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3.3 Poincaré recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 The Kac ring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Simulation of the Kac ring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 More simulations of the Kac ring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 An ergodic flow which is not mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 The baker’s transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9 Multiply iterated baker’s transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10 Arnold’s cat map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.11 Hierarchy of dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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Chapter 3

Ergodicity and the Approach to
Equilibrium

3.1 References

– R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975)
An advanced text with an emphasis on fluids and kinetics.

– R. Balian, From Macrophysics to Microphysics (2 vols., Springer-Verlag, 2006)
A very detailed discussion of the fundamental postulates of statistical mechanics and their impli-
cations.)
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2 CHAPTER 3. ERGODICITY AND THE APPROACH TO EQUILIBRIUM

3.2 Modeling the Approach to Equilibrium

3.2.1 Equilibrium

A thermodynamic system typically consists of an enormously large number of constituent particles,
a typical ‘large number’ being Avogadro’s number, N

A
= 6.02 × 1023. Nevertheless, in equilibrium,

such a system is characterized by a relatively small number of thermodynamic state variables. Thus,
while a complete description of a (classical) system would require us to account for O

(
1023

)
evolving

degrees of freedom, with respect to the physical quantities in which we are interested, the details of
the initial conditions are effectively forgotten over some microscopic time scale τ , called the collision
time, and over some microscopic distance scale, ℓ, called the mean free path1. The equilibrium state is
time-independent.

3.2.2 The Master Equation

Relaxation to equilibrium is often modeled with something called the master equation. Let Pi(t) be the
probability that the system is in a quantum or classical state i at time t. Then write

dPi

dt
=
∑

j

(
Wij Pj −Wji Pi

)
. (3.1)

Here, Wij is the rate at which j makes a transition to i. Note that we can write this equation as

dPi

dt
= −

∑

j

Γij Pj , (3.2)

where

Γij =

{
−Wij if i 6= j∑′

kWkj if i = j ,
(3.3)

where the prime on the sum indicates that k = j is to be excluded. The constraints on the Wij are that
Wij ≥ 0 for all i, j, and we may take Wii ≡ 0 (no sum on i). Fermi’s Golden Rule of quantum mechanics
says that

Wij =
2π

~

∣∣〈 i | V̂ | j 〉
∣∣2 ρ(Ej) , (3.4)

where Ĥ0

∣∣ i
〉
= Ei

∣∣ i
〉
, V̂ is an additional potential which leads to transitions, and ρ(Ei) is the density

of final states at energy Ei. The fact that Wij ≥ 0 means that if each Pi(t = 0) ≥ 0, then Pi(t) ≥ 0 for all
t ≥ 0. To see this, suppose that at some time t > 0 one of the probabilities Pi is crossing zero and about
to become negative. But then eqn. 3.1 says that Ṗi(t) =

∑
jWijPj(t) ≥ 0. So Pi(t) can never become

negative.

1Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum,
and energy. These quantities relax to equilibrium in a special way called hydrodynamics.
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3.2.3 Equilibrium distribution and detailed balance

If the transition rates Wij are themselves time-independent, then we may formally write

Pi(t) =
(
e−Γ t

)
ij
Pj(0) . (3.5)

Here we have used the Einstein ‘summation convention’ in which repeated indices are summed over
(in this case, the j index). Note that

∑
i Γij = 0 , which says that the total probability

∑
i Pi is conserved:

d

dt

∑

i

Pi = −
∑

i,j

Γij Pj = −
∑

j

(
Pj

∑

i

Γij

)
= 0 . (3.6)

We conclude that ~φ =
(
1 1 · · · 1

)
is a left eigenvector of Γ with eigenvalue λ = 0. The corresponding

right eigenvector, which we write as P eq
i , satisfies ΓijP

eq
j = 0, and is a stationary (i.e. time independent)

solution to the master equation. Generally, there is only one right/left eigenvector pair corresponding to
λ = 0, in which case any initial probability distribution Pi(0) converges to P eq

i as t→ ∞, as shown in the
appendix §3.8. Note, however, that since the matrix Γ is in general not symmetric, its eigenvectors may
not span, which is to say that it may contain nontrivial Jordan blocks when it is brought to canonical
form. See the appendix in §3.7 below for a complete discussion.

In equilibrium, the net rate of transitions into a state | i 〉 is equal to the rate of transitions out of | i 〉. If,
for each state | j 〉 the transition rate from | i 〉 to | j 〉 is equal to the transition rate from | j 〉 to | i 〉, we
say that the rates satisfy the condition of detailed balance. In other words, Wij P

eq
j = Wji P

eq
i . Assuming

Wij 6= 0 and P eq
j 6= 0, we can divide to obtain

Wji

Wij

=
P eq
j

P eq
i

. (3.7)

Note that detailed balance is a stronger condition than that required for a stationary solution to the
master equation.

If Γ = Γ t is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other,
hence P eq = 1/N , where N is the dimension of Γ . The system then satisfies the conditions of detailed
balance. See §3.9 below for an example of this formalism applied to a model of radioactive decay.

3.2.4 Boltzmann’s H-theorem

Suppose for the moment that Γ is a symmetric matrix, i.e. Γij = Γji. Then construct the function

H(t) =
∑

i

Pi(t) lnPi(t) . (3.8)

Then

dH
dt

=
∑

i

dPi

dt

(
1 + lnPi) =

∑

i

dPi

dt
lnPi

= −
∑

i,j

Γij Pj lnPi =
∑

i,j

Γij Pj

(
lnPj − lnPi

)
,

(3.9)
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where we have used
∑

i Γij = 0. Now switch i↔ j in the above sum and add the terms to get

dH
dt

=
1

2

∑

i,j

Γij
(
Pi − Pj

) (
lnPi − lnPj

)
. (3.10)

Note that the i = j term does not contribute to the sum. For i 6= j we have Γij = −Wij ≤ 0, and using
the result

(x− y) (ln x− ln y) ≥ 0 , (3.11)

we conclude
dH
dt

≤ 0 . (3.12)

In equilibrium, P eq
i is a constant, independent of i. We write

P eq
i =

1

Ω
, Ω =

∑

i

1 =⇒ H = − ln Ω . (3.13)

If Γij 6= Γji, we can still prove a version of the H-theorem when there is detailed balance. Define a new
symmetric matrix

W ij ≡Wij P
eq
j =Wji P

eq
i =W ji , (3.14)

and the generalized H-function,

H(t) ≡
∑

i

Pi(t) ln

(
Pi(t)

P eq
i

)
. (3.15)

Then

dH
dt

= −1

2

∑

i,j

(
WjiPi −WijPj

)
ln

(
WjiPi

WijPj

)

= −1

2

∑

i,j

W ij

(
Pi

P eq
i

−
Pj

P eq
j

)[
ln

(
Pi

P eq
i

)
− ln

(
Pj

P eq
j

)]
≤ 0 .

(3.16)

3.3 Phase Flows in Classical Mechanics

3.3.1 Hamiltonian evolution

The master equation provides us with a semi-phenomenological description of a dynamical system’s
relaxation to equilibrium. It explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature
are (approximately) time-reversal symmetric. How can a system which obeys Hamilton’s equations of
motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the Lagrangian
L = L(q, q̇, t) = T − V . The Euler-Lagrange equations of motion for the action S

[
q(t)

]
=
∫
dtL are

ṗσ =
d

dt

(
∂L

∂q̇σ

)
=

∂L

∂qσ
, (3.17)
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where pσ is the canonical momentum conjugate to the generalized coordinate qσ , i.e. pσ = ∂L/∂q̇σ .
Here N is the number of degrees of freedom of the system, which is the total number of generalized
coordinates.

The Hamiltonian, H(q, p) is obtained by a Legendre transformation,

H(q, p) =

N∑

σ=1

pσ q̇σ − L . (3.18)

Note that

dH =

N∑

σ=1

(
pσ dq̇σ + q̇σ dpσ − ∂L

∂qσ
dqσ − ∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
N∑

σ=1

(
q̇σ dpσ − ∂L

∂qσ
dqσ

)
− ∂L

∂t
dt .

(3.19)

Thus, we obtain Hamilton’s equations of motion,

∂H

∂pσ
= q̇σ ,

∂H

∂qσ
= − ∂L

∂qσ
= −ṗσ (3.20)

and
dH

dt
=
∂H

∂t
= −∂L

∂t
. (3.21)

Define the rank 2N vector ϕ by its components,

ϕi =

{
qi if 1 ≤ i ≤ N

pi−N if N ≤ i ≤ 2N .
(3.22)

Then we may write Hamilton’s equations compactly as

ϕ̇i = Jij
∂H

∂ϕj
, (3.23)

where

J =

(
0N×N 1N×N

−1N×N 0N×N

)
(3.24)

is a rank 2N matrix. Note that J t = −J , i.e. J is antisymmetric, and that J2 = −12N×2N .

For any function F (q, p, t), the total time derivative is given by

dF

dt
=
∂F

∂t
+

N∑

σ=1

(
∂F

∂qσ

dqσ
dt

+
∂F

∂pσ

dpσ
dt

)

=
∂F

∂t
+
{
F,H

}
,

(3.25)

where
{
•, •
}

is the Poisson bracket,

{
A,B

}
=

N∑

σ=1

(
∂A

∂qσ

∂B

∂pσ
− ∂A

∂pσ

∂B

∂qσ

)
. (3.26)
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3.3.2 Dynamical systems and the evolution of phase space volumes

Consider a general dynamical system,
dϕ

dt
= V (ϕ) , (3.27)

where ϕ(t) is a point in an n-dimensional phase space. Consider now a compact2 region R0 in phase
space, and consider its evolution under the dynamics. That is, R0 consists of a set of points

{
ϕ |ϕ ∈ R0

}
,

and if we regard each ϕ ∈ R0 as an initial condition, we can define the time-dependent set R(t) as the
set of points ϕ(t) that were in R0 at time t = 0:

R(t) =
{
ϕ(t)

∣∣ϕ(0) ∈ R0

}
. (3.28)

Now consider the volume Ω(t) of the set R(t). We have

Ω(t) =

∫

R(t)

dµ (3.29)

where dµ = dϕ1 dϕ2 · · · dϕn for an n-dimensional phase space. For a Hamiltonian system, n = 2N . We
then have

Ω(t+ dt) =

∫

R(t+dt)

dµ′ =

∫

R(t)

dµ

∣∣∣∣
∂ϕi(t+ dt)

∂ϕj(t)

∣∣∣∣ , (3.30)

where ∣∣∣∣
∂ϕi(t+ dt)

∂ϕj(t)

∣∣∣∣ ≡
∂(ϕ′

1, . . . , ϕ
′
n)

∂(ϕ1, . . . , ϕn)
(3.31)

is a determinant, which is the Jacobean of the transformation from the set of coordinates
{
ϕi = ϕi(t)

}
to

the coordinates
{
ϕ′
i = ϕi(t+ dt)

}
. But according to the dynamics, we have

ϕi(t+ dt) = ϕi(t) + Vi
(
ϕ(t)

)
dt+O(dt2) (3.32)

and therefore
∂ϕi(t+ dt)

∂ϕj(t)
= δij +

∂Vi
∂ϕj

dt+O(dt2) . (3.33)

We now make use of the matrix equality ln detM = Tr lnM , which gives us3, for small ε,

det
(
1 + εA

)
= expTr ln

(
1 + εA

)
= 1 + ε TrA+ 1

2 ε
2
((

TrA
)2 − Tr (A2)

)
+ . . . (3.34)

Thus,

Ω(t+ dt) = Ω(t) +

∫

R(t)

dµ∇·V dt+O(dt2) , (3.35)

2‘Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.
3The equality ln detM = Tr lnM is most easily proven by bringing the matrix to diagonal form via a similarity

transformation, and proving the equality for diagonal matrices.
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which says
dΩ

dt
=

∫

R(t)

dµ∇·V =

∫

∂R(t)

dS n̂ · V (3.36)

Here, the divergence is the phase space divergence,

∇·V =

n∑

i=1

∂Vi
∂ϕi

, (3.37)

and we have used the divergence theorem to convert the volume integral of the divergence to a surface
integral of n̂ · V , where n̂ is the surface normal and dS is the differential element of surface area, and
∂R denotes the boundary of the region R. We see that if ∇·V = 0 everywhere in phase space, then Ω(t)
is a constant, and phase space volumes are preserved by the evolution of the system.

For an alternative derivation, consider a function ̺(ϕ, t) which is defined to be the density of some
collection of points in phase space at phase space position ϕ and time t. This must satisfy the continuity
equation,

∂̺

∂t
+∇·(̺V ) = 0 . (3.38)

This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of
phase space R, we have

d

dt

∫

R

dµ ̺ = −
∫

R

dµ∇·(̺V ) = −
∫

∂R

dS n̂ · (̺V ) . (3.39)

It is perhaps helpful to think of ̺ as a charge density, in which case J = ̺V is the current density. The
above equation then says

dQR
dt

= −
∫

∂R

dS n̂ · J , (3.40)

where QR is the total charge contained inside the region R. In other words, the rate of increase or
decrease of the charge within the region R is equal to the total integrated current flowing in or out of R
at its boundary.

The Leibniz rule lets us write the continuity equation as

∂̺

∂t
+ V ·∇̺ + ̺∇·V = 0 . (3.41)

But now suppose that the phase flow is divergenceless, i.e. ∇·V = 0. Then we have

D̺

Dt
≡
(
∂

∂t
+ V ·∇

)
̺ = 0 . (3.42)

The combination inside the brackets above is known as the convective derivative. It tells us the total rate
of change of ̺ for an observer moving with the phase flow. That is

d

dt
̺
(
ϕ(t), t

)
=

∂̺

∂ϕi

dϕi

dt
+
∂̺

∂t

=

n∑

i=1

Vi
∂ρ

∂ϕi

+
∂̺

∂t
=
D̺

Dt
.

(3.43)
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Figure 3.1: Time evolution of two immiscible fluids. The local density remains constant.

If D̺/Dt = 0, the local density remains the same during the evolution of the system. If we consider the
‘characteristic function’

̺(ϕ, t = 0) =

{
1 if ϕ ∈ R0

0 otherwise
(3.44)

then the vanishing of the convective derivative means that the image of the set R0 under time evolution
will always have the same volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

q̇σ = +
∂H

∂pσ
, ṗσ = − ∂H

∂qσ
(3.45)

A point in phase space is specified by N positions qσ and N momenta pσ, hence the dimension of phase
space is n = 2N :

ϕ =

(
q

p

)
, V =

(
q̇

ṗ

)
=

(
+∂H/∂p
−∂H/∂q

)
. (3.46)

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:

∇·V =
N∑

σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ

∂pσ

}

=

N∑

σ=1

{
∂

∂qσ

(
∂H

∂pσ

)
+

∂

∂pσ

(
− ∂H

∂qσ

)}
= 0 .

(3.47)
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Thus, we have that the convective derivative vanishes, viz.

D̺

Dt
≡ ∂̺

∂t
+ V ·∇̺ = 0 , (3.48)

for any distribution ̺(ϕ, t) on phase space. Thus, the value of the density ̺(ϕ(t), t) is constant, which
tells us that the phase flow is incompressible. In particular, phase space volumes are preserved.

3.3.3 Liouville’s equation and the microcanonical distribution

Let ̺(ϕ, t) = ̺(q,p, t) be a distribution on phase space. Assuming the evolution is Hamiltonian, we can
write

∂̺

∂t
= −ϕ̇ · ∇̺ = −

{
̺,H

}
. (3.49)

We may also write this as ∂t̺+ iL̺̂ = 0, where L̂ is a differential operator known as the Liouvillian:

iL̂ =
N∑

σ=1

{
∂H

∂pσ

∂

∂qσ
− ∂H

∂qσ

∂

∂pσ

}
. (3.50)

Eqn. 3.49, known as Liouville’s equation. Note iL̂F =
{
F,H

}
for any function F (ϕ, t).

Recall that the evolution of quantum mechanical density matrices satisfies

∂ ˆ̺

∂t
=
i

~

[
ˆ̺, Ĥ

]
, (3.51)

whence we infer the correspondence

{
̺,H

}
→ 1

i~

[
ˆ̺, Ĥ

]
. (3.52)

Suppose that there is a family of conserved quantities Λa(ϕ), with a ∈ {1, . . . , k}, each of which is
conserved by the dynamics of the system. Such conserved quantities might include the components
of the total linear momentum (if there is translational invariance), the components of the total angular
momentum (if there is rotational invariance), and the Hamiltonian itself (if it is not explicitly time-
dependent). Now consider a distribution ̺(ϕ) = ̺(Λ1, Λ2, . . . , Λk) which is a function only of these
various conserved quantities. That Λa is conserved entails ϕ̇ ·∇Λa =

{
Λa,H

}
= 0. Then from the chain

rule, we have

ϕ̇ · ∇̺ =

k∑

a=1

∂̺

∂Λa

ϕ̇ ·∇Λa = 0 . (3.53)

We conclude that any distribution ̺(ϕ) = ̺(Λ1, Λ2, . . . , Λk) which is a function solely of conserved
dynamical quantities is a stationary solution to Liouville’s equation.

Clearly the microcanonical distribution,

̺E(ϕ) =
δ
(
E −H(ϕ)

)

D(E)
=

δ
(
E −H(ϕ)

)
∫
dµ δ

(
E −H(ϕ)

) , (3.54)
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is a fixed point solution of Liouville’s equation. If there were a second conserved quantity, Λ(ϕ), the
generalized microcanonical distribution,

̺E,Q(ϕ) =
δ
(
E −H(ϕ)

)
δ
(
Q− Λ(ϕ)

)

D(E,Q)
=

δ
(
E −H(ϕ)

)
δ
(
Q− Λ(ϕ)

)
∫
dµ δ

(
E −H(ϕ) δ

(
Q− Λ(ϕ)

) , (3.55)

would be a solution to Liouville’s equation for arbitrary E and Q.

Similarly, the Gibbs distribution,

̺β(ϕ) =
1

Z(β)
e−βH(ϕ) , (3.56)

where Z(β) = Tr e−βH(ϕ) is the partition function, satisfies
{
̺β,H} = 0. In the presence of multiple

conserved quantities, one defines the generalized Gibbs distribution,

̺β(ϕ) =
1

Z(β)
exp

(
−

k∑

a=1

βa Λa(ϕ)

)
, (3.57)

where the {Λa(ϕ)}, with a ∈ {1, . . . , k}, are the conserved quantities, including among them H itself.
The coefficients {βa} are k Lagrange multipliers enforcing the k conservation constraints Λa(ϕ) = Qa .

3.4 Irreversibility and Poincaré Recurrence

The dynamics of the master equation describe an approach to equilibrium. These dynamics are irre-
versible: dH/dt ≤ 0, where H is Boltzmann’s H-function. However, the microscopic laws of physics are
(almost) time-reversal invariant4, so how can we understand the emergence of irreversibility? Further-
more, any dynamics which are deterministic and volume-preserving in a finite phase space exhibits the
phenomenon of Poincaré recurrence, which guarantees that phase space trajectories are arbitrarily close
to periodic if one waits long enough.

3.4.1 Poincaré recurrence theorem

The proof of the recurrence theorem is simple. Let gτ be the ‘τ -advance mapping’ which evolves points
in phase space according to Hamilton’s equations. Assume that gτ is invertible and volume-preserving,
as is the case for Hamiltonian flow. Further assume that phase space volume is finite. Since energy is
preserved in the case of time-independent Hamiltonians, we simply ask that the volume of phase space
at fixed total energy E be finite, i.e.

∫
dµ δ

(
E −H(q,p)

)
<∞ , (3.58)

where dµ = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood R0 of phase space there exists a point ϕ0 which will return to R0

after m applications of gτ , where m is finite.

4Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the
product PCT , where P is parity, C is charge conjugation, and T is time reversal.
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Figure 3.2: Successive images of a set R0 under the τ -advance mapping gτ , projected onto a two-
dimensional phase plane. The Poincaré recurrence theorem guarantees that if phase space has finite
volume, and gτ is invertible and volume preserving, then for any set R0 there exists an integer m such
that R0 ∩ gmτ R0 6= ∅.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the
set Υ formed from the union of all sets gkτ R for all m:

Υ =

∞⋃

k=0

gkτ R0 (3.59)

We assume that the set {gkτ R0 | k∈ N0} is disjoint5. The volume of a union of disjoint sets is the sum of
the individual volumes. Thus,

vol(Υ) =

∞∑

k=0

vol
(
gkτ R0

)
= vol(R0) ·

∞∑

k=0

1 = ∞ , (3.60)

since vol
(
gkτ R0

)
= vol

(
R0

)
from volume preservation. But clearly Υ is a subset of the entire phase space,

hence we have a contradiction, because by assumption phase space is of finite volume.

Thus, the assumption that the set {gkτ R0 | k∈N0} is disjoint fails. This means that there exists some pair
of integers k and l, with k 6= l, such that gkτ R0 ∩ glτ R0 6= ∅. Without loss of generality we may assume
k < l. Apply the inverse g−1

τ to this relation k times to get gl−k
τ R0 ∩ R0 6= ∅. Now choose any point

ϕ1 ∈ gmτ R0 ∩ R0, where m = l − k, and define ϕ0 = g−m
τ ϕ1. Then by construction both ϕ0 and gmτ ϕ0

lie within R0 and the theorem is proven.

Poincaré recurrence has remarkable implications. Consider a bottle of perfume which is opened in
an otherwise evacuated room, as depicted in fig. 3.3. The perfume molecules evolve according to

5The natural numbers N
0

is the set of non-negative integers {0, 1, 2, . . .}.
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Figure 3.3: Poincaré recurrence guarantees that if we remove the cap from a bottle of perfume in an
otherwise evacuated room, all the perfume molecules will eventually return to the bottle! (Here H is the
Hubble constant.)

Hamiltonian evolution. The positions are bounded because physical space is finite. The momenta are
bounded because the total energy is conserved, hence no single particle can have a momentum such that
T (p) > E

TOT
, where T (p) is the single particle kinetic energy function6. Thus, phase space, however

large, is still bounded. Hamiltonian evolution, as we have seen, is invertible and volume preserving,
therefore the system is recurrent. All the molecules must eventually return to the bottle. What’s more,
they all must return with momenta arbitrarily close to their initial momenta!7 In this case, we could
define the region R0 as

R0 =
{
(q1, . . . , qr, p1, . . . , pr)

∣∣ |qi − q0i | ≤ ∆q and |pj − p0j | ≤ ∆p ∀ i, j
}

, (3.61)

which specifies a hypercube in phase space centered about the point (q0,p0).

Each of the three central assumptions – finite phase space, invertibility, and volume preservation – is
crucial. If any one of these assumptions does not hold, the proof fails. Obviously if phase space is
infinite the flow needn’t be recurrent since it can keep moving off in a particular direction. Consider
next a volume-preserving map which is not invertible. An example might be a mapping f : R → R

which takes any real number to its fractional part. Thus, f(π) = 0.14159265 . . .. Let us restrict our
attention to intervals of width less than unity. Clearly f is then volume preserving. The action of f on
the interval [2, 3) is to map it to the interval [0, 1). But [0, 1) remains fixed under the action of f , so no
point within the interval [2, 3) will ever return under repeated iterations of f . Thus, f does not exhibit
Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract.
For a one-dimensional oscillator obeying ẍ + 2βẋ + Ω2

0 x = 0 one has ∇·V = −2β < 0, since β > 0
for physical damping. Thus the convective derivative is Dt̺ = −(∇·V )̺ = 2β̺ which says that the
density increases exponentially in the comoving frame, as ̺(t) = e2βt ̺(0). Thus, phase space volumes
collapse: Ω(t) = e−2β2 Ω(0), and are not preserved by the dynamics. The proof of recurrence therefore

6In the nonrelativistic limit, T = p2/2m. For relativistic particles, we have T = (p2c2 +m2c4)1/2 −mc2.
7Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial

one which recurs, to within the same degree of closeness.
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Figure 3.4: Left: A configuration of the Kac ring with N = 16 sites and F = 4 flippers. The flippers,
which live on the links, are represented by blue dots. Right: The ring system after one time step. Evolu-
tion proceeds by clockwise rotation. Spins passing through flippers are flipped.

fails. In this case, it is possible for the set Υ to be of finite volume, even if it is the union of an infinite
number of sets gkτ R0, because the volumes of these component sets themselves decrease exponentially,

as vol(gnτ R0) = e−2nβτ vol(R0). A damped pendulum, released from rest at some small angle θ0, will
not return arbitrarily close to these initial conditions.

3.4.2 Kac ring model

The implications of the Poincaré recurrence theorem are surprising – even shocking. If one takes a bottle
of perfume in a sealed, evacuated room and opens it, the perfume molecules will diffuse throughout the
room. The recurrence theorem guarantees that after some finite time T all the molecules will go back
inside the bottle (and arbitrarily close to their initial velocities as well). The hitch is that this could take
a very long time, e.g. much much longer than the age of the Universe.

On less absurd time scales, we know that most systems come to thermodynamic equilibrium. But how
can a system both exhibit equilibration and Poincaré recurrence? The two concepts seem utterly incom-
patible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the phenomenon of
equilibration. Consider a ring with N sites. On each site, place a ‘spin’ which can be in one of two
states: up or down. Along the N links of the system, F of them contain ‘flippers’. The configuration of
the flippers is set at the outset and never changes. The dynamics of the system are as follows: during
each time step, every spin moves clockwise a distance of one lattice spacing. Spins which pass through
flippers reverse their orientation: up becomes down, and down becomes up.

The ‘phase space’ for this system consists of 2N discrete configurations. Since each configuration maps
onto a unique image under the evolution of the system, phase space ‘volume’ is preserved. The evo-
lution is invertible; the inverse is obtained simply by rotating the spins counterclockwise. Figure 3.4
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Figure 3.5: Three simulations of the Kac ring model with N = 2500 sites and three different concentra-
tions of flippers. The red line shows the magnetization as a function of time, starting from an initial con-
figuration in which 100% of the spins are up. The blue line shows the prediction of the Stosszahlansatz,
which yields an exponentially decaying magnetization with time constant τ .

depicts an example configuration for the system, and its first iteration under the dynamics.

Suppose the flippers were not fixed, but moved about randomly. In this case, we could focus on a single
spin and determine its configuration probabilistically. Let pn be the probability that a given spin is in
the up configuration at time n. The probability that it is up at time (n+ 1) is then

pn+1 = (1− x) pn + x (1− pn) , (3.62)

where x = F/N is the fraction of flippers in the system. In words: a spin will be up at time (n + 1) if it
was up at time n and did not pass through a flipper, or if it was down at time n and did pass through
a flipper. If the flipper locations are randomized at each time step, then the probability of flipping is
simply x = F/N . Equation 3.62 can be solved immediately:

pn = 1
2 + (1− 2x)n (p0 − 1

2) , (3.63)
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Figure 3.6: Simulations of the Kac ring model. Top: N = 2500 sites with F = 201 flippers. After
2500 iterations, each spin has flipped an odd number of times, so the recurrence time is 2N . Middle:
N = 2500 with F = 2400, resulting in a near-complete reversal of the population with every iteration.
Bottom: N = 25000 with N = 1000, showing long time equilibration and dramatic resurgence of the
spin population.

which decays exponentially to the equilibrium value of peq = 1
2 with time scale

τ(x) = − 1

ln |1− 2x| . (3.64)

We identify τ(x) as the microscopic relaxation time over which local equilibrium is established. If we

define the magnetization m ≡ (N↑ − N↓)/N , then m = 2p − 1, so mn = (1 − 2x)nm0. The equilibrium

magnetization is meq = 0. Note that for 1
2 < x < 1 that the magnetization reverses sign each time step,

as well as decreasing exponentially in magnitude.

The assumption that leads to equation 3.62 is called the Stosszahlansatz8 , a long German word mean-

8Unfortunately, many important physicists were German and we have to put up with a legacy of long German
words like Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat, etc.
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ing, approximately, ‘assumption on the counting of hits’. The resulting dynamics are irreversible: the
magnetization inexorably decays to zero. However, the Kac ring model is purely deterministic, and the
Stosszahlansatz can at best be an approximation to the true dynamics. Clearly the Stosszahlansatz fails to
account for correlations such as the following: if spin i is flipped at time n, then spin i+1 will have been
flipped at time n− 1. Also if spin i is flipped at time n, then it also will be flipped at time n+N . Indeed,
since the dynamics of the Kac ring model are invertible and volume preserving, it must exhibit Poincaré
recurrence. We see this most vividly in figs. 3.5 and 3.6.

The model is trivial to simulate. The results of such a simulation are shown in figure 3.5 for a ring of
N = 1000 sites, with F = 100 and F = 24 flippers. Note how the magnetization decays and fluctuates

about the equilibrium value meq = 0, but that after N iterations m recovers its initial value: mN = m0.
The recurrence time for this system is simply N if F is even, and 2N if F is odd, since every spin will
then have flipped an even number of times.

In figure 3.6 we plot two other simulations. The top panel shows what happens when x > 1
2 , so that the

magnetization wants to reverse its sign with every iteration. The bottom panel shows a simulation for a
larger ring, with N = 25000 sites. Note that the fluctuations in m about equilibrium are smaller than in
the cases with N = 1000 sites. Why?

3.5 Remarks on Ergodic Theory

3.5.1 Definition of ergodicity

A mechanical system evolves according to Hamilton’s equations of motion. We have seen how such a
system is recurrent in the sense of Poincaré.

There is a level beyond recurrence called ergodicity. In an ergodic system, time averages over intervals
[0, T ] with T → ∞ may be replaced by phase space averages. The time average of a function f(ϕ) is
defined as

〈
f(ϕ)

〉
t
= lim

T→∞

1

T

T∫

0

dt f
(
ϕ(t)

)
. (3.65)

For a Hamiltonian system, the phase space average of the same function is defined by

〈
f(ϕ)

〉
µCE

=

∫
dµ f(ϕ) δ

(
E −H(ϕ)

)/∫
dµ δ

(
E −H(ϕ)

)
, (3.66)

where H(ϕ) = H(q,p) is the Hamiltonian, and where δ(x) is the Dirac δ-function. The energy is fixed
to be E = H

(
ϕ(t = 0)

)
. Thus,

ergodicity ⇐⇒
〈
f(ϕ)

〉
t
=
〈
f(ϕ)

〉
µCE

, (3.67)

for all smooth functions f(ϕ) for which
〈
f(ϕ)

〉
µCE

exists and is finite. Note that we do not average over

all of phase space. Rather, we average only over a hypersurface along which H(ϕ) = E is fixed, i.e.
over one of the level sets of the Hamiltonian function. This is because the dynamics preserves the energy.
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Ergodicity means that almost all points ϕ will, upon Hamiltonian evolution, move in such a way as to
eventually pass through every finite neighborhood on the energy surface, and will spend equal time in
equal regions of phase space.

Let χR(ϕ) be the characteristic function of a region R:

χR(ϕ) =

{
1 if ϕ ∈ R
0 otherwise,

(3.68)

where H(ϕ) = E for all ϕ ∈ R, so dimR = 2N − 1 . Then

〈
χR(ϕ)

〉
t
= lim

T→∞

(
time spent in R

T

)
. (3.69)

If the system is ergodic, then
〈
χR(ϕ)

〉
t
= P (R) =

DR(E)

D(E)
, (3.70)

where P (R) is the a priori probability to find ϕ ∈ R, based solely on the relative volumes of R and of
the entire energy-restricted phase space. Here,

D(E) =

∫
dµ δ

(
E −H(ϕ)

)
=

∫

S
E

dΣE , (3.71)

called the density of states, is the surface area of phase space at energy E. The hypersurface SE is the set
of points ϕ satisfying H(ϕ) = E, and the invariant differential surface element dΣE is defined as follows.
We can write the differential phase space volume dµ as the product dµ = dSE dζE , where dSE is the
differential surface element for the level set SE and ζE is a phase space coordinate locally perpendicular
to SE . We then define9

dΣE ≡ dSE
|∇H|

∣∣∣∣
H(ϕ)=E

, (3.72)

and we may now write dµ = dE dΣE . Note that we may also express D(E) as

D(E) =
d

dE

∫
dµ Θ

(
E −H(ϕ)

)
≡ dΩ(E)

dE
, (3.73)

where Ω(E) =
∫
dµ Θ

(
E − H(ϕ)

)
is the volume of phase space over which H(ϕ) < E. The density of

states for the subset R is defined as

DR(E) =

∫

R

dΣE . (3.74)

Note that R ⊂ SE .

9Recall that the phase space coordinates don’t all have the same units! N of the coordinates have units of posi-
tion and N have units of momentum. Furthermore, some may be angles and some angular momenta. However
in any case dµ has units AN , where A stands for action, i.e. [dµ] = ML2/T. Thus while the product dµ = dSE dζE
has units of AN , individually the units of dSE and dζE vary along the hypersurface SE ! However, the invariant
differential surface element dΣE always has units of AN/E. To resolve any confusion, one may choose to rescale
so that all phase space coordinates are dimensionless.
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Figure 3.7: Constant phase space velocity at an irrational angle over a toroidal phase space is ergodic,
but not mixing. A circle remains a circle, and a blob remains a blob.

3.5.2 The microcanonical ensemble

The distribution,

̺E(ϕ) =
δ
(
E −H(ϕ)

)

D(E)
=

δ
(
E −H(ϕ)

)
∫
dµ δ

(
E −H(ϕ)

) , (3.75)

defines the microcanonical ensemble (µCE) of Gibbs. We could also write

〈
f(ϕ)

〉
µCE

=
1

D(E)

∫

S
E

dΣE f(ϕ) , (3.76)

integrating over the hypersurface SE rather than the entire phase space.

3.5.3 Ergodicity and mixing

Just because a system is ergodic, it doesn’t necessarily mean that ̺(ϕ, t) → ̺eq(ϕ), for consider the
following motion on the toroidal space

(
ϕ = (q, p)

∣∣ 0 ≤ q < 1 , 0 ≤ p < 1
}

, where we identify
opposite edges, i.e. we impose periodic boundary conditions. We also take q and p to be dimensionless,
for simplicity of notation. Let the dynamics be given by q̇ = 1 and ṗ = α . The motion is then q(t) = q0+t
and p(t) = p0 + αt . Thus the phase curves are given by p = p0 + α(q − q0) .

Now consider the average of some function f(q, p). We can write f(q, p) in terms of its Fourier transform,

f(q, p) =
∑

m,n

f̂m,n e
2πi(mq+np) . (3.77)

We have, then,
f
(
q(t), p(t)

)
=
∑

m,n

f̂m,n e
2πi(mq0+np0) e2πi(m+αn)t . (3.78)

We can now perform the time average of f :

〈
f(q, p)

〉
t
= f̂0,0 + lim

T→∞

1

T

∑

m,n

′
f̂m,n e

2πi(mq0+np0)
e2πi(m+αn)T − 1

2πi(m + αn)

= f̂0,0 if α /∈ Q .

(3.79)
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Clearly,

〈
f(q, p)

〉
µCE

=

1∫

0

dq

1∫

0

dp f(q, p) = f̂0,0 =
〈
f(q, p)

〉
t

, (3.80)

so the system is ergodic. However, if α = r/s with r, s ∈ Z and gcd(r, s) = 1 (i.e. r and s are relatively
prime), then exp

{
2πi(m+ αn)t

}
= 1 whenever (m,n) = (kr,−ks) for any k ∈ Z. Thus,

〈
f(q, p)

〉
t
=

∞∑

k=−∞
f̂kr,−ks e

2πik(rq0−sp0) , (3.81)

which is not the same as
〈
f(q, p)

〉
µCE

= f̂0,0 .

The situation is depicted in fig. 3.7. If we start with the characteristic function of a disc,

̺(q, p, t = 0) = Θ
(
a2 − (q − q0)

2 − (p− p0)
2
)

, (3.82)

then it remains the characteristic function of a disc:

̺(q, p, t) = Θ
(
a2 − (q − q0 − t)2 − (p − p0 − αt)2

)
, (3.83)

For an example of a transition to ergodicity in a simple dynamical Hamiltonian model, see §3.10.

A stronger condition one could impose is the following. Let A and B be subsets of SE . Define the
measure

ν(A) =

∫
dΣE

χ
A(ϕ)

/∫
dΣE =

DA(E)

D(E)
, (3.84)

where χA(ϕ) is the characteristic function of A. The measure of a set A is the fraction of the energy
surface SE covered by A. This means ν(SE) = 1, since SE is the entire phase space at energy E. Now
let g be a volume-preserving map on phase space. Given two measurable sets A and B, we say that a
system is mixing if

mixing ⇐⇒ lim
n→∞

ν
(
gnA ∩B

)
= ν(A) ν(B) . (3.85)

In other words, the fraction ofB covered by the nth iterate ofA, i.e. gnA, is, as n→ ∞, simply the fraction
of SE covered by A. The iterated map gn distorts the region A so severely that it eventually spreads out
‘evenly’ over the entire energy hypersurface. Of course by ‘evenly’ we mean ‘with respect to any finite
length scale’, because at the very smallest scales, the phase space density is still locally constant as one
evolves with the dynamics.

Mixing means that

〈
f(ϕ)

〉
=

∫
dµ ̺(ϕ, t) f(ϕ) −−−−→

t→∞

∫
dµ f(ϕ) δ

(
E −H(ϕ)

)/∫
dµ δ

(
E −H(ϕ)

)

≡ Tr
[
f(ϕ) δ

(
E −H(ϕ)

)]/
Tr
[
δ
(
E −H(ϕ)

)]
.

(3.86)

Physically, we can imagine regions of phase space being successively stretched and folded. During the
stretching process, the volume is preserved, so the successive stretch and fold operations map phase
space back onto itself.
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Figure 3.8: The baker’s transformation is a successive stretching, cutting, and restacking.

An example of a mixing system is the baker’s transformation, depicted in fig. 3.8, and defined by

g(q, p) =

{(
2q , 1

2p
)

if 0 ≤ q < 1
2(

2q − 1 , 1
2p+

1
2

)
if 1

2 ≤ q < 1 .
(3.87)

Note that g is invertible and volume-preserving. The baker’s transformation consists of an initial stretch
in which q is expanded by a factor of two and p is contracted by a factor of two, which preserves the
total volume. The system is then mapped back onto the original area by cutting and restacking, which
we can call a ‘fold’. The inverse transformation is accomplished by stretching first in the vertical (p)
direction and squashing in the horizontal (q) direction, followed by a slicing and restacking. Explicitly,

g−1(q, p) =

{(
1
2q , 2p

)
if 0 ≤ p < 1

2(
1
2q +

1
2 , 2p− 1

)
if 1

2 ≤ p < 1 .
(3.88)

Another example of a mixing system is Arnold’s ‘cat map’10

g(q, p) =
(
[q + p] , [q + 2p]

)
, (3.89)

where [x] denotes the fractional part of x. One can write this in matrix form as

(
q′

p′

)
=

M︷ ︸︸ ︷(
1 1
1 2

) (
q
p

)
mod Z2 . (3.90)

10The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.
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Figure 3.9: The multiply iterated baker’s transformation. The set A covers half the phase space and its
area is preserved under the map. Initially, the fraction of B covered by A is zero. After many iterations,
the fraction of B covered by gnA approaches 1

2 .

The matrix M is very special because it has integer entries and its determinant is detM = 1. This means
that the inverse also has integer entries. The inverse transformation is then

(
q
p

)
=

M−1

︷ ︸︸ ︷(
2 −1
−1 1

) (
q′

p′

)
mod Z2 . (3.91)

Now for something cool. Suppose that our image consists of a set of discrete points located at (n1/k , n2/k),
where the denominator k ∈ Z is fixed, and where n1 and n2 range over the set {1, . . . , k}. Clearly g and
its inverse preserve this set, since the entries of M and M−1 are integers. If there are two possibilities

for each pixel (say off and on, or black and white), then there are 2(k
2) possible images, and the cat map

will map us invertibly from one image to another. Therefore it must exhibit Poincaré recurrence! This
phenomenon is demonstrated vividly in fig. 3.10, which shows a k = 150 pixel (square) image of a cat
subjected to the iterated cat map. The image is stretched and folded with each successive application of
the cat map, but after 300 iterations the image is restored! How can this be if the cat map is mixing? The
point is that only the discrete set of points (n1/k , n2/k) is periodic. Points with different denominators
will exhibit a different periodicity, and points with irrational coordinates will in general never return
to their exact initial conditions, although recurrence says they will come arbitrarily close, given enough
iterations. The baker’s transformation is also different in this respect, since the denominator of the p
coordinate is doubled upon each successive iteration.

The student should now contemplate the hierarchy of dynamical systems depicted in fig. 3.11, under-
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Figure 3.10: The Arnold cat map applied to an image of 150× 150 pixels. After 300 iterations, the image
repeats itself. (Source: Wikipedia)

standing the characteristic features of each successive refinement11.

3.6 Thermalization of Quantum Systems

3.6.1 Quantum dephasing

Thermalization of quantum systems is fundamentally different from that of classical systems. Whereas
time evolution in classical mechanics is in general a nonlinear dynamical system, the Schrödinger equa-
tion for time evolution in quantum mechanics is linear: i~∂Ψ/∂t = ĤΨ , where Ĥ is a many-body
Hamiltonian. In classical mechanics, the thermal state is constructed by time evolution – this is the con-
tent of the ergodic theorem. In quantum mechanics, as we shall see, the thermal distribution must be
encoded in the eigenstates themselves.

Let us assume an initial condition at t = 0 with |Ψ(0)〉 =∑αCα |Ψα〉 , where
{
|Ψα 〉

}
is an orthonormal

eigenbasis for Ĥ satisfying Ĥ |Ψα〉 = Eα |Ψα〉. The expansion coefficients satisfy Cα = 〈Ψα|Ψ(0)〉 and∑
α |Cα|2 = 1. Normalization requires 〈Ψ(0) |Ψ(0) 〉 =∑α |Cα|2 = 1 .

The time evolution of |Ψ〉 is then given by

|Ψ(t)〉 =
∑

α

Cα e
−iEαt/~ |Ψα〉 . (3.92)

11There is something beyond mixing, called a K-system. A K-system has positive Kolmogorov-Sinai entropy.
For such a system, closed orbits separate exponentially in time, and consequently the Liouvillian L has a Lebesgue
spectrum with denumerably infinite multiplicity.
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Figure 3.11: The hierarchy of dynamical systems.

The energy is distributed according to the time-independent function

P (E) = 〈Ψ(t) | δ(E − Ĥ) |Ψ(t) 〉 =
∑

α

|Cα|2 δ(E − Eα) . (3.93)

Thus, the average energy is time-independent and is given by

〈E〉 = 〈Ψ(t) | Ĥ |Ψ(t) 〉 =
∞∫

−∞

dE P (E)E =
∑

α

|Cα|2Eα . (3.94)

The root mean square fluctuations of the energy are given by

(∆E)rms =
〈(
E − 〈E〉

)2〉1/2
=

√∑

α

|Cα|2E2
α −

(∑

α

|Cα|2Eα

)2
. (3.95)

Typically we assume that the distribution P (E) is narrowly peaked about 〈E〉, such that (∆E)rms ≪
〈E〉−E0 , where E0 is the ground state energy. Note that P (E) = 0 for E < E0, i.e. the eigenspectrum of
Ĥ is bounded from below.

Now consider a general quantum observable described by an operator A. We have

〈A(t)〉 = 〈Ψ(t) | A |Ψ(t) 〉 =
∑

α,β

C∗
αCβ e

i(Eα−E
β
)t/~ Aαβ , (3.96)

where Aαβ = 〈Ψα | A |Ψβ 〉. In the limit of large times, we have

〈A〉t ≡ lim
T→∞

1

T

T∫

0

dt 〈A(t)〉 =
∑

α

|Cα|2 Aαα . (3.97)

Note that this implies that all coherence between different eigenstates is lost in the long time limit, due
to dephasing.
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3.6.2 Eigenstate thermalization hypothesis

The essential ideas behind the eigenstate thermalization hypothesis (ETH) were described independently
by J. Deutsch (1991) and by M. Srednicki (1994). The argument goes as follows. If the total energy is the
only conserved quantity, and if A is a local, translationally-invariant, few-body operator, then the time
average 〈A〉 is given by its microcanonical value,

〈A〉t =
∑

α

|Cα|2Aαα =

∑
α AααΘ(Eα ∈ I)∑

α Θ(Eα ∈ I)
≡ 〈A〉E, (3.98)

where I =
[
E,E + ∆E

]
is an energy interval of width ∆E. So once again, time averages are micro

canonical averages.

But how is it that this is the case? The hypothesis of Deutsch and of Srednicki is that thermalization
in isolated and bounded quantum systems occurs at the level of individual eigenstates. That is, for all
eigenstates |Ψα〉 with Eα ∈ I , one has Aαα = 〈A〉Eα

. This means that thermal information is encoded in
each eigenstate. This is called the eigenstate thermalization hypothesis (ETH).

An equivalent version of the ETH is the following scenario. Suppose we have an infinite or extremely
large quantum system U (the ‘universe’) fixed in an eigenstate |Ψα〉. Then form the projection operator
Pα = |Ψα〉〈Ψα|. Projection operators satisfy P 2 = P and their eigenspectrum consists of one eigenvalue
1 and the rest of the eigenvalues are zero12. Now consider a partition of U = W ∪ S, where W ≫ S. We
imagine S to be the ‘system’ and W the ‘world’. We can always decompose the state |Ψα〉 in a complete
product basis for W and S, viz.

|Ψα〉 =
NW∑

p=1

NS∑

j=1

Qα
pj |ψW

p 〉 ⊗ |ψS
j 〉 . (3.99)

Here NW/S is the size of the basis for W/S. The reduced density matrix for S is defined as

ρS = Tr
W
Pα =

N
S∑

j,j′=1

( N
W∑

p=1

Qα
pj Qα∗

pj′

)
|ψS

j 〉〈ψS
j′ | . (3.100)

The claim is that ρS approximates a thermal density matrix on S, i.e.

ρS ≈ 1

ZS

e−βĤS , (3.101)

where ĤS is some Hamiltonian on S, and ZS = Tr e−βĤS , so that Tr ρS = 1 and ρS is properly normal-
ized. A number of issues remain to be clarified:

(i) What do we mean by “approximates”?

12More generally, we could project onto aK-dimensional subspace, in which case there would beK eigenvalues
of +1 and N −K eigenvalues of 0, where N is the dimension of the entire vector space.
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(ii) What do we mean by ĤS?

(iii) What do we mean by the temperature T ?

We address these in reverse order. The temperature T of an eigenstate |Ψα〉 of a Hamiltonian Ĥ is
defined by setting its energy density Eα/VU to the thermal energy density, i.e.

Eα

V
=

1

V

Tr Ĥ e−βĤ

Tr e−βĤ
. (3.102)

Here, Ĥ = ĤU is the full Hamiltonian of the universe U = W ∪ S, and V = VU . Our intuition is that

ĤS should reflect a restriction of the original Hamiltonian ĤU to the system S. What should be done,

though, about the interface parts of ĤU which link S and W ? For lattice Hamiltonians, we can simply
but somewhat arbitrarily cut all the bonds coupling S and W . But we could easily imagine some other
prescription, such as halving the coupling strength along all such interface bonds. Indeed, the definition
of HS is somewhat arbitrary. However, so long as we use ρS to compute averages of local operators

which lie sufficiently far from the boundary of S, the precise details of how we truncate ĤU to ĤS are
unimportant. This brings us to the first issue: the approximation of ρS by its Gibbs form in eqn. 3.101 is
only valid when we consider averages of local operators lying within the bulk of S. This means that we
must only examine operators whose support is confined to regions greater than some distance ξT from
∂S, where ξT is a thermal correlation length. This, in turn, requires that LS ≫ ξT , i.e. the region S is very
large on the scale of ξT . How do we define ξT ? For a model such as the Ising model, it can be taken to be
the usual correlation length obtained from the spin-spin correlation function 〈σr σr′〉T . More generally,
we may choose the largest correlation length from among the correlators of all the independent local
operators in our system. Again, the requirement is that exp(−d∂(r)/ξT ) ≪ 1, where d∂(r) is the shortest
distance from the location of our local operator Or to the boundary of S. At criticality, the exponential is
replaced by a power law (d∂(r)/ξT )

−p, where p is a critical exponent. Another implicit assumption here
is that VS ≪ VW .

3.6.3 More precise formulation

More precisely (Srednicki, 1999), ETH is formulated in terms of general matrix elements of local observ-
ables in the energy eigenbasis, viz.13

Amn = 〈m | Â |n 〉 = A(E) δmn + e−S(E)/2 fA(E,ω)Rmn (3.103)

where E = 1
2(Em + En) is an average of the energy eigenvalues, ω = Em − En is their difference,

Rmn is a random matrix with 〈Rmn〉 = 0 and var(Rmn) = 1, S(E) is the thermodynamic entropy, with
S(E) ∼ logDH when E lies in the middle of the spectrum (DH is the Hilbert space dimension), and
A(E) and f(E,ω) are smooth functions of their arguments. Additionally, one has

Amn ∈ R : Rnm = Rmn , fA(E,−ω) = fA(E,ω)

Amn ∈ C : Rnm = R∗
mn , fA(E,−ω) = f∗A(E,ω) ,

(3.104)

13See the review article by L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv. Phys., 65, 239 (2016) and
references therein.
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for systems with and without time-reversal symmetry, respectively.

ETH reduces to random matrix theory within a given small energy window. Eqn. 3.103 is to be con-
trasted with the corresponding result for random matrix theory,

Amn = 〈Â〉 δmn +

√
〈Â2〉 − 〈Â〉2

DH
Rmn , (3.105)

where 〈Â〉 ≡ Tr Â and 〈Â2〉 ≡ Tr (Â2) so that the averages are over the entire spectrum. ETH thus
reduces to RMT within any small window which contains O(DH) states.

A consequence of ETH is that the expectation value of an operator in a Gibbs state ρ = Z−1 exp(−βH)
can be replaced by its expectation value in any eigenstate whose energy eigenvalue corresponds to
the peak in g(E) exp(−βE), where g(E) is the density of states. Such an eigenstate is then called a
representative pure state14. To see this, note

Tr (ρÂ) ≈ 1

Z

∫
dE g(E) e−βEA(E) ≈ A(E∗) . (3.106)

Here it is assumed that the function A(E) in Eqn. 3.103 is a smooth function of E, and that the distribu-
tion g(E) exp(−βE) has a narrow peak centered at E = E∗. For example, if

g(E) ∼ exp

(
− (E −Ec)

2

2σ2

)
, (3.107)

where the energy variance is extensive, i.e. σ2 ≈ wN with w a constant and N the total number of
particles or the system volume in microscopic units, then E∗(β) ≈ Ec − βσ2 and the energy density is

ε∗(β) ≡ E∗

N
≈ εc − βw , (3.108)

where εc is the energy density at the center of the spectrum. Eigenstates of H in the vicinity of energy
density ε∗(β) are thus representative pure states of the Gibbs density matrix which reproduce expecta-
tion values of few body operators. Note that we may obtain ε∗(β) from the expression

ε∗(β) =
1

NZ
Tr (Ĥe−βĤ) . (3.109)

3.6.4 When is the ETH true?

There is no rigorous proof of the ETH. Deutsch showed that the ETH holds for the case of an integrable
Hamiltonian weakly perturbed by a single Gaussian random matrix. Horoi et al. (1995) showed that
nuclear shell model wavefunctions reproduce thermodynamic predictions. Recent numerical work by
M. Rigol and collaborators has verified the applicability of the ETH in small interacting boson systems.
ETH fails for so-called integrable models, where there are a large number of conserved quantities, which

14See V. Khemani, A. Chandran, H. Kim, and S. L. Sondhi, Phys. Rev. E 90, 052133 (2014).
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commute with the Hamiltonian. Integrable models are, however, quite special, and as Deutsch showed,
integrability is spoiled by weak perturbations, in which case ETH then applies.

ETH also fails in the case of noninteracting disordered systems which exhibit Anderson localization. Sin-
gle particle energy eigenstates ψj whose energies εj the localized portion of the eigenspectrum decay

exponentially, as |ψj(r)|2 ∼ exp
(
− |r − rj |/ξ(εj)

)
, where rj is some position in space associated with

ψj and ξ(εj) is the localization length. Within the localized portion of the spectrum, ξ(ε) is finite. As ε
approaches a mobility edge, ξ(ε) diverges as a power law. In the delocalized regime, eigenstates are spatially
extended and typically decay at worst as a power law15. Exponentially localized states are unable to ther-
malize with other distantly removed localized states. Of course, all noninteracting systems will violate
ETH, because they are integrable. The interacting version of this phenomenon, many-body localization
(MBL), is a topic of intense current interest in condensed matter and statistical physics. MBL systems
also exhibit a large number of conserved quantities, but in contrast to the case of integrable systems,
where each conserved quantity is in general expressed in terms of an integral of a local density, in MBL
systems the conserved quantities are themselves local, although emergent. The emergent nature of locally
conserved quantities in MBL systems means that they are not simply expressed in terms of the original
local operators of the system, but rather are arrived at via a sequence of local unitary transformations.

Note again that in contrast to the classical case, time evolution of a quantum state does not create the
thermal state. Rather, it reveals the thermal distribution which is encoded in all eigenstates after sufficient
time for dephasing to occur, so that correlations between all the wavefunction expansion coefficients
{Cα} for α 6= α′ are all lost.

3.7 Appendix I : Normal matrices and Jordan canonical form

If a matrix A is normal, meaning
[
A,A†] = 0, then it may be diagonalized by a unitary transformation.

Indeed, any n × n matrix A is diagonalizable by a unitary transformation if and only if A is normal.
When A is normal, the eigenspaces span, and we may choose 〈〈Lα ||Rβ 〉〉 = δαβ , using Gram-Schmidt
in the case of degeneracies.

When A is not normal, while the sum of the dimensions of its eigenspaces generically is equal to its
dimension dim(A) = n, this is not guaranteed, and it may be less than n. What is true is that any
non-normal complex matrix A can be brought to Jordan canonical form by a similarity transformation
Ã = Q−1AQ, where Q is invertible and

Ã =



J1

. . .

Jb


 . (3.110)

15Recall that in systems with no disorder, eigenstates exhibit Bloch periodicity in space.
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Here b is the number of Jordan blocks, where each block Jα is of the form

Jα =




λα 1

λα
. . .

. . . 1
λα




. (3.111)

Thus each Jα is tridiagonal, with diagonal elements all given by λα and each element directly above

the diagonal equal to one. We denote the right and left eigenvectors of Ã as || R̃α 〉〉 = Q−1 ||Rα 〉〉 and

〈〈 L̃α || = 〈〈Lα ||Q, respectively. Each Jα has only one right eigenvector, ψα
j = δj,1 , whose corresponding

left eigenvector is χα
j = δj,nα

, where nα = rank(Jα). Note n = rank(A) is the sum of the dimensions of

the Jordan blocks, i.e. n =
∑b

α=1 nα . When nα = 1, the Jordan block is the 1 × 1 matrix λα . For a non-
normal matrix A, its eigenvalues λα may be complex. However, if all the elements of A are real, then
any complex eigenvalues must occur in complex conjugate pairs, because the characteristic polynomial
P (λ) = det(λ−A) satisfies

[
P (λ)

]∗
= P (λ∗).

When λα 6= λβ , we have 〈〈Lα ||Rβ 〉〉 = 〈〈 L̃α || R̃β 〉〉 = 0 . For eigenspaces with nα = 1, we may choose

〈〈Lα ||Rβ 〉〉 = 〈〈 L̃α || R̃β 〉〉 = δαβ , but for the nontrivial Jordan blocks with nα > 1 we have 〈〈 L̃α || R̃α 〉〉 =
0, as we have seen in the previous paragraph, and therefore 〈〈Lα ||Rα 〉〉 = 0. Real symmetric matrices
are all normal, with no Jordan blocks. For complex symmetric matrices, we may have nontrivial Jordan
blocks.

Since 〈〈L ||R 〉〉 = 〈〈 L̃ || R̃ 〉〉 = 0, we may write

A =
⊕

nα=1

λα ||Rα 〉〉〈〈Lα ||
⊕

n
β
>1

QJβ Q
−1 (3.112)

and raising A to the k power yields

Ak =
⊕

nα=1

λkα ||Rα 〉〉〈〈Lα ||
⊕

n
β
>1

QJk
β Q

−1 . (3.113)

Note that Jk
β is upper triangular with all diagonal elements given by λkβ . Note that for complex symmet-

ric matrices, the left and right eigenvectors are identical and we may write

Lα
j = Rα

j ≡ Ψα
j ⇒ 〈〈Lα || = 〈〈Ψα || , ||Rα 〉〉 = ||Ψα 〉〉 , (3.114)

with no complex conjugation, i.e. 〈〈Lα || j 〉〉 = 〈〈 j ||Rα 〉〉 ≡ Ψα
j .

3.7.1 Contrast with singular value decomposition

We now remark upon the difference between the decomposition into Jordan canonical form and the
singular value decomposition (SVD), in which we write an m × n matrix A as A = UDV †, where U
is m × k, V is n × k (hence V † is k × n), U †U = V †V = Ik×k , and D = diag(d1, . . . , dk) is k × k with
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k ≤ min(m,n) and each dj > 0. The elements dj are the singular values and the rows of U and V are the

singular vectors. Note that A†A = V D2 V † is n× n and AA† = UD2 U † is m×m. If we define

R(λ) =

k∏

j=1

(
λ− d2j

)
, (3.115)

Then

P (λ) ≡ det(λ−A†A) = λn−kR(λ) , Q(λ) ≡ det(λ−AA†) = λm−kR(λ) . (3.116)

For any square n× n complex matrix A we therefore have two decompositions, via JCF and SVD, viz.

A = QJ Q−1 = UDV † , (3.117)

where J is the Jordan canonical form of A. When A is normal, k = n and U = V = Q, i.e. the two
decompositions are equivalent.

3.7.2 Example

Consider the real asymmetric matrix

A =

(
2a −4a2
1
4 0

)
, (3.118)

where a ∈ Z is any real number. The characteristic polynomial is F (λ) = det(λ−A) = (λ−a)2 and there
is a single eigenvalue, λ = a. The right and left eigenvectors are found to be

||R 〉〉 =
(
4a
1

)
, 〈〈L || =

(
1
4 −a

)
, (3.119)

where the normalization is arbitrary. Note 〈〈L ||R 〉〉 = 0. The matrixA is brought to JCF by the similarity
transformation Ã = Q−1AQ with

Q =

(
4a 4
1 0

)
, Q−1 =

(
0 1
1
4 −a

)
, Ã = Q−1AQ =

(
a 1
0 a

)
. (3.120)

Note that

|| R̃ 〉〉 = Q−1 ||R 〉〉 =
(
1
0

)
, 〈〈 L̃ || = 〈〈L ||Q =

(
0 1

)
, (3.121)

and that 〈〈 L̃ || R̃ 〉〉 = 0.

Adding another row and column to our matrix A, consider the matrix

B =



2a −4a2 0
1
4 0 0
0 0 b


 , (3.122)
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where both a and b are arbitrary real numbers. Since det(λ − B) = (λ − a)2 (λ − b), B thus has two
eigenvalues: λ1 = a and λ2 = b. The decomposition of B is then

B = QJ1Q
−1
⊕

λ2 ||R2 〉〉〈〈L2 || , (3.123)

where 〈〈L2 || =
(
0 0 1

)
and ||R2 〉〉 =

(
0 0 1

)t
. Of course, we could mix up the various elements of

B by applying a general similarity transformation B → B′ ≡ SBS−1, but the JCF of B′ would be the
same.

3.8 Appendix II : Formal Solution of the Master Equation

Recall the master equation Ṗi = −Γij Pj . The matrix Γij is real but not necessarily symmetric. For such

a matrix, the left eigenvectors Lα
i and the right eigenvectors Rβ

j are in general not related by a simple
transpose operation:

Lα
i Γij = λα L

α
j

Γij R
β
j = λβ R

β
i .

(3.124)

We denote the right and eigenvectors by ||Rα 〉〉 and 〈〈Lα ||, which are column vectors and row vectors,
respectively. Thus Γ ||Rα 〉〉 = λα||Rα 〉〉 and 〈〈Lα ||Γ = 〈〈Lα ||λα , the second of which may be written as
Γ t ||Lα 〉〉 = λα ||Lα 〉〉, where the column vector ||Lα 〉〉 is the transpose of the row vector 〈〈Lα || and Γ t is
the matrix transpose of Γ . The characteristic polynomial is the same in both cases:

F (λ) ≡ det (λ− Γ ) = det (λ− Γ t) , (3.125)

which means that the left and right eigenvalues are the same. Note also that
[
F (λ)

]∗
= F (λ∗), hence the

eigenvalues are either real or appear in complex conjugate pairs. Multiplying the eigenvector equation

for Lα on the right by Rβ
j and summing over j, and multiplying the eigenvector equation for Rβ on

the left by Lα
i and summing over i, and subtracting the two results yields (λα − λβ) 〈〈Lα ||Rβ 〉〉 = 0 ,

where the inner product is now 〈〈Lα ||Rβ 〉〉 =∑i L
α
i R

β
i with no complex conjugation on the bra vector.

We may now demand 〈〈Lα ||Rβ 〉〉 = δαβ , which is our eigenvector normalization condition. As dis-
cussed above in §3.7, in the event that Γ contains nontrivial Jordan blocks, its eigenvectors do not span.
However, this is a nongeneric state of affairs, and here we assume that Γ contains no nontrivial Jordan
blocks.

We have seen that 〈〈L || =
(
1 1 · · · 1

)
is a left eigenvector of the matrix Γ with eigenvalue λ = 0,

since
∑

i Γij = 0. We do not know a priori the corresponding right eigenvector, which depends on other
details of Γij . Generically, a matrix which is not normal has spanning eigenvectors, i.e. the existence of
nontrivial Jordan blocks is nongeneric. Assuming that the eigenvectors of Γ span, then, let’s expand the
probability distribution Pi(t) in the right eigenvectors of Γ , writing

Pi(t) =
∑

α

Cα(t)R
α
i , (3.126)
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where α ∈ {0, 1, . . . , n− 1}, where n is the rank of Γ . Then

dPi

dt
=
∑

α

dCα

dt
Rα

i = −Γij Pj = −
∑

α

Cα Γij R
α
j = −

∑

α

λα CαR
α
i . (3.127)

This allows us to write

dCα

dt
= −λαCα =⇒ Cα(t) = Cα(0) e

−λαt . (3.128)

Hence, we can write
Pi(t) =

∑

α

Cα(0) e
−λαtRα

i . (3.129)

Let α = 1 correspond to the left eigenvector 〈〈L1 || =
(
1 1 · · · 1

)
. The corresponding eigenvalue

is λ1 = 1 . It is now easy to see that Re (λα) > 0 for all α > 1, or else the probabilities will become
negative16. For suppose Re (λα) < 0 for some α. Then as t→ ∞, the sum in eqn. 3.129 will be dominated
by the term for which λα has the largest negative real part; all other contributions will be subleading.
But we must have

∑
iR

α
i = 0 since ||Rα 〉〉 must be orthogonal to the left eigenvector 〈〈L0 ||. Therefore,

at least one component of Rα
i (i.e. for some value of i) must have a negative real part, which means a

negative probability!17 As we have already proven that an initial nonnegative distribution {Pi(t = 0)}
will remain nonnegative under the evolution of the master equation, we conclude that Pi(t) → P eq

i as
t→ ∞, relaxing to the λ = 0 right eigenvector, with Re (λα) ≥ 0 for all α.

3.8.1 Detailed balance

Consider an arbitrary nonnegative real upper triangular matrix T with Tij ≥ 0 for all 1 ≤ i < j ≤ n.
Let πi be a normalized distribution, i.e. πi ≥ 0 for all i ∈ {1, . . . , n} with

∑
i πi = 1. Now define the

nonnegative matrix

Wij =

{
πi Tij if i < j

πj Tji if i > j .
(3.130)

and take this to be the matrix of transition rates so that the master equation is as in Eqn. 3.1

dPi

dt
=
∑

j

(
Wij Pj −Wji Pi

)
. (3.131)

Since Wij/Wji = πi/πj , the matrix W satisfies detailed balance relative to the distribution π. With

Γij ≡Wij for i 6= j and Γii ≡
∑′

kWki (with k = i excluded from the sum) as before, we recover the form

of the master equation Ṗi = −∑j Γij Pj .

How many parameters does it take to describe a general n × n transition matrix Wij satisfying detailed

balance? Since there are 1
2n(n−1) freedoms in T and n−1 freedoms in π, we conclude that 1

2(n−1)(n+2)

16We presume that the eigenvalue λ = 0 is nondegenerate.
17Since the probability Pi(t) is real, if the eigenvalue with the smallest (i.e. largest negative) real part is complex,

there will be a corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a
real value for Pi(t).
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parameters are required to specify Wij . But if we drop the constraint of detailed balance, then all the
elements of Wij not lying on the diagonal are independent, corresponding to n(n− 1) parameters. Note
that we may set Wii = 0 for all i.

3.9 Appendix III : Poisson Processes and Radioactive Decay

Here we consider two examples where the state labels of the master equation denote a number, corre-
sponding to the discrete population of some group. The master equation is

dPn

dt
=
∑

m

(
Wnm Pm −Wmn Pn

)
. (3.132)

Thus Wnm is the transition rate for the process |m 〉 → |n 〉.

3.9.1 Poisson process

Consider the Poisson process, for which

Wnm =

{
λ if n = m+ 1

0 if n 6= m+ 1 .
(3.133)

We then have
dPn

dt
= λ

(
Pn−1 − Pn

)
. (3.134)

The generating function P (z, t) =
∑∞

n=0 z
nPn(t) then satisfies

∂P

∂t
= λ(z − 1)P ⇒ P (z, t) = e(z−1)λt P (z, 0) . (3.135)

If the initial distribution is Pn(0) = δn,0 , then

Pn(t) =
(λt)n

n!
e−λt , (3.136)

which is known as the Poisson distribution. If we define α ≡ λt, then from Pn = αn e−α/n! we have

〈nk〉 = e−α

(
α
∂

∂α

)k
eα . (3.137)

Thus, 〈n〉 = α , 〈n2〉 = α2 + α , etc.
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3.9.2 Radioactive decay

Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let
Pn(t) be the probability that n atoms are excited at some time t. We then model the decay dynamics by

Wnm =





0 if n ≥ m

mγ if n = m− 1

0 if n < m− 1 .

(3.138)

Here, γ is the decay rate of an individual atom, which can be determined from quantum mechanics. The
master equation then tells us

dPn

dt
= (n+ 1) γ Pn+1 − n γ Pn . (3.139)

The interpretation here is as follows: let |n 〉 denote a state in which n atoms are excited. Then Pn(t) =∣∣〈n |P (t) 〉
∣∣2. Then Pn(t) will increase due to spontaneous transitions from |n+1 〉 to |n 〉, and will

decrease due to spontaneous transitions from |n 〉 to |n−1 〉.

The average number of particles in the system is N(t) =
∑∞

n=0 nPn(t) . Note that

dN

dt
=

∞∑

n=0

n
[
(n+ 1) γ Pn+1 − n γ Pn

]

= γ

∞∑

n=0

[
n(n− 1)Pn − n2Pn

]
= −γ

∞∑

n=0

nPn = −γ N .

(3.140)

Thus, N(t) = N(0) e−γt . The relaxation time is τ = γ−1, and the equilibrium distribution is P eq
n = δn,0 .

Note that this satisfies detailed balance.

We can go a bit farther here. Let us define

P (z, t) ≡
∞∑

n=0

zn Pn(t) . (3.141)

This is sometimes called a generating function. Then

∂P

∂t
= γ

∞∑

n=0

zn
[
(n+ 1)Pn+1 − nPn

]

= γ
∂P

∂z
− γz

∂P

∂z
.

(3.142)

Thus,
1

γ

∂P

∂t
− (1− z)

∂P

∂z
= 0 . (3.143)

We now see that any function f(ξ) satisfies the above equation, where ξ = γt− ln(1 − z). Thus, we can
write

P (z, t) = f
(
γt− ln(1− z)

)
. (3.144)
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Setting t = 0 we have P (z, 0) = f
(
−ln(1− z)

)
, and inverting this result we obtain f(u) = P (1− e−u, 0),

which entails

P (z, t) = P
(
1 + (z − 1) e−γt , 0

)
. (3.145)

The total probability is P (z=1, t) =
∑∞

n=0 Pn, which clearly is conserved: P (1, t) = P (1, 0). The average
particle number is

N(t) =
∞∑

n=0

nPn(t) =
∂P

∂z

∣∣∣∣
z=1

= e−γt P (1, 0) = N(0) e−γt . (3.146)

3.10 Appendix IV: Transition to Ergodicity in a Simple Model

A ball of mass m executes perfect one-dimensional motion along the symmetry axis of a piston. Above
the ball lies a mobile piston head of mass M which slides frictionlessly inside the piston. Both the ball
and piston head execute ballistic motion, with two types of collision possible: (i) the ball may bounce off
the floor, which is assumed to be infinitely massive and fixed in space, and (ii) the ball and piston head
may engage in a one-dimensional elastic collision. The Hamiltonian is

H =
P 2

2M
+

p2

2m
+MgX +mgx ,

where X is the height of the piston head and x the height of the ball. Another quantity is conserved by
the dynamics: Θ(X − x). I.e., the ball always is below the piston head.

(a) Choose an arbitrary length scale L, and then energy scale E0 =MgL, momentum scale P0 =M
√
gL,

and time scale τ0 =
√
L/g. Show that the dimensionless Hamiltonian becomes

H̄ = 1
2 P̄

2 + X̄ +
p̄2

2r
+ rx̄ ,

with r = m/M , and with equations of motion dX/dt = ∂H̄/∂P̄ , etc. (Here the bar indicates dimension-
less variables: P̄ = P/P0, t̄ = t/τ0, etc.) What special dynamical consequences hold for r = 1?

(b) Compute the microcanonical average piston height 〈X〉. The analogous dynamical average is

〈X〉t = lim
T→∞

1

T

T∫

0

dtX(t) .

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed in §4.2.2
of the notes. (It is possible to compute the microcanonical average by more brute force methods as well.)

(c) Compute the microcanonical average of the rate of collisions between the ball and the floor. Show
that this is given by 〈∑

i

δ(t− ti)
〉
=
〈
Θ(v) v δ(x− 0+)

〉
.
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The analogous dynamical average is

〈γ〉t = lim
T→∞

1

T

T∫

0

dt
∑

i

δ(t− ti) ,

where {ti} is the set of times at which the ball hits the floor.

(d) How do your results change if you do not enforce the dynamical constraint X ≥ x?

(e) Write a computer program to simulate this system. The only input should be the mass ratio r (set
Ē = 10 to fix the energy). You also may wish to input the initial conditions, or perhaps to choose the
initial conditions randomly (all satisfying energy conservation, of course!). Have your program compute
the microcanonical as well as dynamical averages in parts (b) and (c). Plot out the Poincaré section of P
vs. X for those times when the ball hits the floor. Investigate this for several values of r. Just to show
you that this is interesting, I’ve plotted some of my own numerical results in fig. 3.12.

Solution:

(a) Once we choose a length scale L (arbitrary), we may define E0 = M gL, P0 = M
√
gL, V0 =

√
gL,

and τ0 =
√
L/g as energy, momentum, velocity, and time scales, respectively, the result follows directly.

Rather than write P̄ = P/P0 etc., we will drop the bar notation and write

H = 1
2P

2 +X +
p2

2r
+ rx .

(b) What is missing from the Hamiltonian of course is the interaction potential between the ball and
the piston head. We assume that both objects are impenetrable, so the potential energy is infinite when
the two overlap. We further assume that the ball is a point particle (otherwise reset ground level to
minus the diameter of the ball). We can eliminate the interaction potential from H if we enforce that
each time X = x the ball and the piston head undergo an elastic collision. From energy and momentum
conservation, it is easy to derive the elastic collision formulae

P ′ =
1− r

1 + r
P +

2

1 + r
p

p′ =
2r

1 + r
P − 1− r

1 + r
p .

We can now answer the last question from part (a). When r = 1, we have that P ′ = p and p′ = P ,
i.e. the ball and piston simply exchange momenta. The problem is then equivalent to two identical
particles elastically bouncing off the bottom of the piston, and moving through each other as if they
were completely transparent. When the trajectories cross, however, the particles exchange identities.

Averages within the microcanonical ensemble are normally performed with respect to the phase space
distribution

̺(ϕ) =
δ
(
E −H(ϕ)

)

Tr δ
(
E −H(ϕ)

) ,
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where ϕ = (P,X, p, x), and

Tr F (ϕ) =

∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

∞∫

0

dx F (P,X, p, x) .

Since X ≥ x is a dynamical constraint, we should define an appropriately restricted microcanonical
average:

〈
F (ϕ)

〉
µce

≡ T̃r
[
F (ϕ) δ

(
E −H(ϕ)

)]/
T̃r δ
(
E −H(ϕ)

)

where

T̃rF (ϕ) ≡
∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

X∫

0

dx F (P,X, p, x)

is the modified trace. Note that the integral over x has an upper limit of X rather than ∞, since the
region of phase space with x > X is dynamically inaccessible.

When computing the traces, we shall make use of the following result from the theory of Laplace trans-
forms. The Laplace transform of a function K(E) is

K̂(β) =

∞∫

0

dE K(E) e−βE .

The inverse Laplace transform is given by

K(E) =

c+i∞∫

c−i∞

dβ

2πi
K̂(β) eβE ,

where the integration contour, which is a line extending from β = c− i∞ to β = c+ i∞, lies to the right

of any singularities of K̂(β) in the complex β-plane. For this problem, all we shall need is the following:

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

For a proof, see §4.2.2 of the lecture notes.

We’re now ready to compute the microcanonical average of X. We have

〈X〉 = N(E)

D(E)
,

where N(E) = T̃r
[
X δ(E − H)

]
and D(E) = T̃r δ(E − H) . Let’s first compute D(E). To do this, we
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compute the Laplace transform D̂(β):

D̂(β) = T̃r e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX e−βX

X∫

0

dx e−βrx

=
2π

√
r

β

∞∫

0

dX e−βX

(
1− e−βrX

βr

)
=

√
r

1 + r
· 2π
β3

.

Similarly for N̂(β) we have

N̂(β) = T̃rX e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX X e−βX

X∫

0

dx e−βrx

=
2π

√
r

β

∞∫

0

dX X e−βX

(
1− e−βrX

βr

)
=

(2 + r) r3/2

(1 + r)2
· 2π
β4

.

Taking the inverse Laplace transform, we then have

D(E) =

√
r

1 + r
· πE2 , N(E) =

(2 + r)
√
r

(1 + r)2
· 1
3πE

3 .

We then have

〈X〉 = N(E)

D(E)
=

(
2 + r

1 + r

)
· 1
3E .

The ‘brute force’ evaluation of the integrals isn’t so bad either. We have

D(E) =

∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

X∫

0

dx δ
(
1
2P

2 + 1
2rp

2 +X + rx− E
)

.

To evaluate, define P =
√
2ux and p =

√
2r uy . Then we have dP dp = 2

√
r dux duy and 1

2P
2 + 1

2r p
2 =

u2x + u2y. Now convert to 2D polar coordinates with w ≡ u2x + u2y. Thus,

D(E) = 2π
√
r

∞∫

0

dw

∞∫

0

dX

X∫

0

dx δ
(
w +X + rx− E

)

=
2π√
r

∞∫

0

dw

∞∫

0

dX

X∫

0

dx Θ(E − w −X)Θ(X + rX −E + w)

=
2π√
r

E∫

0

dw

E−w∫

E−w
1+r

dX =
2π

√
r

1 + r

E∫

0

dq q =

√
r

1 + r
· πE2 ,
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Figure 3.12: Poincaré sections for the ball and piston head problem. Each color corresponds to a different
initial condition. When the mass ratio r = m/M exceeds unity, the system apparently becomes ergodic.

with q = E − w. Similarly,

N(E) = 2π
√
r

∞∫

0

dw

∞∫

0

dX X

X∫

0

dx δ
(
w +X + rx− E

)

=
2π√
r

∞∫

0

dw

∞∫

0

dX X

X∫

0

dx Θ(E − w −X)Θ(X + rX − E + w)

=
2π√
r

E∫

0

dw

E−w∫

E−w
1+r

dX X =
2π√
r

E∫

0

dq

(
1− 1

(1 + r)2

)
· 1
2q

2 =

(
2 + r

1 + r

)
·

√
r

1 + r
· 1
3πE

3 .
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(c) Using the general result

δ
(
F (x)−A

)
=
∑

i

δ(x− xi)∣∣F ′(xi)
∣∣ ,

where F (xi) = A, we recover the desired expression. We should be careful not to double count, so to
avoid this difficulty we can evaluate δ(t−t+i ), where t+i = ti+0+ is infinitesimally later than ti. The point
here is that when t = t+i we have p = r v > 0 (i.e. just after hitting the bottom). Similarly, at times t = t−i
we have p < 0 (i.e. just prior to hitting the bottom). Note v = p/r. Again we write γ(E) = N(E)/D(E),
this time with

N(E) = T̃r
[
Θ(p) r−1p δ(x − 0+) δ(E −H)

]
.

The Laplace transform is

N̂(β) =

∞∫

−∞

dP e−βP 2/2

∞∫

0

dp r−1 p e−βp2/2r

∞∫

0

dX e−βX

=

√
2π

β
· 1
β
· 1
β

=
√
2π β−5/2 .

Thus, N(E) = 4
√
2

3 E3/2 and

〈γ〉 = N(E)

D(E)
= 4

√
2

3π

(
1 + r√
r

)
E−1/2 .

r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce
0.3 0.1 6.1743 5.8974 0.5283 0.4505 1.2 0.1 4.8509 4.8545 0.3816 0.3812

0.3 1.0 5.7303 5.8974 0.4170 0.4505 1.2 1.0 4.8479 4.8545 0.3811 0.3812

0.3 3.0 5.7876 5.8974 0.4217 0.4505 1.2 3.0 4.8493 4.8545 0.3813 0.3812

0.3 5.0 5.8231 5.8974 0.4228 0.4505 1.2 5.0 4.8482 4.8545 0.3813 0.3812

0.3 7.0 5.8227 5.8974 0.4228 0.4505 1.2 7.0 4.8472 4.8545 0.3808 0.3812

0.3 9.0 5.8016 5.8974 0.4234 0.4505 1.2 9.0 4.8466 4.8545 0.3808 0.3812

0.3 9.9 6.1539 5.8974 0.5249 0.4505 1.2 9.9 4.8444 4.8545 0.3807 0.3812

Table 3.1: Comparison of time averages and microcanonical ensemble averages for r = 0.3 and r = 0.9.
Initial conditions are P (0) = x(0) = 0, with X(0) given in the table and E = 10. Averages were
performed over a period extending for Nb = 107 bounces.

(d) When the constraint X ≥ x is removed, we integrate over all phase space. We then have

D̂(β) = Tr e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX e−βX

∞∫

0

dx e−βrx =
2π

√
r

β3
.
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Figure 3.13: Long time running numerical averagesXav(t) ≡ t−1
∫ t
0 dt

′X(t′) for r = 0.3 (top) and r = 1.2
(bottom), each for three different initial conditions, withE = 10 in all cases. Note how in the r = 0.3 case
the long time average is dependent on the initial condition, while the r = 1.2 case is ergodic and hence
independent of initial conditions. The dashed black line shows the restricted microcanonical average,

〈X〉µce = (2+r)
(1+r) · 1

3E.

For part (b) we would then have

N̂(β) = Tr X e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX X e−βX

∞∫

0

dx e−βrx =
2π

√
r

β4
.

The respective inverse Laplace transforms are D(E) = π
√
rE2 andN(E) = 1

3π
√
rE3. The microcanoni-

cal average of X would then be 〈X〉 = 1
3E . Using the restricted phase space, we obtained a value which

is greater than this by a factor of (2 + r)/(1 + r). That the restricted average gives a larger value makes
good sense, since X is not allowed to descend below x in that case. For part (c), we would obtain the
same result for N(E) since x = 0 in the average. We would then obtain

〈γ〉 = 4
√
2

3π r−1/2E−1/2 .

The restricted microcanonical average yields a rate which is larger by a factor 1 + r. Again, it makes
good sense that the restricted average should yield a higher rate, since the ball is not allowed to attain a
height greater than the instantaneous value of X.
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r X(0) Nb 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce
1.2 7.0 104 4.8054892 4.8484848 0.37560388 0.38118510

1.2 7.0 105 4.8436969 4.8484848 0.38120356 0.38118510

1.2 7.0 106 4.8479414 4.8484848 0.38122778 0.38118510

1.2 7.0 107 4.8471686 4.8484848 0.38083749 0.38118510

1.2 7.0 108 4.8485825 4.8484848 0.38116282 0.38118510

1.2 7.0 109 4.8486682 4.8484848 0.38120259 0.38118510

1.2 1.0 109 4.8485381 4.8484848 0.38118069 0.38118510

1.2 9.9 109 4.8484886 4.8484848 0.38116295 0.38118510

Table 3.2: Comparison of time averages and microcanonical ensemble averages for r = 1.2, with Nb

ranging from 104 to 109.

(e) It is straightforward to simulate the dynamics. So long as 0 < x(t) < X(t), we have

Ẋ = P , Ṗ = −1 , ẋ =
p

r
, ṗ = −r .

Starting at an arbitrary time t0, these equations are integrated to yield

X(t) = X(t0) + P (t0) (t− t0)− 1
2(t− t0)

2

P (t) = P (t0)− (t− t0)

x(t) = x(t0) +
p(t0)

r
(t− t0)− 1

2(t− t0)
2

p(t) = p(t0)− r(t− t0) .

We must stop the evolution when one of two things happens. The first possibility is a bounce at t = tb,
meaning x(tb) = 0. The momentum p(t) changes discontinuously at the bounce, with p(t+b ) = −p(t−b ),
and where p(t−b ) < 0 necessarily. The second possibility is a collision at t = tc, meaning X(tc) = x(tc).
Integrating across the collision, we must conserve both energy and momentum. This means

P (t+c ) =
1− r

1 + r
P (t−c ) +

2

1 + r
p(t−c )

p(t+c ) =
2r

1 + r
P (t−c )−

1− r

1 + r
p(t−c ) .

In the following tables I report on the results of numerical simulations, comparing dynamical averages
with (restricted) phase space averages within the microcanonical ensemble. For r = 0.3 the microcanon-
ical averages poorly approximate the dynamical averages, and the dynamical averages are dependent
on the initial conditions, indicating that the system is not ergodic. For r = 1.2, the agreement between
dynamical and microcanonical averages generally improves with averaging time. Indeed, it has been
shown by N. I. Chernov, Physica D 53, 233 (1991), building on the work of M. P. Wojtkowski, Comm.
Math. Phys. 126, 507 (1990) that this system is ergodic for r > 1. Wojtkowski also showed that this
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system is equivalent to the wedge billiard, in which a single point particle of mass m bounces inside a
two-dimensional wedge-shaped region

{
(x, y)

∣∣ x ≥ 0 , y ≥ x ctn φ
}

for some fixed angle φ = tan−1
√

m
M .

To see this, pass to relative (X ) and center-of-mass (Y) coordinates,

X = X − x Px =
mP −Mp

M +m

Y =
MX +mx

M +m
Py = P + p .

Then

H =
(M +m)P2

x

2Mm
+

P2
y

2(M +m)
+ (M +m) gY .

There are two constraints. One requires X ≥ x, i.e. X ≥ 0. The second requires x > 0, i.e.

x = Y − M

M +m
X ≥ 0 .

Now define x ≡ X , px ≡ Px, and rescale y ≡ M+m√
Mm

Y and py ≡
√
Mm

M+m Py to obtain

H =
1

2µ

(
p2x + p2y

)
+Mgy

with µ = Mm
M+m the familiar reduced mass and M =

√
Mm. The constraints are then x ≥ 0 and y ≥

√
M
m x
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