
PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #6 SOLUTIONS

(1) Consider the equation of state

p
√
v2 − b2 = RT exp

(
− a

RTv2

)
.

(a) Find the critical point (vc, Tc, pc).

(b) Defining p̄ = p/pc , v̄ = v/vc , and T̄ = T/Tc, write the equation of state in dimen-
sionless form p̄ = p̄(v̄, T̄ ).

(c) Expanding p̄ = 1 + π , v̄ = 1 + ε, and T̄ = 1 + t, find εliq(t) and εgas(t) for −1� t < 0.

Solution :

(a) We write

p(T, v) =
RT√
v2 − b2

e−a/RTv
2 ⇒

(
∂p

∂v

)
T

=

(
2a

RTv3
− v

v2 − b2

)
p .

Thus, setting
(∂p
∂v

)
T

= 0 yields the equation

2a

b2RT
=

u4

u2 − 1
≡ ϕ(u) ,

where u ≡ v/b. Differentiating ϕ(u), we find it has a unique minimum at u∗ =
√

2, where
ϕ(u∗) = 4. Thus,

Tc =
a

2b2R
, vc =

√
2 b , pc =

a

2eb2
.

(b) In terms of p̄, v̄, and T̄ , we have the universal equation of state

p̄ =
T̄√

2v̄2 − 1
exp

(
1− 1

T̄ v̄2

)
.

(c) With p̄ = 1 + π, v̄ = 1 + ε, and T̄ = 1 + t, we have from Eq. 7.32 of the Lecture Notes,

εL,G = ∓
(

6πεt
πεεε

)1/2

(−t)1/2 +O(t) .

From Mathematica we find πεt = −2 and πεεε = −16, hence

εL,G = ∓
√

3
2 (−t)1/2 +O(t) .
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(2) You are invited to contemplate the model

Ĥ = −J
∑
〈ij〉

n̂i · n̂j

on a regular lattice of coordination number z, where each local moment n̂i can take on one
of 2n possible values: n̂i ∈

{
± ê1, . . . ,±ên

}
, where êi · êj = δij . You may assume J > 0.

(a) Making the mean field Ansatz m = 〈n̂i〉, find the dimensionless free energy density
f(m, θ), where θ = kBT/zJ and f = F/NzJ .

(b) Consider two possible orientations for the moment: mA = m (1, 0, . . . , 0), in which
the moment lies along one of the êi directions, and mB = m

(
1√
n
, . . . , 1√

n

)
, in which

the moment makes an angle cos−1
(

1√
n

)
with each of the êi. Which configuration will

have the lower free energy?

(c) Analyze the mean field theory and show that for n ≤ 3 there is a second order tran-
sition. Find the critical temperature θc(n).

(d) Show that for n > 3 the transition is first order. Numerically obtain θc(n) for n =
4, 5, 6.

Hint: The case n = 3 is examined in example problem 7.16.

Solution :

(a) The effective mean field is Heff = zJm, where m = 〈n̂i〉. The mean field Hamiltonian
is found to be

ĤMF = 1
2NzJm

2 −Heff ·
∑
i

n̂i .

With θ = kBT/zJ and f = F/zJN , we then have

f(θ ,m) = − kBT

NzJ
lnTr e−Ĥeff/kBT

= 1
2m

2 − θ ln

[
2

n∑
j=1

cosh
(mj

θ

)]
,

where mj = m · êj is the component of m along êj .

(b) The free energies for the A and B orientations are

fA(θ,m) = 1
2m

2 − θ ln

(
1 +

cosh(m/θ)− 1

n

)
− θ ln(2n)

fB(θ,m) = 1
2m

2 − θ ln cosh
(
m/
√
n θ
)
− θ ln(2n) .
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Define u = m/θ. Note that

1 +
coshu− 1

n
= 1 +

u2

2!n
+

u4

4!n
+

u6

6!n
+ . . .

cosh

(
u√
n

)
= 1 +

u2

2!n
+

u4

4!n2
+

u6

6!n3
+ . . . .

Note that the first two terms of these expansions are identical, but for terms of order u4

and above, the upper expression is larger than the lower one, for any nonzero value of u .
Taking the logarithm of each, we have shown fA(θ,m) ≤ fB(θ,m), with equality holding
only for m/θ = 0 . Thus, configuration B is never preferred.

Figure 1: Free energies ∆fA,B(m) = fA,B(m) − fA,B(0) for A (blue) and B (dark red) con-
figurations for n = 4. Upper panel has θ = 0.267 and lower panel θ = 0.261. A first order
phase transition sets in at θc = 0.264187.
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(c) Expanding the free energy fA(m, θ) in powers of m, we obtain

fA = −θ ln(2n) + 1
2

(
1− 1

nθ

)
m2 +

3− n
24nθ3

m4 − n2 − 15n+ 30

720n3θ5
m6 +O(m8) .

The quadratic term changes sign at θ = n−1. For n < 3, the sign of the quartic term is
positive, so the transition is second order. For n = 3 the transition is also second order
because the sextic term is positive. For n > 3, the quartic term switches sign, allowing for
a first order transition.. Thus for n ≤ 3, the mean field critical temperature is θc = n−1.

Figure 2: Location of first order transitions for n ∈ [3, 8]. Upper panel shows solutions for
u = m/θ (red, left scale) and m (blue, right scale) for θ = θ−c . Lower panel shows θc (dark
red, left scale) and n ∗ θc (green, right scale). Note that θc > n−1 for all n > 3 . For n ≤ 3
there is a second order transition at θc = n−1 .
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(d) The mean field equation ∂fA/∂m = 0 yields

m =
sinh(m/θ)

n− 1 + cosh(m/θ)
.

For a first order transition, we also demand fA(m) = fA(0) , which signals the moment,
as the temperature θ is lowered, when a local minimum at m 6= 0 becomes the global
minimum. This is the condition for a first order transition. (In the case of a second order
transition, the minimum evolves smoothly from m = 0 for θ < θc .) Since fA(θ,m = 0) =
− ln(2n), we obtain the condition

φ(u) ≡ 1
2um(u)− ln

(
1 +

coshu− 1

n

)
,

where
m(u) =

sinhu

n− 1 + coshu
.

Note that u = m/θ here. If the equation φ(u) = 0 has a (unique) solution u = u∗ 6= 0,
the corresponding value of m where the magnetized solution achieves a minimizing free
energy is m(u∗), and the first order transition temperature is θc = m(u∗)/u∗. Numerical
results are shown in Figs. 1 and 2. Note that n θc > 1, i.e. θc > n−1, which is the temperature
where the coefficient of the quadratic term in the Landau expansion of fA(m) changes sign.
Thus, the first order transition preempts the second order transition.

(3) A ferrimagnet is a magnetic structure in which there are different types of spins present.
Consider a sodium chloride structure in which the A sublattice spins have magnitude SA

and the B sublattice spins have magnitude SB with SB < SA (e.g. S = 1 for the A sublattice
but S = 1

2 for the B sublattice). The Hamiltonian is

Ĥ = J
∑
〈ij〉

Si · Sj + gAµ0H
∑
i∈A

Szi + gBµ0H
∑
j∈B

Szj

where J > 0, so the interactions are antiferromagnetic.

(a) Work out the mean field theory for this model. Assume that the spins on the A and
B sublattices fluctuate about the mean values

〈SA〉 = mA ẑ , 〈SB〉 = mB ẑ

and derive a set of coupled mean field equations of the form

mA = FA(βgAµ0H + βJzmB)

mB = FB(βgBµ0H + βJzmA)

where z is the lattice coordination number (z = 6 for NaCl) and FA(x) and FB(x) are
related to Brillouin functions.
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(b) Show graphically that a solution exists, and find the criterion for broken symmetry
solutions to exist when H = 0, i.e. find Tc. Then linearize, expanding for small mA,
mB, and H , and solve for mA(T ) and mB(T ) and the susceptibility

χ(T ) = −1

2

∂

∂H
(gAµ0mA + gBµ0mB)

in the region T > Tc. Does your Tc depend on the sign of J? Why or why not?

Solution :

(a) We apply the mean field Ansatz 〈Si〉 = mA,B and obtain the mean field Hamiltonian

ĤMF = −1
2NJzmA ·mB +

∑
i∈A

(
gAµ0H + zJmB

)
· Si +

∑
j∈B

(
gBµ0H + zJmA

)
· Sj .

Assuming the sublattice magnetizations are collinear, this leads to two coupled mean field
equations:

mA(x) = FSA

(
βgAµ0H + βJzmB

)
mB(x) = FSB

(
βgBµ0H + βJzmA

)
,

where
FS(x) = −S BS(Sx) ,

and BS(x) is the Brillouin function,

BS(x) =
(
1 + 1

2S ) ctnh
(
1 + 1

2S

)
x− 1

2S ctnh x
2S .

(b) The mean field equations may be solved graphically, as depicted in fig. 3.

Expanding FS(x) = −1
3S(S + 1)x + O(x3) for small x, and defining the temperatures

kBTA,B ≡ 1
3SA,B(SA,B + 1) zJ , we obtain the linear equations,

mA −
TA
T
mB = −gAµ0

zJ
H

mB −
TB
T
mA = −gBµ0

zJ
H ,

with solution

mA = −gATAT − gBTATB

T 2 − TATB

µ0H

zJ

mB = −gBTBT − gATATB

T 2 − TATB

µ0H

zJ
.
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Figure 3: Graphical solution of of mean field equations with SA = 1, SB = 2, gA = gB = 1,
zJ = 1, and H = 0. Top: T > Tc; bottom: T < Tc.

The susceptibility is

χ =
1

N

∂M

∂H
= −1

2

∂

∂H
(gAµ0mA + gBµ0mB)

=
(g2

A TA + g2
B TB)T − 2gAgB TATB

T 2 − TATB

µ2
0

2zJ
,

which diverges at

Tc =
√
TATB =

√
SASB(SA + 1)(SB + 1)

z|J |
3kB

.

Note that Tc does not depend on the sign of J . Note also that the signs of mA and mB

may vary. For example, let gA = gB ≡ g and suppose SA > SB. Then TB <
√
TATB < TA

and while mA < 0 for all T > Tc, the B sublattice moment changes sign from negative to
positive at a temperature TB > Tc. Finally, note that at high temperatures the susceptibility
follows a Curie χ ∝ T−1 behavior.
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