PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a spin-1 Ising chain with Hamiltonian

$$
\hat{H} = -J \sum_{n} S_n S_{n+1} ,
$$

where each S_n takes possible values $\{-1,0,1\}$.

(a) Find the transfer matrix for the this model.

(b) Find an expression for the free energy $F(T, J, N)$ for an N-site chain and for an N-site ring.

(c) Suppose a magnetic field term $\hat{H}' = -\mu_0 H \sum_n S_n$ is included. Find the transfer matrix.

Solution :

(a) The transfer matrix is

$$
R_{SS'} = e^{\beta JSS'} = \begin{pmatrix} e^{\beta J} & 1 & e^{-\beta J} \\ 1 & 1 & 1 \\ e^{-\beta J} & 1 & e^{\beta J} \end{pmatrix}.
$$

(b) The partition function is

$$
Z_{\rm ring} = {\rm Tr} \left(R^N \right) \qquad , \qquad Z_{\rm chain} = \sum_{S,S'} \left[R^{N-1} \right]_{SS'} .
$$

We can derive the eigenvalues and eigenvectors of R almost by inspection. Clearly one eigenvector is

$$
\psi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \qquad , \qquad \lambda_0 = 2 \sinh \beta J \ .
$$

The remaining two eigenvectors are orthogonal to $\psi^{(0)}$ and may be written as

$$
\psi_{\pm} = \frac{1}{\sqrt{2 + \alpha^2}} \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} ,
$$

where there are two possible solutions for α which we call α_{\pm} . Applying R to ψ_{\pm} , we have

$$
2\cosh\beta J + \alpha = \lambda
$$

$$
2 + \alpha = \lambda \alpha
$$

Using the second equation to solve for λ , we have $\lambda = 1 + 2\alpha^{-1}$. Plugging this into the first equation, we obtain

$$
\alpha_{\pm} = \frac{1}{2} - \cosh \beta J \pm \sqrt{\left(\frac{1}{2} - \cosh \beta J\right)^2 + 2}
$$

and

$$
\lambda_{\pm} = \frac{1}{2} + \cosh \beta J \pm \sqrt{\frac{9}{4} - \cosh \beta J + \cosh^2 \beta J}
$$

The roots α_{\pm} satisfy $\alpha_{+}\alpha_{-} = -2$, which guarantees that $\langle \psi_{+} | \psi_{-} \rangle = 0$. Note that

$$
\begin{aligned} \langle\,S\,|\,\psi_0\,\rangle\langle\,\psi_0\,|\,S'\,\rangle &= \frac{1}{2}\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ \langle\,S\,|\,\psi_\pm\,\rangle\langle\,\psi_\pm\,|\,S'\,\rangle &= \frac{1}{2+\alpha_\pm^2}\begin{pmatrix} 1 & \alpha_\pm & 1 \\ \alpha_\pm & \alpha_\pm^2 & \alpha_\pm \\ 1 & \alpha_\pm & 1 \end{pmatrix} \end{aligned}
$$

and, for any J,

 $\left[R^{J}\right]_{SS'} = \lambda_{+}^{J} \cdot \langle S | \psi_{+} \rangle \langle \psi_{+} | S' \rangle + \lambda_{0}^{J} \cdot \langle S | \psi_{0} \rangle \langle \psi_{0} | S' \rangle + \lambda_{-}^{J} \cdot \langle S | \psi_{-} \rangle \langle \psi_{-} | S' \rangle.$

Thus,

$$
Z_{\text{ring}} = \lambda_{+}^{N} + \lambda_{0}^{N} + \lambda_{-}^{N}
$$

\n
$$
Z_{\text{chain}} = \lambda_{+}^{N-1} \cdot \frac{(\alpha_{+} + 2)^{2}}{\alpha_{+}^{2} + 2} + \lambda_{-}^{N-1} \cdot \frac{(\alpha_{-} + 2)^{2}}{\alpha_{-}^{2} + 2}
$$

\n
$$
= \frac{(2\lambda_{+} - 3)^{2} \cdot \lambda_{+}^{N-1}}{2(\lambda_{+} - 2)^{2} + 1} + \frac{(2\lambda_{-} - 3)^{2} \cdot \lambda_{-}^{N-1}}{2(\lambda_{-} - 2)^{2} + 1}.
$$

(c) With a magnetic field, we have

$$
R_{SS'} = e^{\beta JSS'} e^{\beta \mu_0 H(S+S')/2} = \begin{pmatrix} e^{\beta(J+\mu_0 H)} & e^{\beta \mu_0 H/2} & e^{-\beta J} \\ e^{\beta \mu_0 H/2} & 1 & e^{-\beta \mu_0 H/2} \\ e^{-\beta J} & e^{-\beta \mu_0 H/2} & e^{\beta(J-\mu_0 H)} \end{pmatrix}.
$$

(2) Consider an *N*-site Ising ring, with *N* even. Let $K = J/k_B T$ be the dimensionless ferromagnetic coupling ($K > 0$), and $\mathcal{H}(K,N) = H/k_{\rm B}T = -K\sum_{n=1}^{N}\sigma_n\,\sigma_{n+1}$ the dimensionless Hamiltonian. The partition function is $Z(K, N) =$ Tr $e^{-\mathcal{H}(K, N)}$. By 'tracing out' over the even sites, show that

$$
Z(K,N) = e^{-N'c} Z(K',N') ,
$$

where $N' = N/2$, $c = c(K)$ and $K' = K'(K)$. Thus, the partition function of an N site ring with dimensionless coupling K is related to the partition function *for the same model* on an $N' = N/2$ site ring, at some *renormalized* coupling K' , up to a constant factor.

Solution :

We have

$$
\sum_{\sigma_{2k}=\pm}e^{K\sigma_{2k}(\sigma_{2k-1}+\sigma_{2k+1})}=2\cosh\left(K\sigma_{2k-1}+K\sigma_{2k+1}\right)\equiv e^{-c}\,e^{K'\sigma_{2k-1}\,\sigma_{2k+1}}
$$

Consider the cases $(\sigma_{2k-1}, \sigma_{2k+1}) = (1, 1)$ and $(1, -1)$, respectively. These yield two equations,

$$
2\cosh 2K = e^{-c} e^{K'}
$$

$$
2 = e^{-c} e^{-K'}
$$

.

From these we derive

$$
c(K) = -\ln 2 - \frac{1}{2}\ln \cosh K
$$

and

$$
K'(K) = \frac{1}{2} \ln \cosh 2K.
$$

This last equation is a realization of the *renormalization group*. By thinning the degrees of freedom, we derive an effective coupling K' valid at a new length scale. In our case, it is easy to see that $K' < K$ so the coupling gets weaker and weaker at longer length scales. This is consistent with the fact that the one-dimensional Ising model is disordered at all finite temperatures.

(3) For each of the cluster diagrams in Fig. 1, find the symmetry factor $s_γ$ and write an expression for the cluster integral b_{γ} .

Figure 1: Cluster diagrams for problem 1.

Solution : Choose labels as in Fig. 2, and set $x_{n_{\gamma}} \equiv 0$ to cancel out the volume factor in the definition of b_{γ} .

Figure 2: Labeled cluster diagrams.

(a) The symmetry factor is $s_{\gamma} = 2$, so

$$
b_{\gamma} = \frac{1}{2} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 f(r_{12}) f(r_{13}) f(r_{24}) f(r_{34}) f(r_4) .
$$

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is $s_{\gamma} = 6$. We then have

$$
b_{\gamma} = \frac{1}{6} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 \ f(r_{12}) \ f(r_{13}) \ f(r_{24}) \ f(r_{34}) \ f(r_{14}) \ f(r_{23}) \ f(r_4) \ .
$$

(c) The diagram is symmetric under reflections in two axes, hence $s_{\gamma} = 4$. We then have

$$
b_{\gamma} = \frac{1}{4} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 \int d^d x_5 \ f(r_{12}) \ f(r_{13}) \ f(r_{24}) \ f(r_{34}) \ f(r_{35}) \ f(r_4) \ f(r_5) \ .
$$

(d) The diagram is symmetric with respect to the permutations (12) , (34) , (56) , and $(15)(26)$. Thus, $s_{\gamma} = 2^4 = 16$. We then have

 $b_{\gamma}=\frac{1}{16}\int\!d^dx_1\!\int\!d^dx_2\!\int\!d^dx_3\!\int\!d^dx_4\!\int\!d^dx_5\, f(r_{12})\,f(r_{13})\,f(r_{14})\,f(r_{23})\,f(r_{24})\,f(r_{34})\,f(r_{35})\,f(r_{4})\,f(r_{3})\,f(r_{4})\,f(r_{5})\,.$

.

(4) The grand potential for an interacting system in a finite volume V is given by

$$
E(z) = (1+z)^M \prod_{j=1}^{j} \frac{1 - (z/\sigma_j)^{L_j+1}}{1 - (z/\sigma_j)}
$$

(a) Find all the zeros of $E(z)$ in the complex plane, along with their orders.

(b) Define the normalized density of states like function,

$$
g(\sigma) = \frac{1}{L} \sum_{j=1}^{J} L_j \, \delta(\sigma - \sigma_j) \quad ,
$$

with $L = \sum_{j=1}^j L_j$. In the thermodynamic limit, take $V \to \infty$, $M \to \infty$, $L_j \to \infty$ with $v_0 \equiv V/M$ and $\alpha \equiv L/M$ constant. Then define the dimensionless density $\nu = N v_0/V$ and dimensionless pressure $\pi \equiv pv_0/k_{\rm B}T$. Derive expressions for $\nu(z)$ and $\pi(z)$ in terms of z , α, and the function $g(σ)$. Hint: you may find it helpful to consult Example Problem 6.12.

(c) Suppose $g(\sigma) = A (b - \sigma)^t \Theta(b - \sigma)$ with $A = (t + 1)/b^{t+1}$ and $t > -1$. Show that there is a phase transition at all values of $b > 0$, and find expressions for $\nu_{\rm c}(b)$ and $\pi_{\rm c}(b)$.

(d) Find the leading singularity in $\pi(\nu)$ as a function of $(\nu-\nu_{\rm c})$ on either side of the critical point (*i.e.* for $\nu < \nu_c$ and $\nu > \nu_c$).

Solution :

(a) $E(z)$ has one zero of order M at $z = -1$, and $L = \sum_{j=1}^{J} L_j$ simple zeros at $z =$ $\sigma_j e^{2\pi i \ell_j/(L_j+1)}$ for $j \in \{1,\ldots,J\}$ and $\ell_j \in \{1,\ldots,L_j\}.$

(b) We have

$$
\pi = \frac{pv_0}{k_B T} = \frac{1}{M} \ln \Xi(z) = \ln(1+z) + \frac{1}{M} \sum_{j=1}^{J} L_j \ln \left(\frac{z}{\sigma_j}\right) \Theta(|z| - \sigma_j)
$$

$$
= \ln(1+z) + \alpha \int_0^z d\sigma \, g(\sigma) \ln \left(\frac{z}{\sigma}\right)
$$

and consequently¹

$$
\nu = \frac{Nv_0}{V} = z \frac{\partial \pi}{\partial z} = \frac{z}{1+z} + \frac{1}{M} \sum_{j=1}^{J} L_j \Theta(|z| - \sigma_j)
$$

$$
= \frac{z}{1+z} + \alpha \int_0^z d\sigma \, g(\sigma) .
$$

In our final expressions for $\pi(z)$ and $\nu(z)$, we have taken $z \in \mathbb{R}_+$. If you are wondering where the temperature T is implicit in all this, it is in the quantities $\sigma_j = \sigma_j(T)$, and thus in the distribution $g(\sigma) = g(\sigma, T)$. Note that

$$
g(\sigma) = \frac{1}{L} \sum_{j=1}^{J} L_j \, \delta(\sigma - \sigma_j)
$$

is normalized, *i.e.* ^R[∞] $\bf{0}$ $d\sigma\,g(\sigma)=1.$

(c) There is a phase transition at $z = z_c = b$, where the function $g(\sigma)$ is singular, and hence where integrals of the form $\int\limits_{0}^{z}$ $\bf{0}$ $d\sigma\,g(\sigma)\,F(\sigma)$ are singular, where $F(\sigma)$ is any smooth function. Therefore,

$$
\nu_c = \frac{b}{1+b} + \alpha
$$

$$
\pi_c = \ln(1+b) + \alpha f(t) ,
$$

where

$$
f(t) = -(t+1)\int_{0}^{1} du (1-u)^{t} \ln u = \sum_{k=1}^{\infty} \frac{1}{k} \cdot \frac{t+1}{t+1+k} .
$$

¹Note that when differentiating $\Theta(z - \sigma_j)$ with respect to z, one obtains $\delta(z - \sigma_j)$. However, this vanishes when multiplied by $\ln(z/\sigma_j)$, which vanishes linearly as a function of $z-\sigma_j$. This is because the distribution $x \delta(x)$ may be set to zero provided it is not weighted by a divergent function of x which would effectively cancel the x prefactor.

(d) With $g(\sigma) = (t+1)(b-\sigma)^t \Theta(b-\sigma)/b^{t+1}$, defining $\sigma \equiv bu$, we have

$$
\nu(z) = \frac{z}{1+z} + (t+1) \alpha \int_0^{z/b} du (1-u)^t \Theta(1-u)
$$

$$
\pi(z) = \ln(1+z) + (t+1) \alpha \int_0^{z/b} du (1-u)^t \left\{ \ln\left(\frac{z}{b}\right) - \ln u \right\} \Theta(1-u)
$$

Let us write $z = b \pm \varepsilon$ with $\varepsilon > 0$ and expand in powers of ε . We must separately consider the cases $z > b$ and $z < b$.

For $z = b + \varepsilon$ we have

$$
\nu(z)|_{z=b+\varepsilon} = \nu_{c} + \left(\frac{b+\varepsilon}{1+b+\varepsilon} - \frac{b}{1+b}\right)
$$

$$
= \nu_{c} + \frac{\varepsilon}{(1+b)^{2}} + \mathcal{O}(\varepsilon^{2})
$$

and

$$
\pi(z)|_{z=b+\varepsilon} = \pi_c + \ln\left(\frac{1+b+\varepsilon}{1+b}\right) + \alpha \ln\left(1+\frac{\varepsilon}{b}\right)
$$

$$
= \pi_c + \left(\frac{\alpha}{b} + \frac{1}{1+b}\right)\varepsilon + \mathcal{O}(\varepsilon^2) .
$$

For $z = b - \varepsilon$ we have

$$
\nu(z)|_{z=b-\varepsilon} = \nu_{\rm c} + \left(\frac{b-\varepsilon}{1+b-\varepsilon} - \frac{b}{1+b}\right) - \alpha \frac{\varepsilon^{t+1}}{b^{t+1}}
$$

$$
= \nu_{\rm c} - \frac{\varepsilon}{(1+b)^2} - \alpha \frac{\varepsilon^{t+1}}{b^{t+1}} + \mathcal{O}(\varepsilon^2)
$$

and

$$
\pi(z)|_{z=b-\varepsilon} = \pi_c - \frac{\varepsilon}{1+b} - \alpha \ln\left(1 - \frac{\varepsilon}{b}\right) - \alpha \ln\left(1 - \frac{\varepsilon}{b}\right) \frac{\varepsilon^{t+1}}{b^{t+1}} - (t+1)\alpha \int_0^{\varepsilon/b} ds \, s^t \ln(1-s)
$$

$$
= \pi_c - \left(\frac{\alpha}{b} + \frac{1}{1+b}\right)\varepsilon - \frac{\alpha}{t+2} \frac{\varepsilon^{t+2}}{b^{t+2}} + \mathcal{O}(\varepsilon, \varepsilon^{t+3})
$$

If $t > 0$, to lowest order in $\Delta \nu = \nu - \nu_{\rm c}$, we find

$$
t > 0
$$
: $\pi(\nu) = \pi_c + (1+b)^2 \left(\frac{\alpha}{b} + \frac{1}{1+b}\right) (\nu - \nu_c) + \dots$

When $t=0$, the above result holds for $\nu > \nu_{\rm c}$, but for $\nu < \nu_{\rm c}$ the slope is different:

$$
t > 0
$$
, $\nu < \nu_c$: $\pi(\nu) = \pi_c + \left(\frac{\alpha}{b} + \frac{1}{(1+b)^2}\right)^{-1} \left(\frac{\alpha}{b} + \frac{1}{1+b}\right) (\nu - \nu_c) + \dots$

When $-1 < t < 0$, provided $\nu > \nu_{\rm c}$, we still have

$$
-1 < t < 0, \ \nu > \nu_{\rm c} \, : \qquad \pi(\nu) = \pi_{\rm c} + (1+b)^2 \left(\frac{\alpha}{b} + \frac{1}{1+b} \right) (\nu - \nu_{\rm c}) + \ \ldots \quad .
$$

However when $\nu < \nu_c$, we find a new behavior:

$$
-1 < t < 0 \; , \; \nu < \nu_{\rm c} \; : \qquad \pi(\nu) = \pi_{\rm c} - \bigg(\alpha + \frac{b}{1+b} \bigg) \bigg(\frac{\nu_{\rm c} - \nu}{\alpha} \bigg)^{1/(t+1)} + \; \dots \quad .
$$