9 Stochastic Processes : Worked Examples

(9.1) Due to quantum coherence effects in the backscattering from impurities, one-dimensional wires don't obey Ohm's law (in the limit where the 'inelastic mean free path' is greater than the sample dimensions, which you may assume). Rather, let $R(L) = R(L)/(h/e^2)$ be the dimensionless resistance of a quantum wire of length L, in units of $h/e^2 = 25.813 \text{ k}\Omega$. Then the dimensionless resistance of a quantum wire of length $L + \delta L$ is given by

$$
\mathcal{R}(L+\delta L)=\mathcal{R}(L)+\mathcal{R}(\delta L)+2\,\mathcal{R}(L)\,\mathcal{R}(\delta L)+2\cos\alpha\,\sqrt{\mathcal{R}(L)\left[1+\mathcal{R}(L)\right]\mathcal{R}(\delta L)\left[1+\mathcal{R}(\delta L)\right]}
$$

,

where α is a *random phase* uniformly distributed over the interval [0, 2π]. Here,

$$
\mathcal{R}(\delta L) = \frac{\delta L}{2\ell} \quad ,
$$

is the dimensionless resistance of a small segment of wire, of length $\delta L \lesssim \ell$, where ℓ is the 'elastic mean free path'. (Using the Boltzmann equation, we would obtain $\ell = 2\pi \hbar n \tau / m$.)

Show that the distribution function $P(\mathcal{R}, L)$ for resistances of a quantum wire obeys the equation

$$
\frac{\partial P}{\partial L} = \frac{1}{2\ell} \frac{\partial}{\partial \mathcal{R}} \left\{ \mathcal{R} \left(1 + \mathcal{R} \right) \frac{\partial P}{\partial \mathcal{R}} \right\}
$$

.

.

.

.

Show that this equation* may be solved in the limits $R \ll 1$ and $R \gg 1$, with

$$
P(\mathcal{R}, z) = \frac{1}{z} e^{-\mathcal{R}/z}
$$

for $R \ll 1$, and

$$
P(\mathcal{R}, z) = (4\pi z)^{-1/2} \frac{1}{\mathcal{R}} e^{-(\ln \mathcal{R} - z)^2/4z}
$$

for $R \gg 1$, where $z = L/2\ell$ is the dimensionless length of the wire. Compute $\langle R \rangle$ in the former case, and $\langle \ln R \rangle$ in the latter case.

Solution :

From the composition rule for series quantum resistances, we derive the phase averages

$$
\langle \delta \mathcal{R} \rangle = \left(1 + 2 \mathcal{R}(L) \right) \frac{\delta L}{2\ell}
$$

$$
\langle (\delta \mathcal{R})^2 \rangle = \left(1 + 2 \mathcal{R}(L) \right)^2 \left(\frac{\delta L}{2\ell} \right)^2 + 2 \mathcal{R}(L) \left(1 + \mathcal{R}(L) \right) \frac{\delta L}{2\ell} \left(1 + \frac{\delta L}{2\ell} \right)
$$

$$
= 2 \mathcal{R}(L) \left(1 + \mathcal{R}(L) \right) \frac{\delta L}{2\ell} + \mathcal{O}((\delta L)^2) ,
$$

whence we obtain the drift and diffusion terms

$$
F_1(\mathcal{R}) = \frac{2\mathcal{R}+1}{2\ell} \qquad , \qquad F_2(\mathcal{R}) = \frac{2\mathcal{R}(1+\mathcal{R})}{2\ell}
$$

Note that $2F_1(\mathcal{R}) = dF_2/d\mathcal{R}$, which allows us to write the Fokker-Planck equation as

$$
\frac{\partial P}{\partial L} = \frac{\partial}{\partial \mathcal{R}} \left\{ \frac{\mathcal{R} (1 + \mathcal{R})}{2\ell} \frac{\partial P}{\partial \mathcal{R}} \right\}
$$

Defining the dimensionless length $z = L/2\ell$, we have

$$
\frac{\partial P}{\partial z} = \frac{\partial}{\partial \mathcal{R}} \left\{ \mathcal{R} \left(1 + \mathcal{R} \right) \frac{\partial P}{\partial \mathcal{R}} \right\}
$$

In the limit $R \ll 1$, this reduces to

$$
\frac{\partial P}{\partial z} = \mathcal{R} \frac{\partial^2 P}{\partial \mathcal{R}^2} + \frac{\partial P}{\partial \mathcal{R}}
$$

,

.

which is satisfied by $P(\mathcal{R}, z) = z^{-1} \exp(-\mathcal{R}/z)$. For this distribution one has $\langle \mathcal{R} \rangle = z$. In the opposite limit, $R \gg 1$, we have

$$
\frac{\partial P}{\partial z} = \frac{\partial}{\partial \mathcal{R}} \left(\mathcal{R}^2 \frac{\partial}{\partial \mathcal{R}} \right) = \frac{\partial^2 P}{\partial \nu^2} + \frac{\partial P}{\partial \nu} ,
$$

where $\nu \equiv \ln \mathcal{R}$. This is solved by the log-normal distribution,

$$
P(\mathcal{R}, z) = (4\pi z)^{-1/2} e^{-(\nu+z)^2/4z}
$$

Note that

$$
P(\mathcal{R}, z) d\mathcal{R} = \widetilde{P}(\nu, z) d\nu = \frac{1}{\sqrt{4\pi z}} e^{-(\nu - z)^2/4z} d\nu ,
$$

One then obtains $\langle \nu \rangle = \langle \ln R \rangle = z$. Furthermore,

$$
\langle \mathcal{R}^n \rangle = \langle e^{n\nu} \rangle = \frac{1}{\sqrt{4\pi z}} \int_{-\infty}^{\infty} d\nu \, e^{-(\nu - z)^2/4z} \, e^{n\nu} = e^{k(k+1)z}
$$

Note then that $\langle R \rangle = \exp(2z)$, so the mean resistance grows *exponentially* with length. However, note also that $\langle \mathcal{R}^2 \rangle = \exp(6z)$, so

$$
\langle (\Delta \mathcal{R})^2 \rangle = \langle \mathcal{R}^2 \rangle - \langle \mathcal{R} \rangle^2 = e^{6z} - e^{4z} \quad ,
$$

and so the standard deviation grows as $\sqrt{\langle R^2 \rangle} \sim \exp(3z)$ which grows faster than $\langle R \rangle$. In other words, the resistance R itself is not a *self-averaging* quantity, meaning the ratio of its standard deviation to its mean doesn't vanish in the thermodynamic limit – indeed it diverges. However, $\nu = \ln R$ *is* a self-averaging quantity, with $\langle \nu \rangle = z$ and $\sqrt{\langle \nu^2 \rangle} = \sqrt{2z}$.

(9.2) Show that for time scales sufficiently greater than γ^{-1} that the solution $x(t)$ to the Langevin equation \ddot{x} + $\gamma \dot{x} = \eta(t)$ describes a Markov process. You will have to construct the matrix M defined in Eqn. 2.60 of the lecture notes. You should assume that the random force $\eta(t)$ is distributed as a Gaussian, with $\langle \eta(s) \rangle = 0$ and $\langle \eta(s) \eta(s') \rangle = \Gamma \delta(s - s').$

Solution:

The probability distribution is

$$
P(x_1, t_1; \ldots; x_N, t_N) = \det^{-1/2}(2\pi M) \exp\left\{-\frac{1}{2}\sum_{j,j'=1}^N M_{jj'}^{-1} x_j x_{j'}\right\} ,
$$

where

$$
M(t,t') = \int_0^t ds \int_0^{t'} ds' G(s-s') K(t-s) K(t'-s') ,
$$

and $K(s) = (1 - e^{-\gamma s})/\gamma$. Thus,

$$
M(t,t') = \frac{\Gamma}{\gamma^2} \int_0^{t_{\min}} ds \ (1 - e^{-\gamma(t-s)})(1 - e^{-\gamma(t'-s)})
$$

=
$$
\frac{\Gamma}{\gamma^2} \left\{ t_{\min} - \frac{1}{\gamma} + \frac{1}{\gamma} \left(e^{-\gamma t} + e^{-\gamma t'} \right) - \frac{1}{2\gamma} \left(e^{-\gamma|t-t'|} + e^{-\gamma(t+t')} \right) \right\} .
$$

In the limit where t and t' are both large compared to γ^{-1} , we have $M(t, t') = 2D \min(t, t')$, where the diffusions constant is $D = \Gamma/2\gamma^2$. Thus,

$$
M = 2D \begin{pmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & \cdots & t_N \\ t_2 & t_2 & t_3 & t_4 & t_5 & \cdots & t_N \\ t_3 & t_3 & t_3 & t_4 & t_5 & \cdots & t_N \\ t_4 & t_4 & t_4 & t_4 & t_5 & \cdots & t_N \\ t_5 & t_5 & t_5 & t_5 & t_5 & \cdots & t_N \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ t_N & t_N & t_N & t_N & t_N & \cdots & t_N \end{pmatrix}.
$$

To find the determinant of M, subtract row 2 from row 1, then subtract row 3 from row 2, *etc.*The result is

$$
\widetilde{M}=2D\begin{pmatrix} t_1-t_2 & 0 & 0 & 0 & 0 & \cdots & 0 \\ t_2-t_3 & t_2-t_3 & 0 & 0 & 0 & \cdots & 0 \\ t_3-t_4 & t_3-t_4 & t_3-t_4 & 0 & 0 & \cdots & 0 \\ t_4-t_5 & t_4-t_5 & t_4-t_5 & t_4-t_5 & 0 & \cdots & 0 \\ t_5-t_6 & t_5-t_6 & t_5-t_6 & t_5-t_6 & t_5-t_6 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ t_N & t_N & t_N & t_N & t_N & \cdots & t_N \end{pmatrix}.
$$

Note that the last row is unchanged, since there is no row $N + 1$ to subtract from it Since \widetilde{M} is obtained from M by consecutive row additions, we have

$$
\det M = \det \widetilde{M} = (2D)^N (t_1 - t_2)(t_2 - t_3) \cdots (t_{N-1} - t_N) t_N.
$$

The inverse is

$$
M^{-1} = \frac{1}{2D} \begin{pmatrix} \frac{1}{t_1 - t_2} & -\frac{1}{t_1 - t_2} & 0 & \cdots \\ -\frac{1}{t_1 - t_2} & \frac{t_1 - t_3}{(t_1 - t_2)(t_2 - t_3)} & -\frac{1}{t_2 - t_3} & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & 0 & -\frac{1}{t_{n-1} - t_n} & \frac{t_{n-1} - t_{n+1}}{(t_{n-1} - t_n)(t_n - t_{n+1})} & -\frac{1}{t_n - t_{n+1}} & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & 0 & -\frac{1}{t_{N-1} - t_N} & \frac{t_{N-1}}{t_N} & \frac{1}{t_{N-1} - t_N} \end{pmatrix}
$$

.

This yields the general result

$$
\sum_{j,j'=1}^N M_{j,j'}^{-1}(t_1,\ldots,t_N) x_j x_{j'} = \sum_{j=1}^N \left(\frac{1}{t_{j-1}-t_j} + \frac{1}{t_j-t_{j+1}} \right) x_j^2 - \frac{2}{t_j-t_{j+1}} x_j x_{j+1} ,
$$

where $t_0\equiv\infty$ and $t_{N+1}\equiv 0.$ Now consider the conditional probability density

$$
P(x_1, t_1 | x_2, t_2; \dots; x_N, t_N) = \frac{P(x_1, t_1; \dots; x_N, t_N)}{P(x_2, t_2; \dots; x_N, t_N)}
$$

=
$$
\frac{\det^{1/2} 2\pi M(t_2, \dots, t_N)}{\det^{1/2} 2\pi M(t_1, \dots, t_N)} \frac{\exp\left\{-\frac{1}{2} \sum_{j,j'=1}^N M_{jj'}^{-1}(t_1, \dots, t_N) x_j x_{j'}\right\}}{\exp\left\{-\frac{1}{2} \sum_{k,k'=2}^N M_{kk'}^{-1}(t_2, \dots, t_N) x_k x_{k'}\right\}}
$$

We have

$$
\sum_{j,j'=1}^{N} M_{jj'}^{-1}(t_1, \dots, t_N) x_j x_{j'} = \left(\frac{1}{t_0 - t_1} + \frac{1}{t_1 - t_2}\right) x_1^2 - \frac{2}{t_1 - t_2} x_1 x_2 + \left(\frac{1}{t_1 - t_2} + \frac{1}{t_2 - t_3}\right) x_2^2 + \dots
$$

$$
\sum_{k,k'=2}^{N} M_{kk'}^{-1}(t_2, \dots, t_N) x_k x_{k'} = \left(\frac{1}{t_0 - t_2} + \frac{1}{t_2 - t_3}\right) x_2^2 + \dots
$$

Subtracting, and evaluating the ratio to get the conditional probability density, we find

$$
P(x_1, t_1 | x_2, t_2; \ldots; x_N, t_N) = \frac{1}{\sqrt{4\pi D(t_1 - t_2)}} e^{-(x_1 - x_2)^2/4D(t_1 - t_2)},
$$

which depends only on $\{x_1, t_1, x_2, t_2\}$, *i.e.* on the current and most recent data, and not on any data before the time t_2 . Note the normalization:

$$
\int_{-\infty}^{\infty} dx_1 P(x_1, t_1 | x_2, t_2; \dots; x_N, t_N) = 1.
$$

(9.3) Consider a discrete one-dimensional random walk where the probability to take a step of length 1 in either direction is $\frac{1}{2}p$ and the probability to take a step of length 2 in either direction is $\frac{1}{2}(1-p)$. Define the generating function

$$
\hat{P}(k,t) = \sum_{n=-\infty}^{\infty} P_n(t) e^{-ikn} ,
$$

where $P_n(t)$ is the probability to be at position n at time t. Solve for $\hat{P}(k,t)$ and provide an expression for $P_n(t)$. Evaluate $\sum_n n^2 P_n(t)$.

Solution:

We have the master equation

$$
\frac{dP_n}{dt} = \frac{1}{2}(1-p)\,P_{n+2} + \frac{1}{2}p\,P_{n+1} + \frac{1}{2}p\,P_{n-1} + \frac{1}{2}(1-p)\,P_{n-2} - P_n\quad.
$$

Upon Fourier transforming,

$$
\frac{d\hat{P}(k,t)}{dt} = \left[(1-p)\cos(2k) + p\cos(k) - 1 \right] \hat{P}(k,t) ,
$$

with the solution

$$
\hat{P}(k,t) = e^{-\lambda(k)t} \hat{P}(k,0) \quad ,
$$

where

$$
\lambda(k) = 1 - p \cos(k) - (1 - p) \cos(2k) .
$$

One then has

$$
P_n(t) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} e^{ikn} \hat{P}(k, t) .
$$

The average of n^2 is given by

$$
\langle n^2\rangle_t = -\frac{\partial^2 \hat{P}(k,t)}{\partial k^2}\bigg|_{k=0} = \left[\lambda''(0) t - \lambda'(0)^2 t^2\right] = \left(4 - 3p\right)t \quad .
$$

Note that $\hat{P}(0, t) = 1$ for all *t* by normalization.

(9.4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in §2.6.1 of the lecture notes, and produce a figure similar to Fig. 2.3.

Solution:

Most computing languages come with a random number generating function which produces uniform deviates on the interval $x \in [0, 1]$. Suppose we have a prescribed function $y(x)$. If x is distributed uniformly on [0, 1], how is y distributed? Clearly

$$
|p(y) dy| = |p(x) dx|
$$
 \Rightarrow $p(y) = \left| \frac{dx}{dy} \right| p(x)$,

where for the uniform distribution on the unit interval we have $p(x) = \Theta(x) \Theta(1-x)$. For example, if $y = -\ln x$, then $y \in [0, \infty]$ and $p(y) = e^{-y}$ which is to say y is exponentially distributed. Now suppose we want to specify $p(y)$. We have

$$
\frac{dx}{dy} = p(y) \qquad \Rightarrow \qquad x = F(y) = \int_{y_0}^{y} d\tilde{y} \, p(\tilde{y}) \quad ,
$$

where y_0 is the minimum value that y takes. Therefore, $y = F^{-1}(x)$, where F^{-1} is the inverse function.

To generate normal (Gaussian) deviates with a distribution $p(y) = (4\pi D\varepsilon)^{-1/2} \exp(-y^2/4D\varepsilon)$, we have

$$
F(y) = \frac{1}{\sqrt{4\pi D\varepsilon}} \int_{-\infty}^{y} d\tilde{y} e^{-\tilde{y}^2/4D\varepsilon} = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{y}{\sqrt{4D\varepsilon}}\right) .
$$

We now have to invert the error function, which is slightly unpleasant.

A slicker approach is to use the *Box-Muller* method, which used a two-dimensional version of the above transformation,

$$
p(y_1, y_2) = p(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} \right|
$$

.

,

This has an obvious generalization to higher dimensions. The transformation factor is the Jacobian determinant. Now let x_1 and x_2 each be uniformly distributed on $[0,1]$, and let

$$
x_1 = \exp\left(-\frac{y_1^2 + y_2^2}{4D\varepsilon}\right)
$$

\n
$$
y_1 = \sqrt{-4D\varepsilon \ln x_1} \cos(2\pi x_2)
$$

\n
$$
y_2 = \sqrt{-4D\varepsilon \ln x_1} \sin(2\pi x_2)
$$

Then

$$
\frac{\partial x_1}{\partial y_1} = -\frac{y_1 x_1}{2D\varepsilon}
$$
\n
$$
\frac{\partial x_2}{\partial y_1} = -\frac{1}{2\pi} \frac{y_2}{y_1^2 + y_2^2}
$$
\n
$$
\frac{\partial x_1}{\partial y_2} = -\frac{y_2 x_1}{2D\varepsilon}
$$
\n
$$
\frac{\partial x_2}{\partial y_2} = \frac{1}{2\pi} \frac{y_1}{y_1^2 + y_2^2}
$$

and therefore the Jacobian determinant is

$$
J = \left| \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} \right| = \frac{1}{4\pi D\varepsilon} e^{-(y_1^2 + y_2^2)/4D\varepsilon} = \frac{e^{-y_1^2/4D\varepsilon}}{\sqrt{4\pi D\varepsilon}} \cdot \frac{e^{-y_2^2/4D\varepsilon}}{\sqrt{4\pi D\varepsilon}}
$$

which says that y_1 and y_2 are each independently distributed according to the normal distribution, which is $p(y) = (4\pi D\varepsilon)^{-1/2} \exp(-y^2/4D\varepsilon)$. Nifty!

Figure 1: (a) Wiener process sample path $W(t)$. (b) Cauchy process sample path $C(t)$. From K. Jacobs and D. A. Steck, New J. Phys. **13**, 013016 (2011).

For the Cauchy distribution, with

$$
p(y) = \frac{1}{\pi} \frac{\varepsilon}{y^2 + \varepsilon^2} ,
$$

we have

$$
F(y) = \frac{1}{\pi} \int_{-\infty}^{y} d\tilde{y} \frac{\varepsilon}{\tilde{y}^2 + \varepsilon^2} = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}(y/\varepsilon) ,
$$

and therefore

$$
y = F^{-1}(x) = \varepsilon \tan \left(\pi x - \frac{\pi}{2} \right) .
$$

(9.5) A *Markov chain* is a probabilistic process which describes the transitions of discrete stochastic variables in time. Let $P_i(t)$ be the probability that the system is in state i at time t. The time evolution equation for the probabilities is

$$
P_i(t+1) = \sum_j Y_{ij} P_j(t) .
$$

Thus, we can think of $Y_{ij} = P(i, t + 1 | j, t)$ as the *conditional probability* that the system is in state *i* at time $t+1$ given that it was in state j at time t. Y is called the *transition matrix*. It must satisfy $\sum_i Y_{ij} = 1$ so that the total probability $\sum_i P_i(t)$ is conserved.

Suppose I have two bags of coins. Initially bag A contains two quarters and bag B contains five dimes. Now I do an experiment. Every minute I exchange a random coin chosen from each of the bags. Thus the number of coins in each bag does not fluctuate, but their values do fluctuate.

- (a) Label all possible states of this system, consistent with the initial conditions. (*I.e.* there are always two quarters and five dimes shared among the two bags.)
- (b) Construct the transition matrix Y_{ij} .
- (c) Show that the total probability is conserved is $\sum_i Y_{ij} = 1$, and verify this is the case for your transition matrix Y. This establishes that $(1, 1, \ldots, 1)$ is a left eigenvector of Y corresponding to eigenvalue $\lambda = 1$.
- (d) Find the eigenvalues of Y .
- (e) Show that as $t \to \infty$, the probability $P_i(t)$ converges to an equilibrium distribution P_i^{eq} which is given by the right eigenvector of *i* corresponding to eigenvalue $\lambda = 1$. Find P_i^{eq} , and find the long time averages for the value of the coins in each of the bags.

Solution :

(a) There are three possible states consistent with the initial conditions. In state $|1\rangle$, bag A contains two quarters and bag B contains five dimes. In state $|2\rangle$, bag A contains a quarter and a dime while bag B contains a quarter and five dimes. In state $|3\rangle$, bag A contains two dimes while bag B contains three dimes and two quarters. We list these states in the table below, along with their degeneracies. The degeneracy of a state is the number of configurations consistent with the state label. Thus, in state $|2\rangle$ the first coin in bag A could be a quarter and the second a dime, or the first could be a dime and the second a quarter. For bag B, any of the five coins could be the quarter.

(b) To construct Y_{ij} , note that transitions out of state $|1\rangle$, *i.e.* the elements Y_{i1} , are particularly simple. With probability 1, state $|1\rangle$ always evolves to state $|2\rangle$. Thus, $Y_{21} = 1$ and $Y_{11} = Y_{31} = 0$. Now consider transitions out of state $|2\rangle$. To get to state $|1\rangle$, we need to choose the D from bag A (probability $\frac{1}{2}$) and the Q from bag B (probability $\frac{1}{5}$). Thus, $Y_{12} = \frac{1}{2} \times \frac{1}{5} = \frac{1}{10}$. For transitions back to state $|2\rangle$, we could choose the Q from bag A (probability $\frac{1}{2}$) if we also chose the Q from bag B (probability $\frac{1}{5}$). Or we could choose the *D* from bag A (probability $\frac{1}{2}$) and one of the *D's* from bag B (probability $\frac{4}{5}$). Thus, $Y_{22} = \frac{1}{2$ the transition matrix,

$$
Y = \begin{pmatrix} 0 & \frac{1}{10} & 0 \\ 1 & \frac{1}{2} & \frac{2}{5} \\ 0 & \frac{2}{5} & \frac{3}{5} \end{pmatrix} .
$$

Note that $\sum_i Y_{ij} = 1$.

(c) Our explicit form for Y confirms the sum rule $\sum_i Y_{ij} = 1$ for all j. Thus, $\vec{L}^1 = (1\ 1\ 1)$ is a left eigenvector of Y with eigenvalue $\lambda = 1$.

Δ	bag A	bag B		TOT
റ				
2 IJ				

Table 1: States and their degeneracies.

(d) To find the other eigenvalues, we compute the characteristic polynomial of Y and find, easily,

$$
P(\lambda) = \det(\lambda \, \mathbb{I} - Y) = \lambda^3 - \frac{11}{10} \, \lambda^2 + \frac{1}{25} \, \lambda + \frac{3}{50} \quad .
$$

This is a cubic, however we already know a root, *i.e.* $\lambda = 1$, and we can explicitly verify $P(\lambda = 1) = 0$. Thus, we can divide $P(\lambda)$ by the monomial $\lambda - 1$ to get a quadratic function, which we can factor. One finds after a small bit of work,

$$
\frac{P(\lambda)}{\lambda - 1} = \lambda^2 - \frac{3}{10}\lambda - \frac{3}{50} = \left(\lambda - \frac{3}{10}\right)\left(\lambda + \frac{1}{5}\right)
$$

.

Thus, the eigenspectrum of Y is $\lambda_1 = 1$, $\lambda_2 = \frac{3}{10}$, and $\lambda_3 = -\frac{1}{5}$.

(e) We can decompose Y into its eigenvalues and eigenvectors, like we did in problem (1). Write

$$
Y_{ij} = \sum_{\alpha=1}^3 \lambda_\alpha R_i^\alpha L_j^\alpha
$$

.

,

Now let us start with initial conditions $P_i(0)$ for the three configurations. We can always decompose this vector in the right eigenbasis for *Y*, *viz.*

$$
P_i(t) = \sum_{\alpha=1}^3 C_{\alpha}(t) R_i^{\alpha}
$$

The initial conditions are $C_\alpha(0) = \sum_i L_i^\alpha P_i(0)$. But now using our eigendecomposition of Y, we find that the equations for the discrete time evolution for each of the C_{α} decouple:

$$
C_{\alpha}(t+1) = \lambda_{\alpha} C_{\alpha}(t) .
$$

Clearly as $t \to \infty$, the contributions from $\alpha = 2$ and $\alpha = 3$ get smaller and smaller, since $C_{\alpha}(t) = \lambda_{\alpha}^{t} C_{\alpha}(0)$, and both λ_2 and λ_3 are smaller than unity in magnitude. Thus, as $t \to \infty$ we have $C_1(t) \to C_1(0)$, and $C_{2,3}(t) \to 0$. Note $C_1(0) = \sum_i L_i^1 P_i(0) = \sum_i P_i(0) = 1$, since $\vec{L}^1 = (1\ 1\ 1)$. Thus, we obtain $P_i(t \to \infty) \to R_i^1$, the components of the eigenvector \vec{R}^1 . It is not too hard to explicitly compute the eigenvectors:

$$
\vec{L}^{1} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \qquad \qquad \vec{L}^{2} = \begin{pmatrix} 10 & 3 & -4 \end{pmatrix} \qquad \qquad \vec{L}^{3} = \begin{pmatrix} 10 & -2 & 1 \end{pmatrix}
$$

$$
\vec{R}^{1} = \frac{1}{21} \begin{pmatrix} 1 \\ 10 \\ 10 \end{pmatrix} \qquad \qquad \vec{R}^{2} = \frac{1}{35} \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} \qquad \qquad \vec{R}^{3} = \frac{1}{15} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \qquad \qquad
$$

Thus, the equilibrium distribution $P_i^{\text{eq}} = \lim_{t \to \infty} P_i(t)$ satisfies detailed balance:

$$
P_j^{\text{eq}} = \frac{g_j^{\text{TOT}}}{\sum_l g_l^{\text{TOT}}} \quad .
$$

Working out the average coin value in bags A and B under equilibrium conditions, one finds $A = \frac{200}{7}$ and $B = \frac{500}{7}$ (cents), and B/A is simply the ratio of the number of coins in bag B to the number in bag A. Note cents, as the total coin value is conserved.