U ∈ GL(n,C)

such that U †U = E, where U † denotes the Hermitian conjugate of U , i.e. U †
ij = U∗

ji. Unitary
transformations of vectors preserve the complex inner product 〈x|y〉 = ∑i x

∗
i yi , which says that

〈Ux|Uy〉 = 〈x|U †U |y〉 = 〈x|y〉. Note that this entails |detU | = 1, i.e. detU = eiα for some α ∈
[0, 2π). The special unitary group SU(n) consists of those U ∈ U(n) with detU = 1. Thus we have
SU(n) ⊂ U(n) ⊂ GL(n,C).

Let’s count the real dimension of U(n). The matrix U †U is Hermitian by construction, so once
again we total up the constraints associated with its diagonal and off-diagonal elements. Along the
diagonal, we have n real constraints. Above the diagonal, we have 1

2n(n− 1) complex constraints,
which is equivalent to n(n − 1) real constraints. Thus, we have n2 real constraints on n2 complex
elements of U , and we conclude that the real dimension of U(n) is dimU(n) = n2. For SU(n),
setting the determinant detU = 1 adds one more real constraint (on the phase of detU ), and thus
dimSU(n) = n2 − 1.

As with the orthogonal groups, we may generalize the unitary groups to

U(n, k) =
{
U ∈ GL(n,C) |U †In,k U = In,k

}
(1.55)

where In,k is as defined in Eqn. 1.53.

• Symplectic groups40 : Here we encounter a bit of an embarrassing mess, because the notation
and definition for the different MLGs known as symplectic groups is inconsistent throughout the
literature. The first symplectic MLG we shall speak of is Sp(2n,R), defined to be real matrices
M ∈ GL(2n,R) which satisfy MTJM = J , where

J =

(
0n×n 1n×n

−1n×n 0n×n

)
. (1.56)

40Wikipedia tells us that the term ”symplectic” was coined by Hermann Weyl in an effort to obviate a previous terminological
confusion. It is a calque of the word ”complex”. A calque is a word-for-word or root-for-root translation of an expression
imported from another language. The word ”superconductor” is a calque from the Dutch supergeleider. ”Thought experi-
ment” of course calques the German Gedankenexperiment. ”Rest in peace” calques the Latin requiescat in pace. Hilariously,
French Canadian ”chien chaud” calques English hot dog. Prior to Weyl, what we call today the symplectic group Sp(2n,R)
was called the ”line complex group”. The English word ”complex” comes from the Latin com-plexus, meaning ”together
braided”. In Greek, this becomes συµπλεκτικoς , or sym-plektikos.
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Note that J2 = −E. This is again a generalization of the orthogonality condition41. In counting
the dimension of Sp(2n,R), note that MTJM is a real, antisymmetric matrix of rank 2n. There
are then n2 conditions on the upper right n × n block, and 1

2n(n − 1) conditions on the above-
diagonal elements in each of the upper left and lower right blocks, for a grand total of n(2n − 1)
constraints on 4n2 elements, hence dimSp(2n,R) = n(2n + 1). At first sight, it might seem that
detM = ±1, but a nifty identity involving Pfaffians provides an further restriction. The Pfaffian of
any antisymmetric matrix B = −BT is defined as

PfB ≡ 1

2n n!

∑

σ∈S
2n

sgn(σ)Bσ(1) σ(2) Bσ(3) σ(4) · · · Bσ(2n−1) σ(2n) . (1.57)

One can show that detB = (PfB)2. For our purposes, the following identity, which holds for any
invertible matrix A, is very useful:

Pf(ATJA) = (detA) (Pf J) . (1.58)

Setting A = M ∈ Sp(2n,R), we find detM = +1. This says that symplectic matrices are both
volume preserving as well as orientation preserving. Clearly any M ∈ Sp(2n,R) preserves the
bilinear form 〈x|J |y〉 =∑n

i=1(xi yi+n − xi+n yi), where 〈x|y〉 is the usual Euclidean dot product:

〈Mx |J |My 〉 = 〈x |MTJM |y 〉 = 〈x |J |y 〉 . (1.59)

The group Sp(2n,R) is noncompact. Note that we could reorder the row and column indices by

interleaving each group and instead define J to consist of repeating 2 × 2 blocks

(
0 1
−1 0

)
along

its diagonal, i.e. Jij = +1 if (i, j) = (2l − 1, 2l), and −1 if (i, j) = (2l, 2l − 1), and 0 otherwise.

The group Sp(2n,C) consists of all matrices Z ∈ GL(2n,C) satisfying ZTJZ = J . Note that it is still
the matrix transpose and not the Hermitian conjugate which appears in the first term. Sp(2n,C),
like Sp(2n,R), is noncompact. Counting constraints, we have n2 complex degrees of freedom in
the upper right n × n block of the complex antisymmetric matrix ZTJZ , and 1

2n(n − 1) complex
freedoms above the diagonal in each of the upper left and lower right blocks, for a total of n(2n−1)
complex constraints on 4n2 complex entries in Z . Thus, the number of real degrees of freedom in
Sp(2n,C) is dimSp(2n,C) = 2n(2n+ 1), which is twice the dimension of Sp(2n,R).

There is also the group Sp(n) = Sp(2n,C) ∩ U(2n) , sometimes denoted USp(2n)42, because it is
isomorphic to the group of unitary symplectic matrices of rank 2n. One also has Sp(n) ∼= U(n,H),
the quaternionic unitary group of rank n. Sp(n) is compact and of real dimension n(2n+ 1).

Finally, consider the group G(2n) defined by

G(2n) =
{
M ∈ GL(n,C) |M †JM = J

}
, (1.60)

41The notion of symplectic structure is strongly associated with Hamiltonian mechanics, where phase space is even-
dimensional, consisting of n coordinates qσ and n conjugate momenta pσ. Defining the rank 2n vector ξT = (qT , pT) ,
the equations of motion are ξ̇j = Jij ∂H/∂ξj . A canonical transformation to a new set of generalized coordinates and
momenta Ξ must preserve this form of the equations of motion, which means that it must preserve the Poisson bracket
{A,B}ξ =

∑

i,j Jij(∂A/∂ξi)(∂B/∂ξj). Requiring {A,B}ξ = {A,B}Ξ then entails MTJM = J , where Mai = ∂Ξa/∂ξi is the
Jacobian of the transformation.

42Note that if G and H are both Lie groups, then their intersection G ∩H is also a Lie group.
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which is the group of conjugate symplectic matrices of rank 2n. If we define the unitary matrix

V ≡ 1√
2

(
1n×n 1n×n

i1n×n −i1n×n

)
, (1.61)

then we have that V †JV = iIn,n. Thus, defining M̃ = V †MV , we have

M̃ †In,n M̃ = V †M †(V In,nV †)MV = V †M †(− iJ
)
MV = −iV †JV = In,n , (1.62)

which says that M̃ ∈ U(n, n). Thus we have that G(2n) ∼= U(n, n).

Again, do not be surprised if in the literature you find different notation. Sometimes Sp(2n,R) is
abbreviated as Sp(2n), and sometimes even as Sp(n).

• Euclidean and Poincaré groups : The Euclidean group E(n) in n dimensions is the group of all
bijective, distance-preserving automorphisms43 of Rn. It can be shown that any element T ∈ E(n)
can be expressed as a rotation (proper or improper) followed by a translation. Thus each such T
may be represented as a rank n+ 1 real matrix,

T ≡ (d, R) =

(
R d

0 1

)
, (1.63)

where R ∈ O(n), d ∈ R
n is an n-component column vector, and 0 = (0 , . . . , 0) is an n-component

row vector. Clearly dimE(n) = dimO(n) + dimR
n = 1

2n(n + 1). Acting on the vector v ∈ R
n+1

whose transpose is vT = (x1, . . . , xn, 1
)
, one has

Tv =

(
R d

0 1

)(
x

1

)
=

(
Rx+ d

1

)
, (1.64)

Note that

T−1 =

(
R−1 −R−1d

0 1

)
= (−R−1d, R−1) . (1.65)

The group multiplication rule is

(d2, R2)(d1, R1) =

(
R2 d2

0 1

)(
R1 d1

0 1

)
=

(
R2R1 R2d1 + d2

0 1

)
= (d2 +R2 d1, R2R1) . (1.66)

Note that E(n) is not simply a direct product of the orthogonal group O(n) and the group of
translations R

n (under addition), because (d2 , R2)(d1 , R1) 6= (d1 + d2, R2R1). Rather, we write
E(n) = R

n
⋊ O(n), which says that the Euclidean group is a semidirect product of Rn and O(n) (see

§1.5.3 below). Note that Rn ⊳ E(n), i.e. Rn is a normal subgroup, but O(n) is not a normal subgroup
of E(n).

To define the Poincaré group P(n, 1), simply increase the dimension to add a ’time’ coordinate. A
general element of P(n, 1) is written

(d, L) =

(
L d

0 1

)
, (1.67)

43An endomorphism is a map from a set to itself. An invertible endomorphism is called an automorphism.
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where L ∈ O(n, 1) and d ∈ R
n+1. The multiplication law is the same as that for E(n), and the

Poincaré group also has a semidirect product structure: P(n, 1) = R
n+1

⋊ O(n, 1) . Accordingly,
dimP(n, 1) = 1

2(n+ 1)(n + 2).

• Less common cases : One can define the complex orthogonal group O(n,C) as the set of matrices
W ∈ GL(n,C) such that W TW = E. This rarely arises in physical settings. Clearly detW = ±1,
and dimO(n,C) = n(n− 1). One can then restrict SO(n,C) to thoseW ∈ O(n,C) with determinant
one, with no further reduction in dimension. Personally I am not so sure that O(n,C) should be
counted as part of our big happy family of matrix Lie groups. He’s more like your weird hairy
uncle who lives in your grandparents’ basement apartment. We might include him, but only for
tax purposes44.

The subset of all matrices A ∈ GL(n,R) with Aij = 0 whenever i > j is an abelian Lie group
consisting of all real n×n upper triangular matrices. It is a good exercise to show how the inverse
of any given element may be constructed. The unitriangular group UT(n,R) is defined to be the
subgroup of GL(n,R) consisting of all matrices A for which Aij = 0 whenever i > j and Aii = 1.
That is, all the elements below the diagonal are 0, all the elements along the diagonal are 1, and all
the elements above the diagonal are arbitrary real numbers.

1.5.3 More on semidirect products

Given a group G with a subgroup H and a normal subgroup N ⊳ G, then G = N ⋊ H if and only
if G = NH where N ∩ H = {E}. This last condition is equivalent to requiring that for any g ∈ G,
there exist unique h ∈ H and n ∈ N such that g = nh.45 This may be taken as a definition of the
semidirect product. Although this subsection is located within the material on Lie groups, the notion of
semidirect product applies equally well to discrete groups. One can even form the semidirect product
of a continuous group with a discrete group.

More generally, though, let G and K be groups, and let ϕ : K × G → K with (k, g) → ϕg(k). The
semidirect product K ⋊ G with respect to ϕ is defined to be the set of elements (k, g) with k ∈ K and
g ∈ G subject to the multiplication law

(k2, g2) (k1, g1) =
(
k2 ϕg

2
(k1) , g2 g1

)
. (1.68)

One then has that K ⋊G satisfies the group axioms provided

ϕg(kk
′) = ϕg(k)ϕg(k

′) and ϕg

(
ϕg′(k)

)
= ϕgg′(k) , (1.69)

which are required for associativity of multiplication in K ⋊ G. Please note that there are three group
multiplication laws in play here: (i) multiplication in G (i.e. gg′), (ii) multiplication inK (i.e. kk′), and (iii)
multiplication in K ⋊G (i.e. Eqn. 1.69). Note also that ϕg(k)ϕg′(k

′) is the K-product of two elements of
K , i.e. ϕg(k) and ϕg′(k

′). In our example of E(n) = R
n
⋊ O(n), group multiplication in K = R

n is vector
addition, group multiplication in G = O(n) is matrix multiplication, and the map ϕ is matrix-vector
multiplication.

44O(n,C) is very different from SU(n). For starters, O(n,C) is not compact.
45Or that g = hn, for that matter – but generally with different h and n, than in the decomposition g = nh, of course!
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Consider the semidirect productG ≡ Zn⋊Z2 where Zn
∼= {E, r, . . . , rn−1} with rn = E and Z2

∼= {E, σ}
with σ2 = E. Now let ϕσ(r

ℓ) = σrℓσ act by conjugation46. To completely define ϕ, we must specify the
image of ϕσ(r

ℓ) = σrℓσ in Zn for each ℓ, and we choose σrℓσ = rn−ℓ = r−ℓ. Now I claim that G ∼= Dn ,
where the group isomorphism ψG → Dn maps (rℓ, E) ∈ G to rℓ ∈ Dn, and (rℓ, σ) ∈ G to rℓσ ∈ Dn .
Thus, the semidirect product of two abelian groups may be nonabelian, depending on the features of
the mapping ϕ.

1.5.4 Topology of the happy family

You already know that compact means ”closed and bounded” in the context of subsets of Rn, for ex-
ample. The same criteria may be applied to matrix groups. A matrix Lie group G is compact if the
following two conditions hold:

• If An ∈ G is a sequence in G which converges to some matrix A, then A ∈ G.

• There exists a positive real number C such that, for any A ∈ G, |Aij | < C for all i, j.

The first condition says G is closed, and the second condition says it is bounded.

Two other terms that pop up in describing continuous spaces are connected and simply connected. A con-
nected manifold is one where any two points may be joined by a continuous curve47. Any disconnected
Lie groupGmay be uniquely decomposed into a union of its components. The component which contains
the identity (there can be only one) is then a subgroup of G. The group O(n) is not connected, because
there is no continuous path in the space of orthogonal matrices which connects a proper rotation and an
improper rotation. Nor is GL(1,R), i.e. the group of nonzero real numbers under multiplication, because
the two components R+ and R− cannot be connected by a continuous path which goes not go through
zero. Thus, GL(1,R) has two components, as does O(n). For the same reason, GL(n,R) is also discon-
nected and breaks up into components with positive and negative determinant. If A(t) with t ∈ [0, 1] is
a smooth path in the space of n×n real matrices with detA(0) > 0 and detA(1) < 0, then by the interme-
diate value theorem there must be a t∗ ∈ [0, 1] for which detA(t∗) = 0, which means A(t∗) /∈ GL(n,R).
Note that GL(n,C) is connected for all n, because the determinant is complex, and we can always choose
a path connecting any two complex matrixes A(0) and A(1) which ”goes around” the the set of matrices
with detA = 0.

A simply connected manifold is one where every closed curve can be continuously contracted to a
point. The 2-sphere S2 and the 2-torus T 2 are both connected, but S2 is simply connected whereas T 2 is
not, since a closed path which has net winding around either (or both) of the toroidal cycles cannot be
continuously contracted to a point. The group of unimodular complex numbers under multiplication,
U(1), is isomorphic to a circle S1, with the identification of z = eiθ . Thus, it is the same group as the real
numbers modulo 1 under addition. Clearly the MLG U(1) is connected, but it is not simply connected,
since the path z(t) = e2πint for t ∈ [0, 1] winds n times around the circle and is non-contractable.

46Note that σ−1 = σ.
47Topologists call this property path connectedness as opposed to connectedness per se, which is a somewhat weaker condition.

But it turns out that a matrix Lie group is connected if and only if it is path connected.
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Figure 1.4: The double torus, with fundamental group generators a1 (blue), b1 (orange), a2 (red), and b2
(purple).

Continuous deformation of closed loops on any manifold M allows us to define equivalence classes of
loops. Two loops are in the same equivalence class if they can be smoothly deformed into one another.
These loop equivalence classes themselves form a group, where the group operation is defined by at-
taching loops to each other. The inverse of a given loop is that same loop executed in reverse. This group
of loop equivalence classes is called the fundamental group (or first homotopy group) of the manifold, and
is denoted π1(M). If M is simply connected, π1(M) is trivial. Else π1(M) may be either abelian or
nonabelian. Clearly π1(S

1) ∼= Z, as closed loops on the circle may be classified by their winding number,
and paths of different winding number cannot be continuously deformed into one another. One has
π1(T

2) ∼= Z × Z, but the fundamental group of the double torus, which is to say a torus with an extra
handle48 (see Fig. 1.4), is an infinite nonabelian group with the presentation

〈
a1, b1, a2, b2

∣∣ a1 b1 a−1
1 b−1

1 a2 b2 a
−1
2 b−1

2

〉
. (1.70)

One sometimes sees the notation π0(M), apparently denoting the ”zeroth homotopy group” of M. This
is a misnomer, since π0(M) is not a group, but rather a set, corresponding to the connected components
of M. The order of this set is the number of connected components, and it is convenient to simply define
π0(M) to be this number. Thus π0

(
O(n)

)
= 2, corresponding to the proper and improper rotations. Tab.

1.7 summarizes the topological properties of our happy family of matrix Lie groups49.

Finally, consider the familiar case of SO(3), which consists of rotations in three dimensional Euclidean
space by an angle ξ about an axis n̂ ∈ S2. Thus, each pair (ξ, n̂) labels an element g(ξ, n̂) ∈ SO(3). If
we let ξ ∈ [0, 2π) , then we have g(2π− ξ,−n̂) = g(ξ, n̂), which means that points in the group manifold
with (ξ′, n̂′) = (2π−ξ,−n̂) are identified. Now we might as well do away with all values of ξ greater than
π, since they are all redundant labels, and take ξ ∈ [0, π] . The group manifold of SO(3) is then a solid
sphere in R

3 of radius π, with the following important distinction: antipodal points on the boundary are
identified: g(π, n̂) = g(π,−n̂) . This means that SO(3) is not simply connected, as shown in Fig.. 1.5.

48The double torus is a Riemann surface of genus g = 2. It resembles some sort of exotic breakfast pastry.
49A topologist, it is said, is someone who is unable to distinguish between a donut and a coffee cup.
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G compact? π0(G) π1(G) G compact? π0(G) π1(G)

GL(n,R) no 2 − GL(n,C) no 1 Z

Sp(2n,R) no 1 Z Sp(2n,C) no 2 −
SL(n,R) (n ≥ 3) no 1 Z2 SL(n,C) no 1 {1}

SL(2,R) no 1 Z SO(2) yes 1 Z

O(n) yes 2 − SO(n) (n ≥ 3) yes 1 Z2

U(n) yes 1 Z SU(n) yes 1 {1}
Sp(n) yes 1 {1} UT(n,R) yes 1 {1}

SO(n, 1) no 2 − O(n, 1) no 4 −
E(n) no 2 − P(n, 1) no 4 −

Table 1.7: Topological properties of matrix Lie groups.

Figure 1.5: The fundamental group of SO(3) is Z2. Left: a contractible loop. Center: another contractible
loop. Points A and A′ are identified, as are B and B′. If B is moved toward A along the boundary, then
B′ moves toward A′. Right: a noncontractible loop. Points C and C′ are identified, and the blue path
connecting them is a non-contractable loop. In all cases, the black sphere corresponds to group elements
with ξ = π and different values of n̂.

1.5.5 Matrix exponentials and the Lie algebra

Another mathy definition:

DEFINITION : The Lie algebra g of a matrix Lie group G is the set of all matrices X such that
exp(tX) ∈ G for all t ∈ R. Alternatively, g is the tangent space to G at its identity E, i.e. the set
of derivatives of all smooth curves in G passing through E.

I’m assuming you all know that the matrix exponential exp(X) is defined through its Taylor series, which
is convergent for any real or complex matrix X. You should also know that for any matrix function f(A)
with a convergent power series expansion, one has

C−1f
(
A
)
C = f

(
C−1AC

)
,
[
f(A)

]
T

= f
(
AT
)

,
[
f(A)

]∗
= f∗

(
A∗) , (1.71)
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where f∗(X) is defined by the same power series as f(X), after complex conjugation of all the coeffi-
cients. In particular, the above are all true for f(X) = exp(X). Another handy True Fact is that for any
nonsingular matrix A, ln detA = Tr lnA.

Warning! Physicists generally define the Lie algebra g of G from the map X → exp(−itX) rather than
X → exp(tX). We will hold by the math convention for now.

We now state three Important Facts about matrix Lie algebras:

(i) If X,Y ∈ g then αX + βY ∈ g where α and β are scalars in some field F.

(ii) If X,Y ∈ g then [X,Y ] = XY − Y X ∈ g .

(iii) The Jacobi identity holds for all X,Y,Z ∈ g :

[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0 . (1.72)

We won’t prove any of these50. The first says that g is a vector space over the field F. The second
introduces the Lie bracket [•, •] , known to us physicists as the commutator, and says that g is closed
under the bracket. The third follows from the definition of the Lie bracket51.

To provide some motivation to the second Important Fact, consider the product eX eY using Dynkin’s
expression of the Baker-Campbell-Hausdorff (BCH) formula52,

ln
(
eX eY ) =

∞∑

n=1

(−1)n−1

n

∑

r
1
,s
1

r
1
+s

1
>0

· · ·
∑

rn,sn
rn+sn>0

[
Xr

1Y s
1Xr

2Y s
2 · · ·XrnY sn

]
∑n

i=1(ri + si) ·
∏n

j=1 rj! sj !
, (1.73)

where

[
Xr1Y s1Xr2Y s2 · · ·XrnY sn

]
=
[
X,
[
X, · · ·

[
X

︸ ︷︷ ︸
r
1

,
[
Y,
[
Y, · · ·

[
Y

︸ ︷︷ ︸
s
1

, · · ·
[
X,
[
X, · · ·

[
X

︸ ︷︷ ︸
rn

,
[
Y,
[
Y, · · ·

[
Y

︸ ︷︷ ︸
sn

]]
· · ·
]]

.

(1.74)
Thus,

exp(X) exp(Y ) = exp

(
X + Y + 1

2

[
X,Y

]
+ 1

12

[
X,
[
X,Y

]]
+ 1

12

[
Y,
[
Y,X

]]
+ . . .

)
. (1.75)

Notice that every term inside the round bracket on the RHS, other than X + Y , is formed from nested
commutators. Thus if [X,Y ] ∈ g for all X,Y ∈ g , then the product eX eY = eZ with Z ∈ g.
50See Hall §3.3 for the proofs.
51The formal definition of a finite-dimensional real/complex Lie algebra is a finite-dimensional real/complex vector space g

together with a map [•, •] from g × g into g called the Lie bracket, such that (i) [•, •] is bilinear, (ii) [X, Y ] = −[Y,X] for all
X,Y ∈ g , and (iii)

[

X, [Y,Z]
]

+
[

Y, [Z,X]
]

+
[

Z, [X,Y ]
]

for all X,Y, Z ∈ g . For Lie algebras of matrix Lie groups, the Lie
bracket is the commutator.

52See https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula .

https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
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Why should we care about Lie algebras?

Why are we interested in Lie algebras to begin with? Aren’t their corresponding Lie groups enough?
One reason is that Lie algebras describe the infinitesimal form of continuous symmetries53. A Lie algebra
g is the linearization of a Lie groupG. In this sense, Lie algebras are much simpler than Lie groups because
they describe only the latter’s tangent space in the vicinity of its identity. Mathematically, Lie groups
are homogeneous structures in which any given point locally ”looks like” any other point: if g is in the
neighborhood of g0 , then h ≡ gg−1

0 h0 is in the neighborhood of h0
54. Thus, from an understanding

of g , we can deduce almost all the properties of G itself55. The inverse of linearization, which takes us
from g to G , is the exponential map. Since algebras are vector spaces, we may apply in the study of Lie
algebras many of the powerful tools of linear algebra, such as basis vectors and inner products. For two

infinitesimal group operations g = eǫX and h = eǫY , their product is gh = eǫ(X+Y )+O(ǫ2). Thus, group
composition of two elements in the vicinity of the identity corresponds to simple vector addition in the
Lie algebra! However, when we evaluate the group commutator 〈g, h〉 = g−1h−1gh, we find that the
O(ǫ) term vanishes, and

e−ǫXe−ǫY eǫXeǫY = exp
(
ǫ2[X,Y ] +O(ǫ3)

)
. (1.76)

Thus consideration of the infinitesimal group commutator 〈•, •〉 requires the introduction of additional
structure in the linear vector space of g , i.e. the notion of the Lie bracket.

Some concrete examples of Lie algebras

GL(n,R) : The Lie algebra gl(n,R) is the set of all real n × n matrices. Similarly, gl(n,C) is the set of all
complex n× n matrices.

SL(n,R) : Adding the determinant condition puts a restriction on sl(n,R) , namely that det exp(tX) = 1.
Taking the logarithm, we obtain the condition TrX = 0. Hence sl(n,R) is the set of all real traceless n×n
matrices. And of course sl(n,C) is the set of all complex traceless n× n matrices.

O(n) : Now we demand exp(tXT) exp(tX) = E , hence exp(tXT) = exp(−tX) . Taking the logarithm,
we obtain XT = −X. Thus, o(n) is the set of all real antisymmetric n× n matrices. This is easy!

U(n) : Mutatis mutandis, u(n) consists of the set of complex antihermitian n× n matrices, i.e. matrices A
for which Aji = −A∗

ij .

Sp(2n,R) : We require exp(tXT)J exp(tX) = J . Multiplying on the right by − exp(−tX)J , we obtain
exp(tXT) = −J exp(−tX)J = exp(tJXJ), since J−1 = −J . Thus, we arrive at the condition XT = JXJ
for any real n× n matrix X ∈ sp(2n,R). It is straightforward to show that this means X is of the form

X =

(
A B
C −AT

)
, (1.77)

53In physics, much useful information is deduced from the consideration of infinitesimal continuous symmetries. For example,
the existence of conserved currents via Noether’s theorem.

54For this reason, the properties of the neighborhood of any point in G are reduced to a study of the properties of the neigh-
borhood of E, which is to say the Lie algebra g of G.

55One obvious thing we can’t infer from g is whether G has any disconnected parts. The Lie algebras corresponding to O(n)
and SO(n) are both o(n).
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where A is an arbitrary n × n matrix, and B = BT and C = CT are arbitrary symmetric n × n matrices.
The same conditions hold for any complex n × n matrix X ∈ sp(2n,C). Finally, we may conclude
sp(n) = sp(2n,C) ∩ u(2n).

1.5.6 Structure constants

We noted above that the Lie algebra g of a matrix Lie groupG is the set of all smooth curves in G passing
through the identity E. Consider, for example, the group SL(2,R) , which is of real dimension three. In
the vicinity of the identity, we can write

g(x1, x2, x3) =

(
1 + x1 x2

x3 1+x2x3

1+x1

)
. (1.78)

One can check by inspection that det g(x1, x2, x3) = 1 and that g(0, 0, 0) = E. Now expand in the three
local coordinates {x1, x2, x3} :

g(x1, x2, x3) =

(
1 0
0 1

)
+

(
1 0
0 −1

)
x1 +

(
0 1
0 0

)
x2 +

(
0 0
1 0

)
x3 +O(x2)

≡ E +

3∑

a=1

xaXa +O(x2) ,

(1.79)

where

X1 =

(
1 0
0 −1

)
, X2 =

(
0 1
0 0

)
, X3 =

(
0 0
1 0

)
(1.80)

are a set of generators for the Lie algebra sl(2,R) which may be taken as basis vectors in the vector space
of that algebra. Note in general that if {Xa} are taken as a set of basis vectors for some Lie algebra g
that we may write exp(xaXa) exp(y

aXa) = exp(zaXa), where z = z(x, y), which follows from Dynkin’s
version of BCH.

Can we reconstruct the Lie group G from its Lie algebra g ? Not always. By employing exponentiation,
we can form the group consisting of all matrices of the form exp(xaXa) (note summation convention
here). For sl(n,R), there are a total of n2−1 generators, and via exponentiation we can indeed reconstruct
all of SL(n,R). But suppose we try to do this with o(n) and O(n). In that case the generators are a
1
2n(n − 1) element basis of real traceless antisymmetric matrices, hence det exp(xaXa) = 1, and we are
missing the improper rotations. So via exponentiation, we can in general only reconstruct from g alone
the component of G which contains the identity E.

Since each Lie algebra g is closed under the action of the Lie bracket (commutation), the generators Xa

must satisfy [
Xa,Xb

]
= C c

ab Xc , (1.81)

for some sets of numbers C c
ab , which are called the structure constants of the Lie algebra. Note that

C c
ab = −C c

ba owing to the antisymmetry of the Lie bracket. Taking, for example, the three generators
of sl(2,R) from Eqn. 1.80, one finds

[
X1,X2

]
= 2X2,

[
X1,X3

]
= −2X3, and

[
X2,X3

]
= X1. Thus

C 2
12 = −C 2

21 = 2, C 3
13 = −C 3

31 = −2, and C 1
23 = −C 1

32 = 1, with all other Cab
c = 0. Again, in the
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physics literature one generally finds this written as
[
T a, T b

]
= if c

ab T c for the generators {T a}, where
Xa = −iT a and f c

ab = C c
ab .

Since g is a vector space, any complete and linearly independent set of generators will do. For example,
we could have chosen

X1 =

(
1 0
0 −1

)
, X2 =

(
0 1
1 0

)
, X3 =

(
0 1
−1 0

)
, (1.82)

in which case one finds the nonzero structure constants C 3
12 = 2, C 2

13 = −2, and C 1
32 = −2. In

addition, we could have multiplied each of the generators by an arbitrary nonzero scale factor, with cor-
responding consequences for the C c

ab . One way to mitigate this ambiguity is to choose a normalization
condition for the generators, such as

Tr
(
XaXb

)
= λa δ

ab (no sum) . (1.83)

If the Lie algebra is semisimple, one can further restrict |λa| = 1 for all a, but we cannot change the sign
of any of the λa.

One last tidbit: As a consequence of the Jacobi identity, the structure constants obey the relation

C d
bc C e

da + C d
ab C e

dc + C d
ca C e

db = 0 . (1.84)

Thus, if we define the matrices X c
ab ≡ −C c

ab , Eqn. 1.84 may be written as

−X d
bc X e

ad − C d
ab X e

dc +X d
ac X e

bd = 0 , (1.85)

which says
[
Xa,Xb

]
ce

= C d
ab

(
Xd

)
ce

, i.e.
[
Xa,Xb

]
= C c

ab Xc . In other words, the structure constants
themselves generate a representation of the algebra, called the adjoint representation. For example, if we
choose the structure constants computed from Eqn. 1.82, we obtain the 3× 3 representation

X1 =



0 0 0
0 0 −2
0 2 0


 , X2 =



0 0 2
0 0 0
2 0 0


 , X3 =




0 −2 0
−2 0 0
0 0 0


 . (1.86)

One can then check
[
Xa,Xb

]
= C c

ab Xc .

1.6 Appendix : Ideal Bose Gas Condensation

We begin with the grand canonical Hamiltonian K = H − µN for the ideal Bose gas,

K =
∑

k

(εk − µ) b†kbk −
√
N
∑

k

(
νk b

†
k + ν̄k bk

)
. (1.87)

Here b†
k

is the creation operator for a boson in a state of wavevector k, hence
[
b
k
, b†

k′

]
= δ

kk′ . The
dispersion relation is given by the function εk, which is the energy of a particle with wavevector k. We
must have εk − µ ≥ 0 for all k, lest the spectrum of K be unbounded from below. The fields {νk, ν̄k}
break a global O(2) symmetry.



38 CHAPTER 1. INTRODUCTION TO GROUPS

Students who have not taken a course in solid state physics can skip the following paragraph, and be
aware that N = V/v0 is the total volume of the system in units of a fundamental ”unit cell” volume v0 .
The thermodynamic limit is then N → ∞. Note that N is not the boson particle number, which we’ll
call Nb.

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is defined
by some boson hopping model on a Bravais lattice. The wavevectors k are then restricted to the first
Brillouin zone, Ω̂, and assuming periodic boundary conditions are quantized according to the condition
exp
(
iNl k · al

)
= 1 for all l ∈ {1, . . . , d}, where al is the lth fundamental direct lattice vector and Nl is

the size of the system in the al direction; d is the dimension of space. The total number of unit cells is
N ≡ ∏

lNl . Thus, quantization entails k =
∑

l(2πnl/Nl) bl , where bl is the lth elementary reciprocal
lattice vector (al ·bl′ = 2πδll′) and nl ranges overNl distinct integers such that the allowed k points form

a discrete approximation to Ω̂ .

To solve, we first shift the boson creation and annihilation operators, writing

K =
∑

k

(εk − µ)β†kβk −N
∑

k

|νk|2
εk − µ

, (1.88)

where

β
k
= b

k
−

√
N ν

k

εk − µ
, β†

k
= b†

k
−

√
N ν̄k

εk − µ
. (1.89)

Note that
[
β
k
, β†

k′

]
= δ

kk′ so the above transformation is canonical. The Landau free energy Ω =

−k
B
T lnΞ , where Ξ = Tr e−K/k

B
T , is given by

Ω = Nk
B
T

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/k

b
T
)
−N

∑

k

|ν
k
|2

ε
k
− µ

, (1.90)

where g(ε) is the density of energy states per unit cell,

g(ε) =
1

N

∑

k

δ
(
ε− εk

)
−−−−→
N→∞

v0

∫

Ω̂

ddk

(2π)d
δ
(
ε− εk

)
. (1.91)

Note that

ψk ≡ 1√
N

〈
bk
〉
= − 1

N

∂Ω

∂ν̄
k

=
νk

ε
k
− µ

. (1.92)

In the condensed phase, ψk is nonzero.

The Landau free energy (grand potential) is a function Ω(T,N, µ, ν, ν̄). We now make a Legendre trans-
formation,

Y (T,N, µ, ψ, ψ̄) = Ω(T,N, µ, ν, ν̄) +N
∑

k

(
νkψ̄k + ν̄kψk

)
. (1.93)

Note that
∂Y

∂ν̄
k

=
∂Ω

∂ν̄
k

+Nψk = 0 , (1.94)
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by the definition of ψk. Similarly, ∂Y/∂νk = 0. We now have

Y (T,N, µ, ψ, ψ̄) = Nk
B
T

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/k

b
T
)
+N

∑

k

(εk − µ) |ψk|2 . (1.95)

Therefore, the boson particle number per unit cell is given by the dimensionless density,

n =
Nb

N
= − 1

N

∂Y

∂µ
=
∑

k

|ψ
k
|2 +

∞∫

−∞

dε
g(ε)

e(ε−µ)/k
B
T − 1

, (1.96)

and the relation between the condensate amplitude ψk and the field νk is given by

νk =
1

N

∂Y

∂ψ̄
k

= (εk − µ)ψk . (1.97)

Recall that νk acts as an external field. Let the dispersion εk be minimized at k = K . Without loss of
generality, we may assume this minimum value is εK = 0 . We see that if νk = 0 then one of two must
be true:

(i) ψk = 0 for all k

(ii) µ = εK , in which case ψK can be nonzero.

Thus, for ν = ν̄ = 0 and µ > 0, we have the usual equation of state,

n(T, µ) =

∞∫

−∞

dε
g(ε)

e(ε−µ)/k
B
T − 1

, (1.98)

which relates the intensive variables n, T , and µ. When µ = 0, the equation of state becomes

n(T, µ = 0) =

n
0︷ ︸︸ ︷∑

K

|ψK |2 +

n>(T )︷ ︸︸ ︷
∞∫

−∞

dε
g(ε)

eε/kBT − 1
, (1.99)

where now the sum is over only those K for which εK = 0 . Typically this set has only one member,
K = 0, but it is quite possible, due to symmetry reasons, that there are more such K values. This last
equation of state is one which relates the intensive variables n, T , and n0 , where

n0 =
∑

K

|ψK |2 (1.100)

is the dimensionless condensate density. If the integral n>(T ) in Eqn. 1.99 is finite, then for n > n0(T )
we must have n0 > 0. Note that, for any T , n>(T ) diverges logarithmically whenever g(0) is finite. This
means that Eqn. 1.98 can always be inverted to yield a finite µ(n, T ), no matter how large the value of n,
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in which case there is no condensation and n0 = 0. If g(ε) ∝ εα with α > 0, the integral converges and
n>(T ) is finite and monotonically increasing for all T . Thus, for fixed dimensionless number n, there
will be a critical temperature Tc for which n = n>(Tc). For T < Tc , Eqn. 1.98 has no solution for any µ
and we must appeal to eqn. 1.99. The condensate density, given by n0(n, T ) = n− n>(T ) , is then finite
for T < Tc , and vanishes for T ≥ Tc .

In the condensed phase, the phase of the order parameter ψ inherits its phase from the external field ν,
which is taken to zero, in the same way the magnetization in the symmetry-broken phase of an Ising
ferromagnet inherits its direction from an applied field h which is taken to zero. The important feature
is that in both cases the applied field is taken to zero after the approach to the thermodynamic limit.
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