PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS
HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a spin-1 Ising chain with Hamiltonian
H=-7Y 5,81,

where each S,, takes possible values {—1,0,1}.
(a) Find the transfer matrix for the this model.

(b) Find an expression for the free energy F'(T, J, N) for an N-site chain and for an N-site
ring.

(c) Suppose a magnetic field term H =— poH Y, S, is included. Find the transfer matrix.
Solution :

(a) The transfer matrix is
el 1 e B
IS =1 11
e BT 1 efJ

RSS’ =€

(b) The partition function is
Zring =Tr (RN) ) Zchain = Z [RN_l} SS’
8,8

We can derive the eigenvalues and eigenvectors of R almost by inspection. Clearly one
eigenvector is

1
1
=—10 , Ay = 2sinh 5J .
17[)0 \@ . 0 ﬂ
The remaining two eigenvectors are orthogonal to 1(*) and may be written as
PR b
= — « y
= 2 + 062 1

where there are two possible solutions for a which we call o,. Applying R to 1), we have

2cosh 8J +a = A
24+ a= )\

Using the second equation to solve for A, we have A = 1+ 2a~!. Plugging this into the first
equation, we obtain

oy zé—coshﬂJ:t\/(% —coshﬁJ)2+2



and

Ay = % + cosh 5J £ \/% — cosh BJ + cosh?5.J

The roots o satisfy a, «_ = —2, which guarantees that (¢, |¢_) = 0. Note that
1 1 0 -1
<S|¢o><¢o|5/>:§ 0 0 0
-1 0 1
(S19:)(ws]8) = 5o (s ol ay
+ 1 (0 1

and, for any J,
[R7] gqr = AL (ST Wy 18") + 0 - (S0 ) (o [ S") + AL - (S[o_)(w_|5").
Thus,
Zring = )‘f _|_)\é\7 +)‘]—V

=AML (o +2)° LaN-1 (o +2)°

A
chain ai +2 Oé2_ T2
(2 =37 AT (Al —3)7 AN
200, —2)°+1 20 -2 +1
(c) With a magnetic field, we have
e,B(J-I-MOH) eB;LOH/Q e—BJ
RSS/ = €BJSS/€BM()H(S+S,)/2 = eﬁ/"'oH/Q 1 ef/BN()H/2

=B o—BugH/2 o B(J—poH)

(2) Consider an N-site Ising ring, with N even. Let K = J/k,T be the dimensionless
ferromagnetic coupling (K > 0), and H(K,N) = H/k,T = -K >N 0,0, 41 the dimen-
sionless Hamiltonian. The partition function is Z(K,N) = Tr e "*UN). By ‘tracing out’
over the even sites, show that

Z(K,N)=e NeZ(K',N'),

where N’ = N/2, ¢ = ¢(K) and K’ = K'(K). Thus, the partition function of an N site ring
with dimensionless coupling K is related to the partition function for the same model on an
N’ = N/2 site ring, at some renormalized coupling K’, up to a constant factor.

Solution :

We have

!
E e 72121 t2001) = 2 cosh (Kog,  + Kogyyy) = e e 7217201

o9, =%



Consider the cases (05, _,04,,,) = (1,1) and (1, —1), respectively. These yield two equa-
tions,

2cosh 2K = e el
2= e K

From these we derive
¢(K)=—In2—%lncosh K

and

K'(K) = 1lncosh2K .

This last equation is a realization of the renormalization group. By thinning the degrees of
freedom, we derive an effective coupling K’ valid at a new length scale. In our case, it is
easy to see that K’ < K so the coupling gets weaker and weaker at longer length scales.
This is consistent with the fact that the one-dimensional Ising model is disordered at all
finite temperatures.

(3) For each of the cluster diagrams in Fig. 1, find the symmetry factor s, and write an
expression for the cluster integral b.,.

O— P— [ XX
(@) (b) (<) (d)

Figure 1: Cluster diagrams for problem 1.

Solution : Choose labels as in Fig. 2, and set x, =0to cancel out the volume factor in the
definition of b,.

2 2 3 3
1 5 1 B)
s Do XX
4 5 4 5 2 6 > 6
3 3 4 4

(2) (b) () (d)

Figure 2: Labeled cluster diagrams.

(a) The symmetry factor is s, = 2, so

by = %/ddivl/dd%/ddﬂ@?,/dd% f(rig) f(r13) f(rog) f(raa) f(ra) -



(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is s, = 6. We
then have

= é/ddxl/d 2/d /d zy f(r12) f(r13) f(raq) f(r34) f(r1a) frag) f(ry) -

(c) The diagram is symmetric under reflections in two axes, hence s, = 4. We then have

= 3 [t [t [t [, [t 1(r15) £r13) F00) Flrag) ) 102 105)

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26).
Thus, s, = 2* = 16. We then have

by = [t [t [ty e, [t £(r15) £015) £010) £0025) £r0) £ rss) Frss) Frsg) Flrg) ) £105).

(4) The grand potential for an interacting system in a finite volume V' is given by

1—(z2/0; yEitt

Ez)=(1+2 MH 1—( z/o’

(a) Find all the zeros of =(z) in the complex plane, along with their orders.

(b) Define the normalized density of states like function,

J
1
=5 > Lidlo—0y) .
=1

with L = Zgzl Lj . In the thermodynamic limit, take V' — oo, M — oo, Lj — oo with
vy = V/M and a = L/M constant. Then define the dimensionless density v = Nv,/V and
dimensionless pressure m = puv,/kyT. Derive expressions for v(z) and 7(z) in terms of z,
«a, and the function g(o). Hint: you may find it helpful to consult Example Problem 6.12.

(c) Suppose g(0) = A(b—0)'O(b— o) with A = (t + 1) /b**! and ¢ > —1. Show that there
is a phase transition at all values of b > 0, and find expressions for v,(b) and =, (b).

(d) Find the leading singularity in (1) as a function of (v — v,) on either side of the critical
point (i.e. for v < v and v > v,).

Solution :

(@) =(z) has one zero of order M at z = —1, and L = ijl L; simple zeros at z =
o; e/t for j e {1,..., Jyand ¢; € {1,..., L;}.



(b) We have

J
N, on z 1
YTV T 1—|—Z+MJZ:1 5 O(121 = o)

—1_T_+a/dag(a)

z
0

In our final expressions for 7(z) and v(z), we have taken z € R, . If you are wondering
where the temperature T is implicit in all this, it is in the quantities 0; = 0,(T’), and thus
in the distribution g(o) = g(o,T'). Note that

J
1
g(o) = 7 > Lijé(o -0
=1
is normalized, i.e. [do g(o) = 1.
0

(c) There is a phase transition at z = z, = b, where the function ¢(¢) is singular, and hence

where integrals of the form [do g(o) F (o) are singular, where F (o) is any smooth function.
0

Therefore,
Vv, = L +«
© 140
T.=In(1+b)+af(t) ,
where

o

1 t+1

1
f(t)z—(t+1)/du(1—u)t1nu: R
0 k=1

!'Note that when differentiating ©(z — o) with respect to z, one obtains §(z — ;). However, this vanishes
when multiplied by In(z/0;), which vanishes linearly as a function of z — o; . This is because the distribution
x 6(x) may be set to zero provided it is not weighted by a divergent function of x which would effectively
cancel the x prefactor.



(d) With g(0) = (t + 1) (b—0)'©O(b — 0) /b'!, defining o = bu, we have

z/b

v(z) = 1j_2+(t+1)a/du(1—u)t@(1—u)
0

z/b

m(z) =In(l1+2)+ (t+1) oz/du (1 —u) {111(?) - lnu} Ol —u)
0

Let us write z = b & ¢ with € > 0 and expand in powers of . We must separately consider
the cases z > band z < b.

For z = b+ ¢ we have

b+¢ b
V) e = Vet <1+b+5 a 1+b)

_ € 2
_yc—i-(1+b)2+0(5)

and

1+
7T(Z)‘z=b+s =7, + 1n<j1L+~bH5> + ozln(l + Z)

_ o 1 9
TFC+<b+1_H)>€+O(€)

For z = b — £ we have

y(z)‘ — b—e b —aEtH
z=b—e — 7C 1+b—¢ 14+5b pttl
€ gttl 5
=V~ {apg g PO
and
€ € e\ ett! ¥
W(Z)‘Z:bEZWC—ler—aln<1—b>—aln<1—b>th—(t—l—l)a/dsstln(l—s)
0
leY 1 a ett? 13
:wc—<b+1+b>e—t+2bt+2+(’)(a,e )
Ift > 0, to lowest order in Av = v — v, we find
1
050w =m0 02 (54 ) 0w



When t = 0, the above result holds for v > v, but for v < v, the slope is different:

o 1 1 1
t>0,v<vy, : 7T(V)Z7TC+<b+(1—|—b)2> (b—Fl_'_b)(l/—I/C)—F...

When —1 < t <0, provided v > v, we still have

1
-1<t<0,v>y, : 7T(V)27TC+(1+Z))2((Z—|—1+b>(y—yc)—|—”_
However when v < v, we find a new behavior:
b N\ /()
-1<t<0,v<uy, : W(y):wc—<a+)(yc V) + .
1+0 o



