PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #6 SOLUTIONS

(1) Consider the equation of state

a
pVv2 —02 =RT exp<— RTU2> .

(a) Find the critical point (v,, T, p.)-

crte

(b) Defining p = p/p., v = v/v,, and T = T/T,, write the equation of state in dimen-
sionless form p = p(v,T).

(c) Expandingp=1+n,9=1+¢and T = 1+¢, find €4(t) and €g,4(t) for —1 < ¢ < 0.

Solution :

(a) We write

RT —a/RTv 0 2a v
p(T,v)ZWe /RTv? = <p> :< )p.
\% - T

Thus, setting (%)T = 0 yields the equation

2a ut
PRT w2 o1 P

where u = v/b. Differentiating ¢(u), we find it has a unique minimum at u* = /2, where
p(u*) = 4. Thus,

a a
Te=gpg ve=V2b Pe = 50p2 -

(b) In terms of p, v, and T, we have the universal equation of state
~ T ) 1
= —— ex - .
b= =1 7P 2

(c)Withp=1+7,09=1+¢and T = 1 + t, we have from Eq. 7.32 of the Lecture Notes,

7TE€€

67 V2 1/2
ce=7(2) 0240,
From Mathematica we find 7, = —2 and 7., = —16, hence

fe=FL (02 +00).



(2) You are invited to contemplate the model
H=-7) n,;-n,
(i)

on a regular lattice of coordination number z, where each local moment n, can take on one

of 2n possible values: 7o, € {+ é;,...,+é,}, where ¢, - €; = 4,;. Youmay assume J > 0.

(a) Making the mean field Ansatz m = (n,), find the dimensionless free energy density
f(m,8), where 0 = k,T/zJ and f = F/NzJ.

(b) Consider two possible orientations for the moment: m, = m(1,0,...,0), in which
the moment lies along one of the é; directions, and my = m (ﬁ, e ﬁ), in which

the moment makes an angle cos™? (ﬁ) with each of the é,. Which configuration will

have the lower free energy?

(c) Analyze the mean field theory and show that for n < 3 there is a second order tran-
sition. Find the critical temperature 6, (n).

(d) Show that for n > 3 the transition is first order. Numerically obtain 6,(n) for n =
4,5,6.

Hint: The case n = 3 is examined in example problem 7.16.
Solution :

(a) The effective mean field is H 4 = zJm, where m = (n,). The mean field Hamiltonian
is found to be
HYF = INzJm? - H Zﬂ
- 92 eff i

With 0 = k,T/zJ and f = F/zJN, we then have

T ~
f(O,m) = _% In Tre Hea/FsT

—1lm? -9 In [2 Zcosh(ej)] ,
7j=1
where m; = m - €; is the component of m along é;.

J

(b) The free energies for the A and B orientations are
fa0,m) =1m? - 01n<1 + COSh(WZ/G)_l> — 01n(2n)

fa(0,m) = tm* — @Incosh(m/v/n ) — 61n(2n)



Define u = m/6. Note that

1+coshu—l_ +u U +u
n - 2'n  4ln  6!n

U u2 u4 6
Cosh<¢a> o e et

Note that the first two terms of these expansions are identical, but for terms of order u*
and above, the upper expression is larger than the lower one, for any nonzero value of «.
Taking the logarithm of each, we have shown f, (6, m) < f5(6, m), with equality holding
only for m/6 = 0. Thus, configuration B is never preferred.
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Figure 1: Free energies A fa g(m) = fa g(m) — fas(0) for A (blue) and B (dark red) con-
figurations for n = 4. Upper panel has § = 0.267 and lower panel § = 0.261. A first order
phase transition sets in at 6. = 0.264187.



(c) Expanding the free energy f, (m, #) in powers of m, we obtain

fa=-0In(2n)+ ;(

1— —
nb
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>m2+
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n? — 15n + 30

2403 "t T

720n36°

m® + O(m?®)

The quadratic term changes sign at § = n~!. Forn < 3, the sign of the quartic term is
positive, so the transition is second order. For n = 3 the transition is also second order
because the sextic term is positive. For n > 3, the quartic term switches sign, allowing for

a first order transition.. Thus for n < 3, the mean field critical temperature is 6, = n-L.
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Figure 2: Location of first order transitions for n € [3,8]. Upper panel shows solutions for
u = m/0 (red, left scale) and m (blue, right scale) for § = 6, . Lower panel shows 6. (dark
red, left scale) and n * 0. (green, right scale). Note that . > n~! foralln > 3. Forn < 3
there is a second order transition at 6, = n~"!.



(d) The mean field equation 0 f, /Om = 0 yields

_ sinh(m/0)
n — 1+ cosh(m/0)

For a first order transition, we also demand f,(m) = f,(0), which signals the moment,
as the temperature 6 is lowered, when a local minimum at m # 0 becomes the global
minimum. This is the condition for a first order transition. (In the case of a second order
transition, the minimum evolves smoothly from m = 0 for # < 6,.) Since f, (6, m = 0) =
—In(2n), we obtain the condition

P(u) = um(u) — ln(l + cosh;;—l) ;

where .
sinh u

m(u) =

Note that v = m/6 here. If the equation ¢(u) = 0 has a (unique) solution u = u* # 0,
the corresponding value of m where the magnetized solution achieves a minimizing free
energy is m(u*), and the first order transition temperature is 6, = m(u*)/u*. Numerical
results are shown in Figs. 1 and 2. Note thatn 6, > 1,i.e. 6, > n~1, which is the temperature
where the coefficient of the quadratic term in the Landau expansion of f, (m) changes sign.
Thus, the first order transition preempts the second order transition.

n — 1+ coshu

(3) A ferrimagnet is a magnetic structure in which there are different types of spins present.
Consider a sodium chloride structure in which the A sublattice spins have magnitude S,
and the B sublattice spins have magnitude S, with S; < S, (e.g. S = 1 for the A sublattice
but § = % for the B sublattice). The Hamiltonian is

H=1JY 8i 8j+gsugH> Si+gunoH> S
(i5) i€A jeB

where J > 0, so the interactions are antiferromagnetic.
(a) Work out the mean field theory for this model. Assume that the spins on the A and
B sublattices fluctuate about the mean values
(S§y) =my 2 ’ (Sp) =mg 2
and derive a set of coupled mean field equations of the form

my = FA(/BQAMOH + BJzmyg)
myg = FB(BQBN()H + /BszA)

where 2 is the lattice coordination number (z = 6 for NaCl) and F, (z) and F,(x) are
related to Brillouin functions.



(b) Show graphically that a solution exists, and find the criterion for broken symmetry
solutions to exist when H = 0, i.e. find T;. Then linearize, expanding for small m,,
my, and H, and solve for m, (T') and m;(T") and the susceptibility

10
X(T) = —5 (,TH(gAuomA + ggligmsg)

in the region T' > T.. Does your T depend on the sign of J? Why or why not?

Solution :

(a) We apply the mean field Ansatz (S;) = m, ; and obtain the mean field Hamiltonian
0 = —INJzm, -m, + Z (gamoH + zJmy) - S; + Z (9uroH +zJm,) - S; .
i€A jEB

Assuming the sublattice magnetizations are collinear, this leads to two coupled mean field
equations:
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Fs (BgsuoH + BJzmy)
FSB (ﬁgB/LOH + BszA) )
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where
Fg(z) = =S Bg(S7) ,

and Bg(x) is the Brillouin function,

Bg(z) = (14 55) ctnh (14 55)z — % ctnh 5% .

(b) The mean field equations may be solved graphically, as depicted in fig. 3.

Expanding Fg(z) = —1S(S + 1)z + O(2®) for small z, and defining the temperatures
koTy 5 = S, 5(Ssp + 1) 2J, we obtain the linear equations,
T N
mA—?AmB:— ;\JOH
T Gpl
my = o ma = =R H

with solution
_gATAT — 95T\ Ty poH
T2 —-T,T, zJ

_gBTBT — 9. T\ Ty poH
T2 -TT, zJ

my =

myg =
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Figure 3: Graphical solution of of mean field equations with Sy =1, Ss =2, 9, = g5 =1,
zJ =1,and H = 0. Top: T > T¢; bottom: T" < T..

The susceptibility is
1 oM 1 0
“NoH ~ 2 @(QAMOmA + G tom)
_(RT+ R T)T ~ 29,9, T, Ty 1§
T2 —T.T, 22J
which diverges at
2|J]

T, = V TATB = \/SASB(SA + 1)(513 + 1) W .
B

Note that 7, does not depend on the sign of J. Note also that the signs of m, and m,
may vary. For example, let g, = g, = ¢g and suppose S, > S,. Then T, < /T,T, < T,
and while m, < 0 for all T" > T, the B sublattice moment changes sign from negative to
positive at a temperature T;, > T¢. Finally, note that at high temperatures the susceptibility
follows a Curie X oc 7! behavior.



