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Chapter 9

Stochastic Processes
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2 CHAPTER 9. STOCHASTIC PROCESSES

9.2 Introduction to Stochastic Processes

A stochastic process is one which is partially random, i.e. it is not wholly deterministic. Typically the
randomness is due to phenomena at the microscale, such as the effect of fluid molecules on a small
particle, such as a piece of dust in the air. The resulting motion (called Brownian motion in the case of
particles moving in a fluid) can be described only in a statistical sense. That is, the full motion of the
system is a functional of one or more independent random variables. The motion is then described by its
averages with respect to the various random distributions.

9.2.1 Diffusion and Brownian motion

Fick’s law (1855) is a phenomenological relationship between number current j and number density
gradient ∇n , given by j = −D∇n. Combining this with the continuity equation ∂tn + ∇·j = 0, one
arrives at the diffusion equation1,

∂n

∂t
= ∇·(D∇n) . (9.1)

Note that the diffusion constant D may be position-dependent. The applicability of Fick’s law was
experimentally verified in many different contexts and has applicability to a wide range of transport
phenomena in physics, chemistry, biology, ecology, geology, etc.

The eponymous Robert Brown, a botanist, reported in 1827 on the random motions of pollen grains sus-
pended in water, which he viewed through a microscope. Apparently this phenomenon attracted little
attention until the work of Einstein (1905) and Smoluchowski (1906), who showed how it is described
by kinetic theory, in which the notion of randomness is essential, and also connecting it to Fick’s laws
of diffusion. Einstein began with the ideal gas law for osmotic pressure, p = nk

B
T . In steady state,

the osmotic force per unit volume acting on the solute (e.g. pollen in water), −∇p, must be balanced by
viscous forces. Assuming the solute consists of spherical particles of radius a, the viscous force per unit
volume is given by the hydrodynamic Stokes drag per particle F = −6πηav times the number density n,
where η is the dynamical viscosity of the solvent. Thus, j = nv = −D∇n , where D = k

B
T/6πaη.

To connect this to kinetic theory, Einstein reasoned that the solute particles were being buffeted about
randomly by the solvent, and he treated this problem statistically. While a given pollen grain is not
significantly effected by any single collision with a water molecule, after some characteristic microscopic
time τ the grain has effectively forgotten it initial conditions. Assuming there are no global currents, on
average each grain’s velocity is zero. Einstein posited that over an interval τ , the number of grains which
move a distance within d3∆ of ∆ is nφ(∆) d3∆, where φ(∆) = φ

(
|∆|
)

is isotropic and also normalized
according to

∫
d3∆ φ(∆) = 1. Then

n(x, t+ τ) =

∫
d3∆ n(x−∆, t)φ(∆) , (9.2)

Taylor expanding in both space and time, to lowest order in τ one recovers the diffusion equation,

1The equation j = −D∇n is sometimes called Fick’s first law, and the continuity equation ∂tn = −∇·j Fick’s
second law.
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∂tn = D∇2n, where the diffusion constant is given by

D =
1

6τ

∫
d3∆ φ(∆)∆2 . (9.3)

The diffusion equation with constant D is easily solved by taking the spatial Fourier transform. One
then has, in d spatial dimensions,

∂n̂(k, t)

∂t
= −Dk2n̂(k, t) ⇒ n(x, t) =

∫
ddk

(2π)d
n̂(k, t0) e

−Dk2(t−t0) eik·x . (9.4)

If n(x, t0) = δ(x− x0), corresponding to n̂(k, t0) = e−ik·x0 , we have

n(x, t) =
(
4πD|t− t0|

)−d/2
exp

{
− (x− x0)

2

4D|t− t0|

}
, (9.5)

where d is the dimension of space.

WTF just happened?

We’re so used to diffusion processes that most of us overlook a rather striking aspect of the above solu-
tion to the diffusion equation. At t = t0, the probability density is P (x, t = t0) = δ(x−x0), which means
all the particles are sitting at x = x0. For any t > t0, the solution is given by Eqn. 9.5, which is nonzero
for all x. If we take a value of x such that |x − x0| > ct, where c is the speed of light, we see that there
is a finite probability, however small, for particles to diffuse at superluminal speeds. Clearly this is non-
sense. The error lies in the diffusion equation itself, which does not recognize any limiting propagation
speed. For most processes, this defect is harmless, as we are not interested in the extreme tails of the
distribution. Diffusion phenomena and the applicability of the diffusion equation are well-established
in virtually every branch of science. To account for a finite propagation speed, one is forced to consider
various generalizations of the diffusion equation. Some examples are discussed in the appendix §9.6.

9.2.2 Langevin equation

Consider a particle of mass M subjected to dissipative and random forcing. We’ll examine this system
in one dimension to gain an understanding of the essential physics. We write

u̇+ γu =
F

M
+ η(t) . (9.6)

Here, u is the particle’s velocity, γ is the damping rate due to friction, F is a constant external force,
and η(t) is a stochastic random force. This equation, known as the Langevin equation, describes a bal-
listic particle being buffeted by random forcing events2. Think of a particle of dust as it moves in the
atmosphere. F would then represent the external force due to gravity and η(t) the random forcing

2See the appendix in §9.7 for the solution of the Langevin equation for a particle in a harmonic well.
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due to interaction with the air molecules. For a sphere of radius a moving in a fluid of dynamical
viscosity η – not to be confused with the stochastic function η(t)! – hydrodynamics gives γ = 6πηa/M ,
where M is the mass of the particle. It is illustrative to compute γ in some setting. Consider a micron
sized droplet (a = 10−4 cm) of some liquid of density ρ ∼ 1.0 g/cm3 moving in air at T = 20◦ C. The
viscosity of air is η = 1.8 × 10−4 g/cm · s at this temperature3. If the droplet density is constant, then
γ = 9η/2ρa2 = 8.1×104 s−1, hence the time scale for viscous relaxation of the particle is τ = γ−1 = 12µs.
We should stress that the viscous damping on the particle is of course due to the fluid (e.g., air) molecules,
in some average ‘coarse-grained’ sense. The random component to the force η(t) would then represent
the fluctuations with respect to this average.

We can easily integrate this equation:

d

dt

(
u eγt

)
=

F

M
eγt + η(t) eγt

u(t) = u(0) e−γt +
F

γM

(
1− e−γt

)
+

t∫

0

ds η(s) eγ(s−t)
(9.7)

Note that u(t) is indeed a functional of the random function η(t). We can therefore only compute aver-
ages in order to describe the motion of the system.

The first average we will compute is that of u itself. In so doing, we assume that η(t) has zero mean:〈
η(t)

〉
= 0. Then

〈
u(t)

〉
= u(0) e−γt +

F

γM

(
1− e−γt

)
. (9.8)

On the time scale γ−1, the initial conditions u(0) are effectively forgotten, and asymptotically for t ≫ γ−1

we have
〈
u(t)

〉
→ F/γM , which is the terminal momentum.

Next, consider

〈
u2(t)

〉
=
〈
u(t)

〉2
+

t∫

0

ds1

t∫

0

ds2 e
γ(s1−t) eγ(s2−t)

〈
η(s1) η(s2)

〉
. (9.9)

We now need to know the two-time correlator
〈
η(s1) η(s2)

〉
. We assume that the correlator is a function

only of the time difference ∆s = s1 − s2, and that the random force η(s) has zero average,
〈
η(s)

〉
= 0,

and autocorrelation 〈
η(s1) η(s2)

〉
= φ(s1 − s2) . (9.10)

The function φ(s) is the autocorrelation function of the random force. A macroscopic object moving in
a fluid is constantly buffeted by fluid particles over its entire perimeter. These different fluid particles
are almost completely uncorrelated, hence φ(s) is basically nonzero except on a very small time scale
τφ , which is the time a single fluid particle spends interacting with the object. We can take τφ → 0
and approximate φ(s) ≈ Γ δ(s). We shall determine the value of Γ from equilibrium thermodynamic
considerations below.

3The cgs unit of viscosity is the Poise (P). 1P = 1 g/cm·s.
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With this form for φ(s), we can easily calculate the equal time momentum autocorrelation:

〈
u2(t)

〉
=
〈
u(t)

〉2
+ Γ

t∫

0

ds e2γ(s−t) =
〈
u(t)

〉2
+

Γ

2γ

(
1− e−2γt

)
. (9.11)

Consider the case where F = 0 and the limit t ≫ γ−1. We demand that the object thermalize at temper-
ature T . Thus, we impose the condition

〈
1
2Mu2(t)

〉
= 1

2kB
T =⇒ Γ =

2γk
B
T

M
. (9.12)

This fixes the value of Γ .

We can now compute the general momentum autocorrelator:

〈
u(t)u(t′)

〉
−
〈
u(t)

〉〈
u(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ eγ(s−t) eγ(s
′−t′)

〈
η(s) η(s′)

〉
=

Γ

2γ
e−γ|t−t′| , (9.13)

valid for |t− t′| finite in the limit where t and t′ both tend to infinity.

Let’s now compute the position x(t). We find

x(t) =
〈
x(t)

〉
+

t∫

0

ds

s∫

0

ds1 η(s1) e
γ(s

1
−s) , (9.14)

where
〈
x(t)

〉
= x(0) +

1

γ

(
u(0) − F

γM

)(
1− e−γt

)
+

Ft

γM
. (9.15)

Note that for γt ≪ 1 we have
〈
x(t)

〉
= x(0) + u(0) t + 1

2M
−1Ft2 + O(t3), as is appropriate for ballistic

particles moving under the influence of a constant force. This long time limit of course agrees with our
earlier evaluation for the terminal velocity,

〈
u(∞)

〉
= F/γM . We next compute the position autocorre-

lation:

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ e−γ(s+s′)

s∫

0

ds1

s′∫

0

ds′1 e
γ(s

1
+s

2
)
〈
η(s1) η(s2)

〉

=
2k

B
T

γM
min(t, t′) +O(1) .

In particular, the equal time autocorrelator is

〈
x2(t)

〉
−
〈
x(t)

〉2
=

2k
B
T t

γM
≡ 2D t , (9.16)

at long times, up to terms of order unity. Here, D = Γ/2γ2 = k
B
T/γM is the diffusion constant. For a

liquid droplet of radius a = 1µm moving in air at T = 293K, for which η = 1.8 × 10−4 P, we have

D =
k
B
T

6πηa
=

(1.38 × 10−16 erg/K) (293K)

6π (1.8 × 10−4 P) (10−4 cm)
= 1.19 × 10−7 cm2/s . (9.17)
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This result presumes that the droplet is large enough compared to the intermolecular distance in the
fluid that one can adopt a continuum approach and use the Navier-Stokes equations, and then assuming
a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. The diffusion constant is then
D = ℓ2/2τ , where ℓ is the mean free path and τ is the collision time. Elementary kinetic theory gives
that the mean free path ℓ, collision time τ , number density n, and total scattering cross section σ are
related by4 ℓ = v̄τ = 1/

√
2nσ, where v̄ =

√
8k

B
T/πm is the average particle speed. Approximating

the particles as hard spheres, we have σ = 4πa2, where a is the hard sphere radius. At T = 293K,
and p = 1atm, we have n = p/k

B
T = 2.51 × 1019 cm−3. Since air is predominantly composed of N2

molecules, we take a = 1.90 × 10−8 cm and m = 28.0 amu = 4.65 × 10−23 g, which are appropriate
for N2. We find an average speed of v̄ = 471m/s and a mean free path of ℓ = 6.21 × 10−6 cm. Thus,
D = 1

2ℓv̄ = 0.146 cm2/s. Though much larger than the diffusion constant for large droplets, this is still
too small to explain common experiences. Suppose we set the characteristic distance scale at d = 10 cm
and we ask how much time a point source would take to diffuse out to this radius. The answer is
∆t = d2/2D = 343 s, which is between five and six minutes. Yet if someone in the next seat emits a foul
odor, you detect the offending emission in on the order of a second. What this tells us is that diffusion
isn’t the only transport process involved in these and like phenomena. More important are convection
currents which distribute the scent much more rapidly.

9.3 Distributions and Functionals

9.3.1 Basic definitions

Let x ∈ R be a random variable, and P (x) a probability distribution for x. The average of any function
φ(x) is then

〈
φ(x)

〉
=

∞∫

−∞

dx P (x)φ(x)

/ ∞∫

−∞

dx P (x) . (9.18)

Let η(t) be a random function of t, with η(t) ∈ R, and let P
[
η(t)

]
be the probability distribution functional

for η(t). Then if Φ
[
η(t)

]
is a functional of η(t), the average of Φ is given by

∫
Dη P

[
η(t)

]
Φ
[
η(t)

]
/∫

Dη P
[
η(t)

]
(9.19)

The expression
∫
Dη P [η]Φ[η] is a functional integral. A functional integral is a continuum limit of a

multivariable integral. Suppose η(t) were defined on a set of t values tn = nτ . A functional of η(t)
becomes a multivariable function of the values ηn ≡ η(tn). The metric then becomes Dη =

∏
n dηn .

4The scattering time τ is related to the particle density n, total scattering cross section σ, and mean speed v̄
through the relation nσv̄

rel
τ = 1, which says that on average one scattering event occurs in a cylinder of cross

section σ and length v̄
rel
τ . Here v̄

rel
=

√
v̄ is the mean relative speed of a pair of particles.



9.3. DISTRIBUTIONS AND FUNCTIONALS 7

Figure 9.1: Discretization of a continuous function η(t). Upon discretization, a functional Φ
[
η(t)

]
be-

comes an ordinary multivariable function Φ({ηj}).

In fact, for our purposes we will not need to know any details about the functional measure Dη ; we will
finesse this delicate issue5. Consider the generating functional,

Z
[
J(t)

]
=

∫
Dη P [η] exp





∞∫

−∞

dt J(t) η(t)



 . (9.20)

It is clear that

1

Z[J ]

δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣∣
J(t)=0

=
〈
η(t1) · · · η(tn)

〉
. (9.21)

The function J(t) is an arbitrary source function. We functionally differentiate with respect to it in order
to find the η-field correlators. The functional derivative δZ

[
J(t)

]
/δJ(s) can be computed by substituting

J(t) → J(t) + ǫ δ(t − s) inside the functional Z[J ], and then taking the ordinary derivative with respect
to ε, i.e.

δZ
[
J(t)

]

δJ(s)
=

dZ
[
J(t) + ε δ(t − s)

]

dε

∣∣∣∣
ε=0

. (9.22)

Thus the functional derivative δZ
[
J(t)

]
/δJ(s) tells us how the functional Z[J ] changes when the func-

tion J(t) is replaced by J(t) + ε δ(t − s). Equivalently, one may eschew this ε prescription and use the
familiar chain rule from differential calculus, supplemented by the rule δJ(t)

/
δJ(s) = δ(t − s) .

Let’s compute the generating functional for a class of distributions of the Gaussian form,

P [η] = exp



−

1

2Γ

∞∫

−∞

dt
(
τ2 η̇2 + η2

)


 = exp



−

1

2Γ

∞∫

−∞

dω

2π

(
1 + ω2τ2

) ∣∣η̂(ω)
∣∣2


 . (9.23)

5A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Me-
chanics and Path Integrals.
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Then Fourier transforming the source function J(t), it is easy to see that

Z[J ] = Z[0] · exp




Γ

2

∞∫

−∞

dω

2π

∣∣Ĵ(ω)
∣∣2

1 + ω2τ2



 . (9.24)

Note that with η(t) ∈ R and J(t) ∈ R we have η∗(ω) = η(−ω) and Ĵ∗(ω) = Ĵ(−ω). Transforming back
to real time, we have

Z[J ] = Z[0] · exp




1

2

∞∫

−∞

dt

∞∫

−∞

dt′ J(t)G(t− t′)J(t′)



 , (9.25)

where

G(s) =
Γ

2τ
e−|s|/τ , Ĝ(ω) =

Γ

1 + ω2τ2
(9.26)

is the Green’s function, in real and Fourier space. Note that

∞∫

−∞

ds G(s) = Ĝ(0) = Γ . (9.27)

We can now compute

〈
η(t1) η(t2)

〉
= G(t1 − t2)

〈
η(t1) η(t2) η(t3) η(t4)

〉
= G(t1 − t2)G(t3 − t4) +G(t1 − t3)G(t2 − t4) +G(t1 − t4)G(t2 − t3) .

(9.28)

The generalization is now easy to prove, and is known as Wick’s theorem:

〈
η(t1) · · · η(t2n)

〉
=

∑

contractions

G(ti
1
− ti

2
) · · · G(ti

2n−1
− ti

2n
) , (9.29)

where the sum is over all distinct contractions of the sequence 1 ·2 · · · 2n into products of pairs. How
many terms are there? Some simple combinatorics answers this question. Choose the index 1. There
are (2n − 1) other time indices with which it can be contracted. Now choose another index. There are
(2n − 3) indices with which that index can be contracted. And so on. We thus obtain

C(n) ≡
{

# of contractions

of 1-2-3 · · · 2n

}
= (2n − 1)(2n − 3) · · · 3 · 1 =

(2n)!

2n n!
. (9.30)

9.3.2 Correlations for the Langevin equation

Now suppose we have the Langevin equation

du

dt
+ γu = η(t) (9.31)
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with u(0) = 0. We wish to compute the joint probability density

P (u1, t1; . . . ;uN , tN ) =
〈
δ
(
u1 − u(t1)

)
· · · δ

(
uN − u(tN )

)〉
, (9.32)

where the average is over all realizations of the random variable η(t):

〈
F
[
η(t)

]〉
=

∫
Dη P

[
η(t)

]
F
[
η(t)

]
. (9.33)

Using the integral representation of the Dirac δ-function, we have

P (u1, t1; . . . ;uN , tN ) =

∞∫

−∞

dω1

2π
· · ·

∞∫

−∞

dωN

2π
e−i(ω

1
u
1
+...+ω

N
u
N
)
〈
eiω1

u(t
1
) · · · eiωN

u(t
N
)
〉

. (9.34)

Now integrating the Langevin equation with the initial condition u(0) = 0 gives

u(tj) =

tj∫

0

dt eγ(t−tj ) η(t) , (9.35)

and therefore we may write

N∑

j=1

ωj u(tj) =

∞∫

−∞

dt f(t) η(t) , f(t) =

N∑

j=1

ωj e
γ(t−tj )Θ(t)Θ(tj − t) . (9.36)

We assume that the random variable η(t) is distributed as a Gaussian, with
〈
η(t) η(t′)

〉
= G(t − t′), as

described above. Using our previous results, we may perform the functional integral over η(t) to obtain

〈
exp i

∞∫

−∞

dt f(t) η(t)
〉
= exp



−

1

2

∞∫

−∞

dt

∞∫

−∞

dt′ G(t− t′) f(t) f(t′)



 = exp

{
− 1

2

N∑

j,j′=1

Mjj′ ωj ωj′

}
, (9.37)

where Mjj′ = M(tj , tj′) with

M(t, t′) =

t∫

0

ds

t′∫

0

ds′ G(s − s′) eγ(s−t) eγ(s
′−t′) . (9.38)

We now have

P (u1, t1; . . . ;uN , tN ) =

∞∫

−∞

dω1

2π
· · ·

∞∫

−∞

dωN

2π
e−i(ω

1
u
1
+...+ω

N
u
N
) exp

{
− 1

2

N∑

j,j′=1

Mjj′ ωj ωj′

}

= det
−1/2(2πM) exp

{
− 1

2

N∑

j,j′=1

M−1
jj′ uj uj′

}
.

(9.39)
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In the limit G(s) = Γ δ(s), we have

Mjj′ = Γ

min(tj ,tj′ )∫

0

dt e2γt e
−γ(tj+t

j′
)
=

Γ

2γ

(
e
−γ|tj−t

j′
| − e

−γ(tj+t
j′
)
)

. (9.40)

Setting N = 1, one has M11(t) =
Γ
2γ

(
1− e−2γt

)
, in which case the one-point distribution is found to be

P (u, t) =

∞∫

−∞

dω

2π
e−iωu exp

(
− Γ (1− e−2γt)ω2

4γ

)

=

√
γ

πΓ (1− e−2γt)
exp

(
− γu2

Γ (1− e−2γt)

) (9.41)

This is a Gaussian distribution which interpolates between P (u, 0) = δ(u) at time t = 0 and at late times
takes the form

P (u, t ≫ γ−1) = (γ/πΓ )1/2 exp(−γu2/Γ ) . (9.42)

The conditional distribution P (u1, t1 |u2, t2) = P (u1, t1;u2, t2)/P (u2, t2) is then found to be

P (u1, t1 |u2, t2) =
√

γ/πΓ

1− e−2γ(t
1
−t

2
)
exp

{
− γ

Γ
·
(
u1 − e−γ(t1−t2) u2

)2

1− e−2γ(t
1
−t

2
)

}
. (9.43)

Here we have assumed t1,2 ≫ γ−1, but have made no assumptions about the magnitude of γ|t1 − t2|.
Note that P (u1, t1 |u2, t2) tends to P (u1, t1) independent of the most recent condition, so long as we are
in the limit |t1 − t2| ≫ γ−1.

As we shall discuss below, a Markov process is one where, at any given time, the statistical properties
of the subsequent evolution are fully determined by state of the system at that time. Equivalently,
every conditional probability depends only on the most recent condition. Is u(t) a continuous time Markov
process? Yes it is! The reason is that u(t) satisfies a first order differential equation, hence only the
initial condition on u is necessary in order to derive its probability distribution at any time in the future.
Explicitly, we can compute P (u1t1|u2t2, u3t3) and show that it is independent of u3 and t3 for t1 > t2 >
t3. This is true regardless of the relative sizes of tj − tj+1 and γ−1.

While u(t) defines a Markov process, its integral x(t) does not. This is because more information than
the initial value of x is necessary in order to integrate forward to a solution at future times. Since x(t)
satisfies a second order ODE, its conditional probabilities should in principle depend only on the two
most recent conditions. We could also consider the evolution of the pair ϕ = (x, u) in phase space, writing

d

dt

(
x
u

)
=

(
0 1
0 −γ

)(
x
u

)
+

(
0

η(t)

)
, (9.44)

or ϕ̇ = Aϕ + η(t), where A is the above 2 × 2 matrix, and the stochastic term η(t) has only a lower
component. The paths ϕ(t) are also Markovian, because they are determined by a first order set of
coupled ODEs. In the limit where tj − tj+1 ≫ γ−1, x(t) effectively becomes Markovian, because we
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interrogate the paths on time scales where the separations are such that the particle has ’forgotten’ its
initial velocity.

See the appendix §9.7 for the solution of general linear ODEs with random forcing.

9.4 The Fokker-Planck Equation

9.4.1 Basic derivation

Suppose x(t) is a stochastic variable. We define the quantity

δx(t) ≡ x(t+ δt)− x(t) , (9.45)

and we assume 〈
δx(t)

〉
= F1

(
x(t)

)
δt ,

〈[
δx(t)

]2〉
= F2

(
x(t)

)
δt , (9.46)

but also that
〈[
δx(t)

]n〉
= O

(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term

is due to diffusion. Now consider the conditional probability density, P (x, t |x0, t0), defined to be the
probability distribution for x ≡ x(t) given that x(t0) = x0. The conditional probability density satisfies
the composition rule,

P (x2, t2 |x0, t0) =
∞∫

−∞

dx1 P (x2, t2 |x1, t1)P (x1, t1 |x0, t0) , (9.47)

for any value of t1. This is also known as the Chapman-Kolmogorov equation. In words, what it says is that
the probability density for a particle being at x2 at time t2, given that it was at x0 at time t0, is given by
the product of the probability density for being at x2 at time t2 given that it was at x1 at t1, multiplied by
that for being at x1 at t1 given it was at x0 at t0, integrated over x1. This should be intuitively obvious,
since if we pick any time t1 ∈ [t0, t2], then the particle had to be somewhere at that time. What is perhaps
not obvious is why the conditional probability P (x2, t2 |x1, t1) does not also depend on (x0, t0). This is
so if the system is described by a Markov process, about we shall have more to say below in §9.5.1. At
any rate, a picture is worth a thousand words: see Fig. 9.2.

Proceeding, we may write

P (x, t+ δt |x0, t0) =
∞∫

−∞

dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0) . (9.48)

Now

P (x, t+ δt |x′, t) =
〈
δ
(
x− δx(t)− x′

)〉

=

{
1 +

〈
δx(t)

〉 d

dx′
+ 1

2

〈[
δx(t)

]2〉 d2

dx′2
+ . . .

}
δ(x − x′) (9.49)

= δ(x − x′) + F1(x
′)
d δ(x − x′)

dx′
δt+ 1

2F2(x
′)
d2δ(x− x′)

dx′2
δt+O

(
(δt)2

)
,
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Figure 9.2: Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

where the average is over the random variables. We now insert this result into eqn. 9.48, integrate by
parts, divide by δt, and then take the limit δt → 0. The result is the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

1

2

∂2

∂x2
[
F2(x)P (x, t)

]
. (9.50)

9.4.2 Brownian motion redux

Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results,
we have F1(x) = F/γM and F2(x) = 2D . A formal proof of these results is left as an exercise for the
reader. The Fokker-Planck equation is then

∂P

∂t
= −u

∂P

∂x
+D

∂2P

∂x2
, (9.51)

where u = F/γM is the average terminal velocity. If we make a Galilean transformation and define
y = x− ut and s = t , then our Fokker-Planck equation takes the form

∂P

∂s
= D

∂2P

∂y2
. (9.52)

This is known as the diffusion equation. Eqn. 9.51 is also a diffusion equation, rendered in a moving
frame.

While the Galilean transformation is illuminating, we can easily solve eqn. 9.51 without it. Let’s take a
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look at this equation after Fourier transforming from x to q:

P (x, t) =

∞∫

−∞

dq

2π
eiqx P̂ (q, t) (9.53)

P̂ (q, t) =

∞∫

−∞

dx e−iqx P (x, t) . (9.54)

Then as should be well known to you by now, we can replace the operator ∂
∂x with multiplication by iq,

resulting in
∂

∂t
P̂ (q, t) = −(Dq2 + iqu) P̂ (q, t) , (9.55)

with solution

P̂ (q, t) = e−Dq2t e−iqut P̂ (q, 0) . (9.56)

We now apply the inverse transform to get back to x-space:

P (x, t) =

∞∫

−∞

dq

2π
eiqx e−Dq2t e−iqut

∞∫

−∞

dx′ e−iqx′

P (x′, 0)

=

∞∫

−∞

dx′ P (x′, 0)

∞∫

−∞

dq

2π
e−Dq2t eiq(x−ut−x′) =

∞∫

−∞

dx′ K(x− x′, t)P (x′, 0) ,

(9.57)

where

K(x, t) =
1√
4πDt

e−(x−ut)2/4Dt (9.58)

is the diffusion kernel. We now have a recipe for obtaining P (x, t) given the initial conditions P (x, 0). If
P (x, 0) = δ(x), describing a particle confined to an infinitesimal region about the origin, then P (x, t) =
K(x, t) is the probability distribution for finding the particle at x at time t. There are two aspects to
K(x, t) which merit comment. The first is that the center of the distribution moves with velocity u.
This is due to the presence of the external force. The second is that the standard deviation σ =

√
2Dt

is increasing in time, so the distribution is not only shifting its center but it is also getting broader as
time evolves. This movement of the center and broadening are what we have called drift and diffusion,
respectively.

9.4.3 Ornstein-Uhlenbeck process

Starting from any initial condition P (x, 0), the Fokker-Planck equation for Brownian motion, even with
drift, inexorably evolves the distribution P (x, t) toward an infinitesimal probability uniformly spread
throughout all space. Consider now the Fokker-Planck equation with F2(x) = 2D as before, but with
F1(x) = −βx. Thus we have diffusion but also drift, where the local velocity is −βx. For x > 0,
probability which diffuses to the right will also drift to the left, so there is a competition between drift
and diffusion. Who wins?
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We can solve this model exactly. Starting with the FPE

∂tP = ∂x(βxP ) +D∂2
xP , (9.59)

we first Fourier transform

P̂ (k, t) =

∞∫

−∞

dx P (x, t) e−ikx . (9.60)

Expressed in terms of independent variables k and t, one finds that the FPE becomes

∂tP̂ + βk ∂kP̂ = −Dk2P̂ . (9.61)

This is known as a quasilinear partial differential equation, and a general method of solution for such equa-
tions is the method of characteristics, which is briefly reviewed in appendix §9.9. A quasilinear PDE in N
independent variables can be transformed into N +1 coupled ODEs. Applying the method to Eqn. 9.61,
one finds

P̂ (k, t) = P̂
(
k e−βt, t = 0

)
exp

{
− D

2β

(
1− e−2βt

)
k2
}

. (9.62)

Suppose P (x, 0) = δ(x − x0), in which case P̂ (k, 0) = e−ikx0 . We may now apply the inverse Fourier
transform to obtain

P (x, t) =

√
β

2πD
· 1

1− e−2βt
exp

{
− β

2D

(
x− x0 e

−βt
)2

1− e−2βt

}
. (9.63)

Taking the limit t → ∞, we obtain the asymptotic distribution

P (x, t → ∞) =

√
β

2πD
e−βx2/2D , (9.64)

which is a Gaussian centered at x = 0, with standard deviation σ =
√

D/β .

Physically, the drift term F1(x) = −βx arises when the particle is confined to a harmonic well. The
equation of motion is then ẍ + γẋ + ω2

0x = η, which is discussed in the appendix, §9.7. If we average
over the random forcing, then setting the acceleration to zero yields the local drift velocity vdrift =
−ω2

0 x/γ, hence β = ω2
0/γ. Solving by Laplace transform, one has L(z) = z2 + γz + ω2

0 , with roots

z± = −γ
2 ±

√
γ2

4 − ω2
0 , and

K(s) =
ez+s − ez−s

z+ − z−
Θ(s) . (9.65)

Note that Re (z±) < 0. Plugging this result into Eqn. 9.180 and integrating, we find

lim
t→∞

M(t, t) =
γΓ

ω2
0

, (9.66)

hence the asymptotic distribution is

P (x, t → ∞) =

√
γω2

0

2πΓ
e−γω2

0
x2/2Γ . (9.67)
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Comparing with Eqn. 9.64, we once again find D = Γ/2γ2. Does the Langevin particle in a harmonic
well describe an Ornstein-Uhlenbeck process for finite t? It does in the limit γ → ∞ , ω0 → ∞ , Γ → ∞ ,
with β = ω2

0/γ and D = Γ/2γ2 finite. In this limit, one has M(t, t) = β−1D
(
1 − e−βt

)
. For γ < ∞, the

velocity relaxation time is finite, and on time scales shorter than γ−1 the path x(t) is not Markovian.

In the Ornstein-Uhlenbeck model, drift would like to collapse the distribution to a delta-function at
x = 0, whereas diffusion would like to spread the distribution infinitely thinly over all space. In that
sense, both terms represent extremist inclinations. Yet in the limit t → ∞, drift and diffusion gracefully
arrive at a grand compromise, with neither achieving its ultimate goal. The asymptotic distribution is
centered about x = 0, but has a finite width. There is a lesson here for the United States Congress, if
only they understood math.

9.4.4 Equilibrium distribution

If we set ∂P/∂t = 0 in eqn. 9.50, we obtain an equation for the steady-state distribution P∞(x),

d

dx

[
F1(x)P∞(x)

]
=

1

2

d2

dx2
[
F2(x)P∞(x)

]
. (9.68)

We assume that P∞(±∞) = 0 in order to ensure normalizability. We may then integrate once, multiply
and divide the LHS by F2(x), and thereby obtain

d

dx
ln
[
F2(x)P∞(x)

]
=

2F1(x)

F2(x)
. (9.69)

The solution is then

P∞(x) =
1

F2(x)
exp





x∫

a

dx′
2F1(x

′)

F2(x
′)



 , (9.70)

where the constant is chosen to guarantee normalization, i.e.
∞∫
0

dx P∞(x) ≡ 1.

9.5 Formal Theory of Stochastic Processes

Here we follow the presentation in chapter 3 in the book by C. Gardiner. Given a time-dependent
random variable X(t), we define the probability distribution

P (x, t) =
〈
δ
(
x−X(t)

)〉
, (9.71)

where the average is over different realizations of the random process. P (x, t) is a density with units
L−d. This distribution is normalized according to

∫
dx P (x, t) = 1 , where dx = ddx is the differential for

the spatial volume, and does not involve time. If we integrate over some region A, we obtain

PA(t) =

∫

A

dx P (x, t) = probability that X(t) ∈ A . (9.72)
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We define the joint probability distributions as follows:

P (x1, t1 ; x2, t2 ; . . . ; xN , tN ) =
〈
δ
(
x1 −X(t1)

)
· · · δ

(
xN −X(tN )

)〉
. (9.73)

From the joint probabilities we may form conditional probability distributions

P (x1, t1 ; x2, t2 ; . . . ; xN , tN |y1, τ1 ; . . . ; yM , τM ) =
P (x1, t1 ; . . . ; xN , tN ; y1, τ1 ; . . . ; yM , τM )

P (y1, τ1 ; . . . ; yM , τM )
.

(9.74)
Although the times can be in any order, by convention we order them so they decrease from left to right:

t1 > · · · > tN > τ1 > · · · τM . (9.75)

9.5.1 Markov processes

In a Markov process, any conditional probability is determined by its most recent condition. Thus,

P (x1, t1 ; x2, t2 ; . . . ; xN , tN |y1, τ1 ; . . . ; yM , τM ) = P (x1, t1 ; x2, t2 ; . . . ; xN , tN |y1, τ1) , (9.76)

where the ordering of the times is as in Eqn. 9.75. This definition entails that all probabilities may be
constructed from P (x, t) and from the conditional distribution P (x, t |y, τ). Clearly we must have that
P (x1, t1 ; x2, t2) = P (x1, t1 |x2, t2)P (x2, t2). At the next level, we have

P (x1, t1 ; x2, t2 ; x3, t3) = P (x1, t1 |x2, t2 ; x3, t3)P (x2, t2 ; x3, t3)

= P (x1, t1 |x2, t2)P (x2, t2 |x3, t3)P (x3, t3) .

Proceeding thusly, we have

P (x1, t1 ; . . . ; xN , tN ) = P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) · · ·P (xN−1, tN−1 |xN , tN )P (xN , tN ) ,
(9.77)

so long as t1 > t2 > . . . > tN .

Chapman-Kolmogorov equation

The probability density P (x1, t1) can be obtained from the joint probability density P (x1, t1 ; x2, t2) by
integrating over x2:

P (x1, t1) =

∫
dx2 P (x1, t1 ; x2, t2) =

∫
dx2 P (x1, t1 |x2, t2)P (x2, t2) . (9.78)

Similarly6,

P (x1, t1 |x3, t3) =

∫
dx2 P (x1, t1 |x2, t2 ; x3, t3)P (x2, t2 |x3, t3) . (9.79)

For Markov processes, then,

P (x1, t1 |x3, t3) =

∫
dx2 P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) . (9.80)

For discrete spaces, we have
∫
dx →∑

x , and
∑

x
2
P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) is a matrix multipli-

cation.
6Because P (x

1
, t

1
; x

2
, t

2
|x

3
, t

3
) =

[
P (x

1
, t

1
; x

2
, t

2
; x

3
, t

3
)/P (x

2
, t

2
; x

3
, t

3
)
]
·
[
P (x

2
, t

2
; x

3
, t

3
)/P (x

3
, t

3
)
]
.
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Do Markov processes exist in nature and are they continuous?

A random walk in which each step is independently and identically distributed is a Markov process.
Consider now the following arrangement. You are given a bag of marbles, an initial fraction p0 of
which are red, q0 of which are green, and r0 of which are blue, with p0 + q0 + r0 = 1. Let σj = +1,

0, or −1 according to whether the jth marble selected is red, green, or blue, respectively, and define
Xn =

∑n
j=1 σj , which would correspond to the position of a random walker who steps either to the

right (σj = +1), remain stationary (σj = 0), or steps left (σj = −1) during each discrete time interval.
If the bag is infinite, then {X1,X2 , . . .} is a Markov process. The probability for σj = +1 remains at
p = p0 and is unaffected by the withdrawal of any finite number of marbles from the bag. But if the
contents of the bag are finite, then the probability p changes with discrete time, and in such a way that
cannot be determined from the instantaneous value of Xn alone. Note that if there were only two colors
of marbles, and σj ∈ {+1 , −1}, then given X0 = 0 and knowledge of the initial number of marbles in
the bag, specifying Xn tells us everything we need to know about the composition of the bag at time n.
But with three possibilities σj ∈ {+1 , 0 , −1} we need to know the entire history in order to determine

the current values of p, q, and r. The reason is that the sequences 0000, 0011, 1111 (with 1 ≡ −1) all have
the same effect on the displacement X, but result in a different composition remaining in the bag.

In physical systems, processes we might model as random have a finite correlation time. We saw above
that the correlator of the random force η(t) in the Langevin equation is written

〈
η(t) η(t + s)

〉
= φ(s),

where φ(s) decays to zero on a time scale τφ. For time differences |s| < τφ , the system is not Markovian.
In addition, the system itself may exhibit some memory. For example, in the Langevin equation u̇+γu =
η(t), there is a time scale γ−1 over which the variable u(t) forgets its previous history. Still, if τφ = 0 , u(t)
is a Markov process, because the equation is first order and therefore only the most recent condition is
necessary in order to integrate forward from some past time t = t0 to construct the statistical ensemble
of functions u(t) for t > t0. For second order equations, such as ẍ + γẋ = η(t), two initial conditions
are required, hence diffusion paths X(t) are only Markovian on time scales beyond γ−1, over which the
memory of the initial velocity is lost. More generally, if ϕ is an N -component vector in phase space, and

dϕi

dt
= Ai(ϕ, t) +Bij(ϕ, t) ηj(t) , (9.81)

where we may choose
〈
ηi(t) ηj(t

′)
〉
= δij δ(t− t′), then the path ϕ(t) is a Markov process.

While a random variable X(t) may take values in a continuum, as a function of time it may still exhibit
discontinuous jumps. That is to say, even though time t may evolve continuously, the sample paths
X(t) may be discontinuous. As an example, consider the Brownian motion of a particle moving in a
gas or fluid. On the scale of the autocorrelation time, the velocity changes discontinuously, while the
position X(t) evolves continuously (although not smoothly). The condition that sample paths X(t)
evolve continuously is known as the Lindeberg condition,

lim
τ→0

1

τ

∫

|x−y|>ε

dy P (y, t+ τ |x, t) = 0 , (9.82)

for all ε > 0. If this condition is satisfied, then the sample paths X(t) are continuous with probability
one. Two examples:
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Figure 9.3: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From K. Jacobs
and D. A. Steck, New J. Phys. 13, 013016 (2011).

(1) Wiener process: As we shall discuss below, this is a pure diffusion process with no drift or jumps,
with

P (x, t |x′, t′) = 1√
4πD|t− t′|

exp

(
− (x− x′)2

4D|t− t′|

)
(9.83)

in one space dimension. The Lindeberg condition is satisfied, and the sample paths X(t) are
continuous.

(2) Cauchy process: This is a process in which sample paths exhibit finite jumps, and hence are not
continuous. In one space dimension,

P (x, t |x′, t′) = |t− t′|
π
[
(x− x′)2 + (t− t′)2

] . (9.84)

Note that in both this case and the Wiener process described above, we have limt−t′→0 P (xt |x′t′) =
δ(x − x′). However in this example the Lindeberg condition is not satisfied.

To simulate, given xn = X(t = nτ), choose y ∈ Db(xn), where Db(xn) is a ball of radius b > ε centered
at xn. Then evaluate the probability p ≡ P (y, (n + 1)τ |x, nτ). If p exceeds a random number drawn
from a uniform distribution on [0, 1], accept and set xn+1 = X

(
(n + 1)τ

)
= y. Else reject and choose a

new y and proceed as before.

9.5.2 Martingales

A Martingale is a stochastic process for which the conditional average of the random variable X(t) does
not change from its most recent condition. That is,

〈
x(t)

∣∣ {y1 τ1 ; y2, τ2 ; . . . ; yM , τM
}〉

=

∫
dx P (x, t |y1, τ1 ; . . . ; yM , τM )x = y1 . (9.85)
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In this sense, a Martingale is a stochastic process which represents a ’fair game’. Not every Martingale
is a Markov process, and not every Markov process is a Martingale. The Wiener process is a Martingale.

One very important fact about Martingales, which we will here derive in d = 1 dimension. For t1 > t2,

〈
x(t1)x(t2)

〉
=

∫
dx1

∫
dx2 P (x1, t1 ; x2, t2)xx2 =

∫
dx1

∫
dx2 P (x1, t1 ; x2, t2)P (x2, t2)x1 x2

=

∫
dx2 P (x2, t2)x2

∫
dx1 P (x1, t1 |x2, t2)x1 =

∫
dx2 P (x2, t2)x

2
2 =

〈
x2(t2)

〉
.

(9.86)

One can further show that, for t1 > t2 > t3 ,
〈[

x(t1)− x(t2)
][
x(t2)− x(t3)

]〉
= 0 , (9.87)

which says that at the level of pair correlations, past performance provides no prediction of future results.

9.5.3 Differential Chapman-Kolmogorov equations

Suppose the following conditions apply:

|y − x| > ε =⇒ lim
τ→0

1

τ
P (y, t+ τ |x, t) = W (y |x, t) (9.88)

lim
τ→0

1

τ

∫

|y−x|<ε

dy (yµ − xµ)P (y, t+ τ |x, t) = Aµ(x, t) +O(ε) (9.89)

lim
τ→0

1

τ

∫

|y−x|<ε

dy (yµ − xµ) (yν − xν)P (y, t+ τ |x, t) = Bµν(x, t) +O(ε) , (9.90)

where the last two conditions hold uniformly in x, t, and ε. Then following §3.4.1 and §3.6 of Gardiner,
one obtains the forward differential Chapman-Kolmogorov equation (DCK+),

∂P (x, t |x′, t′)

∂t
= −

∑

µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
+

1

2

∑

µ,ν

∂2

∂xµ ∂xν

[
Bµν(x, t)P (x, t |x′, t′)

]

+

∫
dy
[
W (x |y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
,

(9.91)

and the backward differential Chapman-Kolmogorov equation (DCK−),

∂P (x, t |x′, t′)

∂t′
= −

∑

µ

Aµ(x
′, t′)

∂P (x, t |x′, t′)

∂x′µ
+

1

2

∑

µ,ν

Bµν(x
′, t′)

∂2P (x, t |x′, t′)

∂x′µ ∂x
′
ν

+

∫
dy W (y |x′, t′)

[
P (x, t |x′, t′)− P (x, t |y, t′)

]
.

(9.92)

Note that the Lindeberg condition requires that

lim
τ→0

1

τ

∫

|x−y|>ε

dy P (y, t+ τ |x, t) =
∫

|x−y|>ε

dy W (y |x, t) = 0 , (9.93)
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which must hold for any ε > 0. Taking the limit ε → 0, we conclude7 W (y |x, t) = 0 if the Lindeberg
condition is satisfied. If there are any jump processes, i.e. if W (y |x, t) does not identically vanish for all
values of its arguments, then Lindeberg is violated, and the paths are discontinuous.

Some applications:

(1) Master equation: If Aµ(x, t) = 0 and Bµν(x, t) = 0, then we have from DCK+,

∂P (x, t |x′, t′)

∂t
=

∫
dy
[
W (x |y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
. (9.94)

Let’s integrate this equation over a time interval ∆t. Assuming P (x, t |x′, t) = δ(x− x′), we have

P (x, t+∆t |x′, t) =
[
1−∆t

∫
dy W (y |x′, t)

]
δ(x − x′) +W (x |x′, t)∆t . (9.95)

Thus,

Q(x′, t+∆t, t) = 1−∆t

∫
dy W (y |x′, t) (9.96)

is the probability for a particle to remain at x′ over the interval
[
t, t+∆t

]
given that it was at x′ at

time t. Iterating this relation, we find

Q(x, t, t0) =
(
1− Λ(x, t−∆t)∆t

)(
1− Λ(x, t− 2∆t)∆t

)
· · ·
(
1− Λ(x, t0)∆t

) 1︷ ︸︸ ︷
Q(x, t0, t0)

= P exp

{
−

t∫

t
0

dt′ Λ(x, t′)

}
, (9.97)

where Λ(x, t) =
∫
dy W (y |x, t) and P is the path ordering operator which places earlier times to

the right.

The interpretation of the function W (y |x, t) is that it is the probability density rate for the random
variable X to jump from x to y at time t. Thus, the dimensions of W (y |x, t) are L−d T−1. Such
processes are called jump processes. For discrete state spaces, the Master equation takes the form

∂P (n, t |n′, t′)

∂t
=
∑

m

[
W (n |m, t)P (m, t |n′, t′)−W (m |n, t)P (n, t |n′, t′)

]
. (9.98)

Here W (n |m, t) has units T−1, and corresponds to the rate of transitions from state m to state n

at time t.

7What about the case y = x, which occurs for ε = 0, which is never actually reached throughout the limiting
procedure? The quantity W (x |x, t) corresponds to the rate at which the system jumps from x to x at time t,
which is not a jump process at all. Note that the contribution from y = x cancels from the DCK± equations. In
other words, we can set W (x |x, t) ≡ 0.
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(2) Fokker-Planck equation: If W (x |y, t) = 0, DCK+ gives

∂P (x, t |x′, t′)

∂t
= −

∑

µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
+ 1

2

∑

µ,ν

∂2

∂xµ ∂xν

[
Bµν(x, t)P (x, t |x′, t′)

]
,

(9.99)
which is a more general form of the Fokker-Planck equation we studied in §9.4 above. Defining
the average

〈
F (x, t)

〉
=
∫
ddx F (x, t)P (x, t |x′, t′) , via integration by parts we derive

d

dt

〈
xµ
〉
=
〈
Aµ

〉

d

dt

〈
xµ xν

〉
=
〈
xµAν

〉
+
〈
Aµ xν

〉
+ 1

2

〈
Bµν +Bνµ

〉
.

(9.100)

For the case where Aµ(x, t) and Bµν(x, t) are constants independent of x and t, we have the solu-
tion

P (x, t |x′, t′) = det
−1/2

[
2πB∆t

]
exp

{
− 1

2∆t

(
∆xµ −Aµ∆t

)
B−1

µν

(
∆xν −Aν ∆t

)
}

, (9.101)

where ∆x ≡ x− x′ and ∆t ≡ t− t′. This is normalized so that the integral over x is unity. If we
subtract out the drift A∆t, then clearly

〈(
∆xν −Aν ∆t

) (
∆xµ −Aµ∆t

)〉
= Bµν ∆t , (9.102)

which is diffusive.

(3) Liouville equation: If W (x |y, t) = 0 and Bµν(x, t) = 0, then DCK+ gives

∂P (x, t |x′, t′)

∂t
= −

∑

µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
. (9.103)

This is Liouville’s equation from classical mechanics, also known as the continuity equation. Sup-
pressing the (x′, t′) variables, the above equation is equivalent to

∂̺

∂t
+∇·(̺v) = 0 , (9.104)

where ̺(x, t) = P (x, t |x′, t′) and v(x, t) = A(x, t). The product of A and P is the current is
j = ̺v. To find the general solution, we assume the initial conditions are P (x, t |x′, t) = δ(x−x′).
Then if x(t;x′) is the solution to the ODE

dx(t)

dt
= A

(
x(t), t

)
(9.105)

with boundary condition x(t′) = x′, then by applying the chain rule, we see that

P (x, t |x′, t′) = δ
(
x− x(t;x′)

)
(9.106)

solves the Liouville equation. Thus, the probability density remains a δ-function for all time.
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9.5.4 Stationary Markov processes and ergodic properties

Stationary Markov processes satisfy a time translation invariance:

P (x1, t1 ; . . . ; xN , tN ) = P (x1, t1 + τ ; . . . ; xN , tN + τ) . (9.107)

This entails P (x, t) = P (x) and P (x1, t1 |x2, t2) = P (x1, t1 − t2 |x2, 0). Consider the case of one space
dimension and define the time average

XT ≡
1

T

T/2∫

T/2

dt x(t) . (9.108)

We use a bar to denote time averages and angular brackets 〈 · · · 〉 to denote averages over the random-
ness. Thus, 〈XT 〉 = 〈x〉, which is time-independent for a stationary Markov process. The variance of
XT is

Var
(
XT

)
=

1

T 2

T/2∫

T/2

dt

T/2∫

T/2

dt′
〈
x(t)x(t′)

〉
c

, (9.109)

where the connected average is 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. We define

C(t1 − t2) ≡ 〈x(t1)x(t2)
〉
=

∞∫

−∞

dx1

∞∫

−∞

dx2 x1 x2 P (x1, t1 ; x2, t2) . (9.110)

If C(τ) decays to zero sufficiently rapidly with τ , for example as an exponential e−γτ , then Var
(
XT

)
→ 0

as T → ∞, which means that XT→∞ = 〈x〉. Thus the time average is the ensemble average, which
means the process is ergodic.

Wiener-Khinchin theorem

Define the quantity

x̂T (ω) =

T/2∫

−T/2

dt x(t) eiωt . (9.111)

The spectral function ST (ω) is given by

ST (ω) =
〈 1

T

∣∣x̂T (ω)
∣∣2
〉

. (9.112)

We are interested in the limit T → ∞. Does S(ω) ≡ ST→∞(ω) exist?

Observe that

〈∣∣x̂T (ω)
∣∣2
〉
=

T/2∫

−T/2

dt1

T/2∫

−T/2

dt2 eiω(t2−t
1
)

C(t
1
−t

2
)︷ ︸︸ ︷〈

x(t1)x(t2)
〉
=

T∫

−T

dτ e−iωτ C(τ)
(
T − |τ |

)
. (9.113)
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Thus,

S(ω) = lim
T→∞

∞∫

−∞

dτ eiωτ C(τ)

(
1− |τ |

T

)
Θ
(
T − |τ |

)
=

∞∫

−∞

dτ eiωτ C(τ) . (9.114)

The second equality above follows from Lebesgue’s dominated convergence theorem, which you can
look up on Wikipedia8. We therefore conclude the limit exists and is given by the Fourier transform of
the correlation function C(τ) =

〈
x(t)x(t+ τ)

〉
.

Another way to derive this WK theorem is to write C(τ) =
∞∫

−∞

dω′

2π Ĉ(ω′) e−iω′τ , in which case

〈∣∣x̂T (ω)
∣∣2
〉
=

∞∫

−∞

dω′

2π

T/2∫

−T/2

dt1

T/2∫

−T/2

dt2 e
i(ω−ω′)(t

2
−t

1
) Ĉ(ω′)

ST (ω) =
〈 1

T

∣∣x̂T (ω)
∣∣2
〉
=

∞∫

−∞

dω′

2πT
Ĉ(ω′)

(
2 sin

(
(ω − ω′)T/2

)

(ω − ω′)

)2
.

(9.115)

But since

lim
T→∞

2 sin2
(
(ω − ω′)T/2

)

πT (ω − ω′)2
= δ(ω − ω′) , (9.116)

we have S(ω) = limT→∞ ST (ω) = Ĉ(ω) .

9.5.5 Approach to stationary solution

We have seen, for example, how in general an arbitrary initial state of the Master equation will converge
exponentially to an equilibrium distribution. For stationary Markov processes, the conditional distribu-
tion P (x, t |x′, t′) converges to an equilibrium distribution Peq(x) as t−t′ → ∞. How can we understand
this convergence in terms of the differential Chapman-Kolmogorov equation? We summarize here the
results in §3.7.3 of Gardiner.

SupposeP1(x, t) and P2(x, t) are each solutions to the DCK+ equation, and furthermore that W (x |x′, t),
Aµ(x, t), and Bµν(x, t) are all independent of t. Define the Lyapunov functional

K[P1, P2, t] =

∫
dx
(
P1 ln(P1/P2) + P2 − P1

)
. (9.117)

Since P1,2(x, t) are both normalized, the integrals of the last two terms inside the big round brackets
cancel. Nevertheless, it is helpful to express K in this way since, factoring out P1 from the terms inside
the brackets, we may use f(z) = z − ln z − 1 ≥ 0 for z ∈ R+ , where z = P2/P1. Thus, K ≥ 0, and the
minimum value is obtained for P1(x, t) = P2(x, t).

8If we define the one parameter family of functions CT (τ) = C(τ)
(
1− |τ |

T

)
Θ(T − |τ |), then as T → ∞ the

function CT (τ) e
iωτ converges pointwise to C(τ) eiωτ , and if |C(τ)| is integrable on R, the theorem guarantees the

second equality in Eqn. 9.114.
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Next, evaluate the time derivative K̇:

dK

dt
=

∫
dx

{
∂P1

∂t
·
[
lnP1 − lnP2 + 1

]
− ∂P2

∂t
· P1

P2

}
. (9.118)

We now use DCK+ to obtain ∂tP1,2 and evaluate the contributions due to drift, diffusion, and jump
processes. One finds

(
dK

dt

)

drift

= −
∑

µ

∫
dx

∂

∂xµ

[
Aµ P1 ln

(
P1/P2

)]
(9.119)

(
dK

dt

)

diff

= −1

2

∑

µ,ν

∫
dx Bµν

∂ ln(P1/P2)

∂xµ

∂ ln(P1/P2)

∂xν
+

1

2

∫
dx

∂2

∂xµ ∂xν

[
Bµν P1 ln(P1/P2)

]
(9.120)

(
dK

dt

)

jump

=

∫
dx

∫
dx′ W (x |x′)P2(x

′, t)
[
φ′ ln(φ/φ′)− φ+ φ′

]
, (9.121)

where φ(x, t) ≡ P1(x, t)/P2(x, t) in the last line. Dropping the total derivative terms, which we may set
to zero at spatial infinity, we see that K̇drift = 0, K̇diff ≤ 0, and K̇jump ≤ 0. Barring pathological cases9,
one has that K(t) is a nonnegative decreasing function. Since K = 0 when P1(x, t) = P2(x, t) = Peq(x),
we see that the Lyapunov analysis confirms that K is strictly decreasing. If we set P2(x, t) = Peq(x), we
conclude that P1(x, t) converges to Peq(x) as t → ∞.

9.6 Appendix I : Nonlinear diffusion

9.6.1 PDEs with infinite propagation speed

Starting from an initial probability density P (x, t = 0) = δ(x), we saw how Fickian diffusion, described
by the equation ∂tP = ∇·(D∇P ), gives rise to the solution

P (x, t) = (4πDt)−d/2 e−x2/4Dt , (9.122)

for all t > 0, assuming D is a constant. As remarked in §9.2.1, this violates any physical limits on the
speed of particle propagation, including that set by special relativity, because P (x, t) > 0 for all x at any
finite value of t.

It’s perhaps good to step back at this point and recall the solution to the one-dimensional discrete ran-
dom walk, where after each time increment the walker moves to the right (∆X = 1) with probability p
and to the left (∆X = −1) with probability 1 − p. To make things even simpler we’ll consider the case
with no drift, i.e. p = 1

2 . The distribution for X after N time steps is of the binomial form:

PN (X) = 2−N

(
N

1
2 (N −X)

)
. (9.123)

9See Gardiner, §3.7.3.



9.6. APPENDIX I : NONLINEAR DIFFUSION 25

Invoking Stirling’s asymptotic result lnK! = K lnK −K +O(lnK) for K ≫ 1, one has10

PN (X) ≃
√

2

πN
e−X2/2N . (9.124)

We note that the distribution in Eqn. 9.123 is cut off at |X| = N , so that PN (X) = 0 for |X| > N . This
reflects the fact that the walker travels at a fixed speed of one step per time interval. This feature is lost in
Eqn. 9.124, because the approximation which led to this result is not valid in the tails of the distribution.
One might wonder about the results of §9.3 in this context, since we ultimately obtained a diffusion
form for P (x, t) using an exact functional averaging method. However, since we assumed a Gaussian
probability functional for the random forcing η(t), there is a finite probability for arbitrarily large values

of the forcing. For example, consider the distribution of the integrated force φ =
∫ t2
t1

dt η(t):

P (φ,∆t) =

〈
δ

(
φ−

t
2∫

t
1

dt η(t)

)〉
=

1√
2πΓ ∆t

e−φ2/2Γ∆t , (9.125)

where ∆t = t2 − t1. This distribution is nonzero for arbitrarily large values of φ.

Mathematically, the diffusion equation is an example of what is known as a parabolic partial differential
equation. The Navier-Stokes equations of hydrodynamics are also parabolic PDEs. The other two classes
are called elliptical and hyperbolic. Paradigmatic examples of these classes include Laplace’s equation
(elliptical) and the Helmholtz equation (hyperbolic). Hyperbolic equations propagate information at
finite propagation speed. For second order PDEs of the form

Aij

∂2Ψ

∂xi ∂xj
+Bi

∂Ψ

∂xi
+ CΨ = S , (9.126)

the PDE is elliptic if the matrix A is positive definite or negative definite, parabolic if A has one zero
eigenvalue, and hyperbolic if A is nondegenerate and indefinite (i.e. one positive and one negative eigen-
value). Accordingly, one way to remedy the unphysical propagation speed in the diffusion equation is
to deform it to a hyperbolic PDE such as the telegrapher’s equation,

τ
∂2Ψ

∂t2
+

∂Ψ

∂t
+ γΨ = D

∂2Ψ

∂x2
. (9.127)

When γ = 0, the solution for the initial condition Ψ(x, 0) = δ(x) is

Ψ(x, t) =
1√
4Dt

e−t/2τ I0



√(

t

2τ

)2
− x2

4Dτ


Θ

(√
D/τ t− |x|

)
. (9.128)

Note that Ψ(x, t) vanishes for |x| > ct , where c =
√

D/τ is the maximum propagation speed. One can
check that in the limit τ → 0 one recovers the familiar diffusion kernel.

10The prefactor in this equation seems to be twice the expected (2πN)−1/2, but since each step results in ∆X =
±1, if we start from X

0
= 0 then after N steps X will be even if N is even and odd if N is odd. Therefore the

continuum limit for the normalization condition on PN (X) is
∑

X PN (X) ≈ 1

2

∫∞

−∞
dX PN (X) = 1.



26 CHAPTER 9. STOCHASTIC PROCESSES

Figure 9.4: Repeating unit of a transmission line. Credit: Wikipedia

The telegrapher’s equation

To derive the telegrapher’s equation, consider the section of a transmission line shown in Fig. 9.4. Let
V (x, t) be the electrical potential on the top line, with V = 0 on the bottom (i.e. ground). Per unit
length a, the potential drop along the top line is ∆V = a ∂xV = −IR − L∂tI , and the current drop is
∆I = a ∂xI = −GV − C ∂tV . Differentiating the first equation with respect to x and using the second
for ∂xI , one arrives at Eqn. 9.127 with τ = LC/(RC+GL), γ = RG/(RC+GL), and D = a2/(RC+GL).

9.6.2 The porous medium and p-Laplacian equations

Another way to remedy this problem with the diffusion equation is to consider some nonlinear exten-
sions thereof11. Two such examples have been popular in the mathematical literature, the porous medium
equation (PME),

∂u

∂t
= ∇2

(
um
)

, (9.129)

and the p-Laplacian equation,
∂u

∂t
= ∇·

(
|∇u|p−2

∇u
)

. (9.130)

Both these equations introduce a nonlinearity whereby the diffusion constant D depends on the field
u. For example, the PME can be rewritten ∂tu = ∇ ·

(
mum−1

∇u
)
, whence D = mum−1. For the p-

Laplacian equation, D = |∇u|p−2. These nonlinearities strangle the diffusion when u or |∇u| gets small,
preventing the solution from advancing infinitely fast.

As its name betokens, the PME describes fluid flow in a porous medium. A fluid moving through a
porous medium is described by three fundamental equations:

(i) Continuity: In a medium with porosity ε, the continuity equation becomes ε ∂t̺ + ∇·(̺v) = 0,
where ̺ is the fluid density. This is because in a volume Ω where the fluid density is changing at
a rate ∂t̺, the rate of change of fluid mass is εΩ ∂t̺.

(ii) Darcy’s law: First articulated in 1856 by the French hydrologist Henry Darcy, this says that the flow
velocity is directly proportional to the pressure gradient according to the relation v = −(K/µ)∇p,
where the permeability K depends on the medium but not on the fluid, and µ is the shear viscosity
of the fluid.

11See J. L. Vazquez, The Porous Medium Equation (Oxford, 2006).



9.6. APPENDIX I : NONLINEAR DIFFUSION 27

(iii) Fluid equation of state: This is a relation between the pressure p and the density ̺ of the fluid. For
ideal gases, p = A̺γ where A is a constant and γ = cp/cV is the specific heat ratio.

Putting these three equations together, we obtain

∂̺

∂t
= C∇2

(
̺m
)

, (9.131)

where C = Aγk/(k + 1)εµ and m = 1 + γ.

9.6.3 Illustrative solutions

A class of solution to the PME was discussed in the Russian literature in the early 1950’s in a series
of papers by Zeldovich, Kompaneets, and Barenblatt. The ZKB solution, which is isotropic in d space
dimensions, is of the scaling form,

U(r, t) = t−α F
(
r t−α/d

)
; F (ξ) =

(
C − k ξ2

) 1

m−1

+
, (9.132)

where r = |x| ,

α =
d

(m− 1)d + 2
, k =

m− 1

2m
· 1

(m− 1)d+ 2
, (9.133)

and the + subscript in the definition of F (ξ) in Eqn. 9.132 indicates that the function is cut off and van-
ishes when the quantity inside the round brackets becomes negative. We also take m > 1, which means
that α < 1

2d. The quantity C is determined by initial conditions. The scaling form is motivated by the
fact that the PME conserves the integral of u(x, t) over all space, provided the current j = −mum−1

∇u
vanishes at spatial infinity. Explicitly, we have

∫
ddx U(x, t) = Ωd

∞∫

0

dr rd−1 t−α F
(
r t−α/d

)
= Ωd

∞∫

0

ds sd−1 F (s) , (9.134)

where Ωd is the total solid angle in d space dimensions. The above integral is therefore independent of t,
which means that the integral of U is conserved. Therefore as t → 0, we must have U(x, t = 0) = Aδ(x),
where A is a constant which can be expressed in terms of C , m, and d. We plot the behavior of this
solution for the case m = 2 and d = 1 in Fig. 9.5, and compare and contrast it to the solution of the
diffusion equation. Note that the solutions to the PME have compact support, i.e. they vanish identically
for r >

√
C/k tα/d, which is consistent with a finite maximum speed of propagation. A similar point

source solution to the p-Laplacian equation in d = 1 was obtained by Barenblatt:

U(x, t) = t−m
(
C − k |ξ|1+m−1

) m
m−1

, (9.135)

for arbitrary C > 0, with ξ = x t−1/2m, and k = (m− 1)(2m)−(m+1)/m .

To derive the ZKB solution of the porous medium equation, it is useful to write the PME in terms of the
’pressure’ variable v = m

m−1 u
m−1. The PME then takes the form

∂v

∂t
= (m− 1) v∇2v + (∇v)2 . (9.136)
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Figure 9.5: Top panel: evolution of the diffusion equation with D = 1 and σ = 1 for times t = 0.1, 0.25,
0.5, 1.0, and 2.0. Bottom panel: evolution of the porous medium equation with m = 2 and d = 1 and C
chosen so that P (x = 0, t = 0.1) is equal to the corresponding value in the top panel (i.e. the peak of the
blue curve).

We seek an isotropic solution in d space dimensions, and posit the scaling form

V (x, t) = t−λG
(
r t−µ

)
, (9.137)

where r = |x|. Acting on isotropic functions, the Laplacian is given by ∇2 = ∂2

∂r2
+ d−1

r
∂
∂r . Defining

ξ = r t−µ, we have

∂V

∂t
= −t−1

[
λG+ µ ξ G′

]
,

∂V

∂r
= t−(λ+µ)G′ ,

∂2V

∂r2
= t−(λ+2µ) G′′ , (9.138)

whence

−
[
λG+ µ ξ G′

]
t−1 =

[
(m− 1)GG′′ + (m− 1) (d− 1) ξ−1 GG′ + (G′)2

]
t−2(λ+µ) . (9.139)

At this point we can read off the result λ+µ = 1
2 and eliminate the t variable, which validates our initial

scaling form hypothesis. What remains is

λG+ µ ξG′ + (m− 1)GG′′ + (m− 1)(d − 1) ξ−1 GG′ + (G′)2 = 0 . (9.140)
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Inspection now shows that this equation has a solution of the form G(ξ) = A− b ξ2. Plugging this in, we
find

λ = (m− 1)α , µ =
α

d
, b =

α

2d
, α ≡ d

(m− 1) d + 2
. (9.141)

The quadratic function G(ξ) = A − b ξ2 goes negative for ξ2 > A/b, which is clearly unphysical in
the context of diffusion. To remedy this, Zeldovich et al. proposed to take the maximum value of G(ξ)
and zero. Clearly G = 0 is a solution, hence G(ξ) =

(
A − b ξ2

)
+

is a solution for |ξ| <
√

A/b and

for |ξ| >
√

A/b , but what about the points ξ = ±
√

A/b ? The concern is that the second derivative
G′′(ξ) has a delta function singularity at those points, owing to the discontinuity of G′(ξ). However, an
examination of Eqn. 9.140 shows that G′′ is multiplied by G, and we know that limx→0 x δ(x) = 0. The
remaining nonzero terms in this equation are then

[
µ ξ +G′(ξ)

]
G′(ξ) , which agreeably vanishes. So we

have a solution of the form12

V (x, t) =
1

t

(
A′ t2α/d − αx2

)
+

, (9.142)

where A′ = 2dA.

9.7 Appendix II : Langevin equation for a particle in a harmonic well

Consider next the equation

Ẍ + γẊ + ω2
0X =

F

M
+ η(t) , (9.143)

where F is a constant force. We write X = x0 + x and measure x relative to the potential minimum
x0 = F/Mω2

0 , yielding

ẍ+ γ ẋ+ ω2
0 x = η(t) . (9.144)

We solve via Laplace transform. Recall

x̌(z) =

∞∫

0

dt e−zt x(t) , x(t) =

∫

C

dz

2πi
e+zt x̌(z) , (9.145)

where the contour C extends from c− i∞ to c+ i∞ such that all poles of the x̌(z) lie to the left of C. Then

∞∫

0

dt e−zt
(
ẍ+ γ ẋ+ ω2

0 x
)
= −(z + γ)x(0) − ẋ(0) +

(
z2 + γz + ω2

0

)
x̌(z)

=

∞∫

0

dt e−zt η(t) = η̌(z) .

(9.146)

12Actually the result limx→0 x δ(x) = 0 is valid in the distribution sense, i.e. underneath an integral, provided
x δ(x) is multiplied by a nonsingular function of x. Thus, Eqn. 9.142 constitutes a weak solution to the pressure
form of the porous medium equation 9.136. Zeldovich et al. found numerically that cutting off the negative part of
A− b ξ2 is appropriate. Mathematically, Vazquez has shown that when the initial data are taken within a suitable
class of integrable functions, the weak solution exists and is unique.
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Thus, we have

x̌(z) =
(z + γ)x(0) + ẋ(0)

z2 + γz + ω2
0

+
1

z2 + γz + ω2
0

∞∫

0

dt e−zt η(t) . (9.147)

Now we may write
z2 + γz + ω2

0 = (z − z+)(z − z−) , (9.148)

where z± = −1
2γ ±

√
1
4γ

2 − ω2
0 . Note that Re (z±) ≤ 0 and that z∓ = −γ − z± .

Performing the inverse Laplace transform, we obtain

x(t) =
x(0)

z+ − z−

(
z+ ez−t − z− ez+t

)
+

ẋ(0)

z+ − z−

(
ez+t − ez−t

)
+

∞∫

0

ds K(t− s) η(s) , (9.149)

where

K(t− s) =
Θ(t− s)

(z+ − z−)

(
ez+(t−s) − ez−(t−s)

)
(9.150)

is the response kernel and Θ(t − s) is the step function which is unity for t > s and zero otherwise. The
response is causal, i.e. x(t) depends on η(s) for all previous times s < t, but not for future times s > t.
Note that K(τ) decays exponentially for τ → ∞, if Re(z±) < 0. The marginal case where ω0 = 0 and
z+ = 0 corresponds to the diffusion calculation we performed in the previous section.

It is now easy to compute

〈
x2(t)

〉
c
= Γ

t∫

0

ds K2(s) =
Γ

2ω2
0γ

(t → ∞) (9.151)

〈
ẋ2(t)

〉
c
= Γ

t∫

0

ds K̇2(s) =
Γ

2γ
(t → ∞) , (9.152)

where the connected average is defined by 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. Therefore,

〈
1
2Mẋ2 + 1

2Mω2
0x

2
〉
t→∞

=
MΓ

2γ
. (9.153)

Setting this equal to 2× 1
2kB

T by equipartition again yields Γ = 2γk
B
T/M .

9.8 Appendix III : General Linear Autonomous Inhomogeneous ODEs

9.8.1 Solution by Fourier transform

We can solve general autonomous linear inhomogeneous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = η(t) . (9.154)
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We can write this as
Lt x(t) = η(t) , (9.155)

where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (9.156)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t, t′) η(t′) , (9.157)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 9.155 and 9.157 to
be true, we must have

Lt x(t) =

this vanishes︷ ︸︸ ︷
Lt xh(t) +

∞∫

−∞

dt′ LtG(t, t′) η(t′) = η(t) , (9.158)

which means that LtG(t, t′) = δ(t− t′), where δ(t− t′) is the Dirac δ-function.

If the differential equation Lt x(t) = η(t) is defined over some finite or semi-infinite t interval with
prescribed boundary conditions on x(t) at the endpoints, then G(t, t′) will depend on t and t′ separately.
For the case we are now considering, let the interval be the entire real line t ∈ (−∞,∞). Then G(t, t′) =
G(t− t′) is a function of the single variable t− t′.

Note that Lt = L
(
d
dt

)
may be considered a function of the differential operator d

dt . If we now Fourier

transform the equation Lt x(t) = η(t), we obtain

∞∫

−∞

dt eiωt η(t) =

∞∫

−∞

dt eiωt
{

dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}
x(t)

=

∞∫

−∞

dt eiωt

{
(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}
x(t) .

(9.159)

Thus, if we define

L̂(ω) =
n∑

k=0

ak (−iω)k , (9.160)

then we have L̂(ω) x̂(ω) = η̂(ω) , where an ≡ 1. According to the Fundamental Theorem of Algebra, the
nth degree polynomial L̂(ω) may be uniquely factored over the complex ω plane into a product over n
roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (9.161)

If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus, the roots

appear in pairs which are symmetric about the imaginary axis. I.e. if Ω = a + ib is a root, then so is
−Ω∗ = −a+ ib.
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The general solution to the homogeneous equation is

xh(t) =

n∑

σ=1

Aσ e
−iωσt , (9.162)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in Fourier
space, Ĝ(ω) is then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (9.163)

Note that
[
Ĝ(ω)

]∗
= Ĝ(−ω), which is equivalent to the statement that G(t − t′) is a real function of its

argument. The general solution to the inhomogeneous equation is then

x(t) = xh(t) +

∞∫

−∞

dt′ G(t− t′) η(t′) , (9.164)

where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(t− t′) =

∞∫

−∞

dω

2π
e−iω(t−t′) Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iω(t−t′)

(ω − ω1)(ω − ω2) · · · (ω − ωn)
=

n∑

σ=1

e−iωσ(t−t′)

i L̂′(ωσ)
Θ(t− t′) ,

(9.165)

where we assume that Imωσ < 0 for all σ. This guarantees causality – the response x(t) to the influence
η(t′) is nonzero only for t > t′.

As an example, consider the familiar case L̂(ω) = −ω2 − iγω + ω2
0, which can be written as L̂(ω) =

−(ω−ω+) (ω−ω−) with ω± = − i
2γ±β, and β =

(
ω2
0− 1

4γ
2
)1/2

. This yields L̂′(ω±) = ∓(ω+−ω−) = ∓2β ,
hence according to equation 9.165,

G(s) =

{
e−iω

+
s

iL′(ω+)
+

e−iω
−
s

iL′(ω−)

}
Θ(s)

=

{
e−γs/2 e−iβs

−2iβ
+

e−γs/2 eiβs

2iβ

}
Θ(s) = β−1 e−γs/2 sin(βs)Θ(s) .

(9.166)

Now let us evaluate the two-point correlation function
〈
x(t)x(t′)

〉
, assuming the noise is correlated

according to
〈
η(s) η(s′)

〉
= φ(s− s′). We assume t, t′ → ∞ so the transient contribution xh is negligible.

We then have

〈
x(t)x(t′)

〉
=

∞∫

−∞

ds

∞∫

−∞

ds′ G(t− s)G(t′ − s′)
〈
η(s) η(s′)

〉
=

∞∫

−∞

dω

2π
φ̂(ω)

∣∣Ĝ(ω)
∣∣2 eiω(t−t′) . (9.167)
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9.8.2 Solution by Laplace transform

Laplace transforms are useful when dealing with functions which vanish for sufficiently negative values
of their argument. This is the case, for example, when an oscillator in a quiescent state is suddenly forced
by an external drive which turns on at some time t0 (typically t0 = 0). The Laplace transform x̌(z) is
obtained from a function x(t) via the integral transform

x̌(z) =

∞∫

0

dt e−zt x(t) . (9.168)

The inverse transform is given by

x(t) =

c+i∞∫

c−i∞

dz

2πi
ezt x̌(z) , (9.169)

where the integration contour is a straight line which lies to the right of any singularities of x̌(z) in the
complex z plane. Note the similarity to the Fourier transform.

Now let’s take the Laplace transform of Eqn. 9.155. Note that integration by parts yields

∞∫

0

dt e−zt df

dt
= zf̌(z)− f(0) (9.170)

for any function f(t). Applying this result iteratively, we find the Laplace transform of Eqn. 9.155 is

L(z) x̌(z) = η̌(z) +R0(z) , (9.171)

where
L(z) = anz

n + an−1z
n−1 + . . . + a0 (9.172)

is an nth order polynomial in z with coefficients aj for j ∈ {0, . . . , n}, and

R0(z) = an x
(n−1)(0) +

(
zan + an−1

)
x(n−2)(0) + · · ·+

(
zn−1an + . . .+ a1

)
x(0) (9.173)

and x(k)(t) = dkx/dtk. We now have

x̌(z) =
1

L(z)

{
η̌(z) +R0(z)

}
. (9.174)

The formal solution to Eqn. 9.155 is then given by the inverse Laplace transform. One finds

x(t) =

t∫

0

dt′ K(t− t′) η(t′) + xh(t) , (9.175)

where xh(t) is a solution to the homogeneous equation Lt x(t) = 0, and

K(s) =

c+i∞∫

c−i∞

dz

2πi

ezs

L(z)
=

n∑

l=1

ezls

L′(zl)
. (9.176)



34 CHAPTER 9. STOCHASTIC PROCESSES

Note that K(s) vanishes for s < 0 because then we can close the contour in the far right half plane. The
RHS of the above equation follows from the fundamental theorem of algebra, which allows us to factor
L(z) as

L(z) = an(z − z1) · · · (z − zn) , (9.177)

with all the roots zl lying to the left of the contour. In deriving the RHS of Eqn. 9.176, we assume that all
roots are distinct13. The general solution to the homogeneous equation is

xh(t) =
n∑

l=1

Al e
z
l
t , (9.178)

again assuming the roots are nondegenerate14. In order that the homogeneous solution not grow with
time, we must have Re (zl) ≤ 0 for all l. For example, if Lt =

d
dt + γ , then L(z) = z + γ and K(s) = e−γs.

If Lt =
d2

dt2
+ γ d

dt , then L(z) = z2 + γz and K(s) = (1− e−γs)/γ.

Let us assume that all the initial derivatives dkx(t)/dtk vanish at t = 0 , hence xh(t) = 0. Now let us
compute the generalization of Eqn. 9.34,

P (x1, t1; . . . ;xN , tN ) =

∞∫

−∞

dω1

2π
· · ·

∞∫

−∞

dωN

2π
e−i(ω

1
x
1
+...+ω

N
x
N
)
〈
eiω1

x(t
1
) · · · eiωN

x(t
N
)
〉

= det
−1/2(2πM) exp

{
− 1

2

N∑

j,j′=1

M−1
jj′ xj xj′

}
,

(9.179)

where

M(t, t′) =

t∫

0

ds

t′∫

0

ds′ G(s − s′)K(t− s)K(t′ − s′) , (9.180)

with G(s−s′) =
〈
η(s) η(s′)

〉
as before. For t ≫ γ−1, we have K(s) = γ−1, and if we take the correlator to

be G(s− s′) = Γ δ(s− s′) we obtain M(t, t′) = Γ min(t, t′)/γ2 = 2Dmin(t, t′). We then have the expected
diffusion probability, P (x, t) = exp

(
−x2/4Dt

)
/
√
4πDt .

9.8.3 Higher order ODEs

Note that any nth order ODE, of the general form

dnx

dtn
= F

(
x ,

dx

dt
, . . . ,

dn−1x

dtn−1

)
, (9.181)

13If two or more roots are degenerate, one can still use this result by first inserting a small spacing ε between
the degenerate roots and then taking ε → 0.

14If a particular root zj appears k times, then one has solutions of the form ezjt, t ezjt, . . . tk−1 ezjt.
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may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with

k = 1, . . . , n. Thus, for k < n we have ϕ̇k = ϕk+1, and ϕ̇n = F . In other words,

ϕ̇︷ ︸︸ ︷

d

dt




ϕ1
...

ϕn−1

ϕn



=

V (ϕ)︷ ︸︸ ︷


ϕ2
...

ϕn

F
(
ϕ1, . . . , ϕp

)




. (9.182)

An inhomogeneous linear nth order ODE,

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . . + a1

dx

dt
+ a0 x = η(t) (9.183)

may be written in matrix form, as

d

dt




ϕ1

ϕ2
...

ϕn




=

Q︷ ︸︸ ︷


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−a0 −a1 −a2 · · · −an−1







ϕ1

ϕ2
...

ϕn




+

ξ︷ ︸︸ ︷


0
0
...

η(t)


 . (9.184)

Thus,
ϕ̇ = Qϕ+ ξ , (9.185)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous.

For the homogeneous case where η(t) = 0, the solution is obtained by exponentiating the constant
matrix Qt:

ϕ(t) = exp(Qt)ϕ(0) ; (9.186)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not au-
tonomous, then Q = Q(t) is time-dependent, and the solution is given by the path-ordered exponential,

ϕ(t) = P exp





t∫

0

dt′Q(t′)



 ϕ(0) , (9.187)

where P is the path ordering operator which places earlier times to the right. As defined, the equation

ϕ̇ = V (ϕ) is autonomous, since the t-advance mapping gt depends only on t and on no other time
variable. However, by extending the phase space M ∋ ϕ from M → M×R, which is of dimension n+1,
one can describe arbitrary time-dependent ODEs.

In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider
the autonomous case where Q is a constant matrix in time. We will assume the matrix Q is real, but other
than that it has no helpful symmetries. We can however decompose it into left and right eigenvectors:

Qij =

n∑

σ=1

νσ Rσ,i Lσ,j . (9.188)
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Or, in bra-ket notation, Q =
∑

σ νσ |Rσ〉〈Lσ|. We adopt the normalization convention
〈
Lσ

∣∣Rσ′

〉
= δσσ′ ,

where
{
νσ
}

are the eigenvalues of Q. The eigenvalues may be real or imaginary. Since the characteristic
polynomial P (ν) = det (ν I −Q) has real coefficients, we know that the eigenvalues of Q are either real
or come in complex conjugate pairs.

Consider, for example, the n = 2 system

Q =

(
0 1

−ω2
0 −γ

)
. (9.189)

The eigenvalues are as before: ν± = −1
2γ ±

(
1
4γ

2 − ω2
0

)1/2
. The left and right eigenvectors are

L± =
±1

ν+ − ν−

(
−ν∓ 1

)
, R± =

(
1
ν±

)
. (9.190)

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result

f(Q) =

n∑

σ=1

f(νσ)
∣∣Rσ

〉 〈
Lσ

∣∣ (9.191)

for any function f . Thus, the solution to the general autonomous homogeneous case is

∣∣ϕ(t)
〉
=

n∑

σ=1

eνσt
∣∣Rσ

〉 〈
Lσ

∣∣ϕ(0)
〉

ϕi(t) =

n∑

σ=1

eνσtRσ,i

n∑

j=1

Lσ,j ϕj(0) .

(9.192)

If Re (νσ) ≤ 0 for all σ, then the initial conditions ϕ(0) are forgotten on time scales τσ = ν−1
σ . Physicality

demands that this is the case.

Now let’s consider the inhomogeneous case where η(t) 6= 0. We begin by recasting eqn. 9.185 in the
form

d

dt

(
e−Qtϕ

)
= e−Qt ξ(t) . (9.193)

We can integrate this directly:

ϕ(t) = eQtϕ(0) +

t∫

0

ds eQ(t−s) ξ(s) . (9.194)

In component notation,

ϕi(t) =
n∑

σ=1

eνσtRσ,i

〈
Lσ

∣∣ϕ(0)
〉
+

n∑

σ=1

Rσ,i

t∫

0

ds eνσ(t−s)
〈
Lσ

∣∣ ξ(s)
〉
. (9.195)

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case
when ξ(s) = 0.
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The solution in eqn. 9.195 holds for general Q and ξ(s). For the particular form of Q and η(s) in eqn.
9.184, we can proceed further. For starters, 〈Lσ|ξ(s)〉 = Lσ,n η(s). We can further exploit a special feature
of the Q matrix to analytically determine all its left and right eigenvectors. Applying Q to the right
eigenvector |Rσ〉 , we find Rσ,j = νσ Rσ,j−1 for j > 1. We are free to choose Rσ,1 = 1 for all σ and
defer the issue of normalization to the derivation of the left eigenvectors. Thus, we obtain the pleasingly
simple result, Rσ,k = νk−1

σ . Applying Q to the left eigenvector 〈Lσ| , we obtain

−a0 Lσ,n = νσ Lσ,1

Lσ,j−1 − aj−1 Lσ,n = νσ Lσ,j (j > 1) .
(9.196)

From these equations we may derive

Lσ,k = −
Lσ,n

νσ

k−1∑

j=0

aj ν
j−k−1
σ =

Lσ,n

νσ

n∑

j=k

aj ν
j−k−1
σ . (9.197)

The equality in the above equation is derived using the result P (νσ) =
∑n

j=0 aj ν
j
σ = 0. Recall also that

an ≡ 1. We now impose the normalization condition,

n∑

k=1

Lσ,k Rσ,k = 1 . (9.198)

This condition determines our last remaining unknown quantity (for a given σ), Lσ,p :

〈
Lσ

∣∣Rσ

〉
= Lσ,n

n∑

k=1

k ak ν
k−1
σ = P ′(νσ)Lσ,n , (9.199)

where P ′(ν) is the first derivative of the characteristic polynomial. Thus, we find Lσ,n = 1/P ′(νσ) .

Now let us evaluate the general two-point correlation function,

Cjj′(t, t
′) ≡

〈
ϕj(t)ϕj′(t

′)
〉
−
〈
ϕj(t)

〉 〈
ϕj′(t

′)
〉

. (9.200)

We write

〈
η(s) η(s′)

〉
= φ(s− s′) =

∞∫

−∞

dω

2π
φ̂(ω) e−iω(s−s′) . (9.201)

When φ̂(ω) is constant, we have
〈
η(s) η(s′)

〉
= φ̂(t) δ(s − s′). This is the case of so-called white noise,

when all frequencies contribute equally. The more general case when φ̂(ω) is frequency-dependent is
known as colored noise. Appealing to eqn. 9.195, we have

Cjj′(t, t
′) =

∑

σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′)

t∫

0

ds eνσ(t−s)

t′∫

0

ds′ eνσ′(t′−s′) φ(s − s′) (9.202)

=
∑

σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′)

∞∫

−∞

dω

2π

φ̂(ω) (e−iωt − eνσt)(eiωt
′ − eνσ′ t′)

(ω − iνσ)(ω + iνσ′)
. (9.203)
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In the limit t, t′ → ∞, assuming Re (νσ) < 0 for all σ (i.e. no diffusion), the exponentials eνσt and eνσ′ t′

may be neglected, and we then have

Cjj′(t, t
′) =

∑

σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′)

∞∫

−∞

dω

2π

φ̂(ω) e−iω(t−t′)

(ω − iνσ)(ω + iνσ′)
. (9.204)

9.8.4 Kramers-Krönig relations

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP15. Then for all ν, we must have

∞∫

−∞

dν

2π

χ̂(ν)

ν − ω + iǫ
= 0 , (9.205)

where ǫ is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming
χ̂(ω) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak
restriction on χ̂(ω), given the fact that the denominator already causes the integrand to vanish as |ω|−1.

Let us examine the function

1

ν − ω + iǫ
=

ν − ω

(ν − ω)2 + ǫ2
− iǫ

(ν − ω)2 + ǫ2
. (9.206)

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the
limit ǫ → 0, is equivalent to taking a principal part of the integral. That is, for any function F (ν) which is
regular at ν = ω,

lim
ǫ→0

∞∫

−∞

dν

2π

ν − ω

(ν − ω)2 + ǫ2
F (ν) ≡ ℘

∞∫

−∞

dν

2π

F (ν)

ν − ω
. (9.207)

The principal part symbol ℘ means that the singularity at ν = ω is elided, either by smoothing out the
function 1/(ν − ǫ) as above, or by simply cutting out a region of integration of width ǫ on either side of
ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ǫ

u2 + ǫ2
. (9.208)

For |u| ≫ ǫ, h(u) ≃ ǫ/u2, which vanishes as ǫ → 0. For u = 0, h(0) = 1/ǫ which diverges as ǫ → 0. Thus,
h(u) has a huge peak at u = 0 and rapidly decays to 0 as one moves off the peak in either direction a
distance greater that ǫ. Finally, note that

∞∫

−∞

duh(u) = π , (9.209)

15In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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a result which itself is easy to show using contour integration. Putting it all together, this tells us that

lim
ǫ→0

ǫ

u2 + ǫ2
= πδ(u) . (9.210)

Thus, for positive infinitesimal ǫ, when part of an integrand, multiplied by any smooth function of u,

1

u± iǫ
=

℘

u
∓ iπδ(u) , (9.211)

a most useful result.

We now return to our initial result 9.205, and we separate χ̂(ω) into real and imaginary parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (9.212)

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore
have, for every real value of ω,

0 =

∞∫

−∞

dν

2π

[
χ′(ν) + iχ′′(ν)

] [ ℘

ν − ω
− iπδ(ν − ω)

]
. (9.213)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

χ′(ω) = +℘

∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω
, χ′′(ω) = −℘

∞∫

−∞

dν

π

χ̂′(ν)

ν − ω
. (9.214)

9.9 Appendix IV : Method of Characteristics

9.9.1 Quasilinear partial differential equations

Consider the quasilinear PDE

a1(x, φ)
∂φ

∂x1
+ a2(x, φ)

∂φ

∂x2
+ . . .+ aN (x, φ)

∂φ

∂xN
= b(x, φ) . (9.215)

This PDE is called ‘quasilinear’ because it is linear in the derivatives ∂φ/∂xj . The N independent vari-
ables are the elements of the vector x = (x1, . . . , xN ). A solution is a function φ(x) which satisfies the
PDE.

Now consider a curve x(s) parameterized by a single real variable s satisfying

dxj
ds

= aj
(
x, φ(x)

)
, (9.216)

where φ(x) is a solution of eqn. 9.215. Along such a curve, which is called a characteristic, the variation
of φ is

dφ

ds
=

N∑

j=1

∂φ

∂xj

dxj
ds

= b
(
x(s), φ

)
. (9.217)
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Thus, we have converted our PDE into a set of N + 1 ODEs. To integrate, we must supply some initial
conditions of the form

g
(
x, φ)

∣∣∣
s=0

= 0 . (9.218)

This defines an (N − 1)-dimensional hypersurface, parameterized by {ζ1, . . . , ζN−1}:

xj(s = 0) = hj(ζ1, . . . , ζN−1) , j ∈ {1, . . . , N}
φ(s = 0) = f(ζ1, . . . , ζN−1) .

(9.219)

If we can solve for all the characteristic curves, then the solution of the PDE follows. For every x, we
identify the characteristic curve upon which x lies. The characteristics are identified by their parameters
(ζ1, . . . , ζN−1). The solution is then φ(x) = φ(s; ζ1, . . . , ζN−1). If two or more characteristics cross, the
solution is multi-valued, or a shock has occurred.

9.9.2 Example

Consider the PDE
φt + t2 φx = −xφ . (9.220)

We identify a1(t, x, φ) = 1 and a2(t, x, φ) = t2, as well as b(t, x, φ) = −xφ. The characteristics are curves(
t(s), x(s)

)
satisfing

dt

ds
= 1 ,

dx

ds
= t2 . (9.221)

The variation of φ along each of the characteristics is given by

dφ

ds
= −xφ . (9.222)

The initial data are expressed parametrically as

t(s = 0) = 0 , x(s = 0) = ζ , φ(s = 0) = f(ζ) . (9.223)

We now solve for the characteristics. We have

dt

ds
= 1 ⇒ t(s, ζ) = s . (9.224)

It then follows that
dx

ds
= t2 = s2 ⇒ x(s, ζ) = ζ + 1

3s
3 . (9.225)

Finally, we have

dφ

ds
= −xφ = −

(
ζ + 1

3s
3
)
φ ⇒ φ(s, ζ) = f(ζ) exp

(
− 1

12s
4 − sζ

)
. (9.226)

We may now eliminate (ζ, s) in favor of (x, t), writing s = t and ζ = x− 1
3t

3, yielding the solution

φ(x, t) = φ
(
x− 1

3t
3, t = 0

)
exp

(
1
4t

4 − xt
)

. (9.227)
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