
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS
HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a spin-1 Ising chain with Hamiltonian

Ĥ = −J
∑
n

Sn Sn+1 ,

where each Sn takes possible values {−1, 0, 1}.

(a) Find the transfer matrix for the this model.

(b) Find an expression for the free energy F (T, J,N) for an N -site chain and for an N -site
ring.

(c) Suppose a magnetic field term Ĥ ′ = −µ0H
∑

n Sn is included. Find the transfer matrix.

Solution :

(a) The transfer matrix is

RSS′ = eβJSS
′

=

 eβJ 1 e−βJ

1 1 1
e−βJ 1 eβJ

 .

(b) The partition function is

Zring = Tr
(
RN
)

, Zchain =
∑
S,S′

[
RN−1

]
SS′

.

We can derive the eigenvalues and eigenvectors of R almost by inspection. Clearly one
eigenvector is

ψ0 =
1√
2

 1
0
−1

 , λ0 = 2 sinhβJ .

The remaining two eigenvectors are orthogonal to ψ(0) and may be written as

ψ± =
1√

2 + α2

1
α
1

 ,

where there are two possible solutions for α which we call α±. Applying R to ψ±, we have

2 coshβJ + α = λ

2 + α = λα

Using the second equation to solve for λ, we have λ = 1+2α−1. Plugging this into the first
equation, we obtain

α± = 1
2 − coshβJ ±

√(
1
2 − coshβJ

)2
+ 2

1



and
λ± = 1

2 + coshβJ ±
√

9
4 − coshβJ + cosh2βJ

The roots α± satisfy α+α− = −2, which guarantees that 〈ψ+ |ψ− 〉 = 0. Note that

〈S |ψ0 〉〈ψ0 |S′ 〉 =
1

2

 1 0 −1
0 0 0
−1 0 1


〈S |ψ± 〉〈ψ± |S′ 〉 =

1

2 + α2
±

 1 α± 1
α± α2

± α±
1 α± 1


and, for any J ,[

RJ
]
SS′

= λJ+ · 〈S |ψ+ 〉〈ψ+ |S′ 〉+ λJ0 · 〈S |ψ0 〉〈ψ0 |S′ 〉+ λJ− · 〈S |ψ− 〉〈ψ− |S′ 〉 .

Thus,

Zring = λN+ + λN0 + λN−

Zchain = λN−1+ ·
(
α+ + 2

)2
α2
+ + 2

+ λN−1− ·
(
α− + 2

)2
α2
− + 2

=

(
2λ+ − 3

)2 · λN−1+

2
(
λ+ − 2

)2
+ 1

+

(
2λ− − 3

)2 · λN−1−

2
(
λ− − 2

)2
+ 1

.

(c) With a magnetic field, we have

RSS′ = eβJSS
′
eβµ0H(S+S′)/2 =

eβ(J+µ0H) eβµ0H/2 e−βJ

eβµ0H/2 1 e−βµ0H/2

e−βJ e−βµ0H/2 eβ(J−µ0H)

 .

(2) Consider an N -site Ising ring, with N even. Let K = J/kBT be the dimensionless
ferromagnetic coupling (K > 0), and H(K,N) = H/kBT = −K

∑N
n=1 σn σn+1 the dimen-

sionless Hamiltonian. The partition function is Z(K,N) = Tr e−H(K,N). By ‘tracing out’
over the even sites, show that

Z(K,N) = e−N
′c Z(K ′, N ′) ,

where N ′ = N/2, c = c(K) and K ′ = K ′(K). Thus, the partition function of an N site ring
with dimensionless coupling K is related to the partition function for the same model on an
N ′ = N/2 site ring, at some renormalized coupling K ′, up to a constant factor.

Solution :

We have ∑
σ2k=±

eKσ2k(σ2k−1+σ2k+1) = 2 cosh
(
Kσ2k−1 +Kσ2k+1

)
≡ e−c eK

′σ2k−1 σ2k+1
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Consider the cases (σ2k−1, σ2k+1) = (1, 1) and (1,−1), respectively. These yield two equa-
tions,

2 cosh 2K = e−c eK
′

2 = e−c e−K
′
.

From these we derive
c(K) = − ln 2− 1

2 ln coshK

and
K ′(K) = 1

2 ln cosh 2K .

This last equation is a realization of the renormalization group. By thinning the degrees of
freedom, we derive an effective coupling K ′ valid at a new length scale. In our case, it is
easy to see that K ′ < K so the coupling gets weaker and weaker at longer length scales.
This is consistent with the fact that the one-dimensional Ising model is disordered at all
finite temperatures.

(3) For each of the cluster diagrams in Fig. 1, find the symmetry factor sγ and write an
expression for the cluster integral bγ .

(a) (b) (c) (d)

Figure 1: Cluster diagrams for problem 1.

Solution : Choose labels as in Fig. 2, and set xnγ ≡ 0 to cancel out the volume factor in the
definition of bγ .

(a) (b) (c) (d)
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Figure 2: Labeled cluster diagrams.

(a) The symmetry factor is sγ = 2, so

bγ = 1
2

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4 f(r12) f(r13) f(r24) f(r34) f(r4) .
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(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is sγ = 6. We
then have

bγ = 1
6

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4 f(r12) f(r13) f(r24) f(r34) f(r14) f(r23) f(r4) .

(c) The diagram is symmetric under reflections in two axes, hence sγ = 4. We then have

bγ = 1
4

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4

∫
ddx5 f(r12) f(r13) f(r24) f(r34) f(r35) f(r4) f(r5) .

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26).
Thus, sγ = 24 = 16. We then have

bγ = 1
16

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4

∫
ddx5 f(r12) f(r13) f(r14) f(r23) f(r24) f(r34) f(r35) f(r45) f(r3) f(r4) f(r5) .

(4) The grand potential for an interacting system in a finite volume V is given by

Ξ(z) = (1 + z)M
j∏
j=1

1− (z/σj)
Lj+1

1− (z/σj)
.

(a) Find all the zeros of Ξ(z) in the complex plane, along with their orders.

(b) Define the normalized density of states like function,

g(σ) =
1

L

J∑
j=1

Lj δ(σ − σj) ,

with L =
∑j

j=1 Lj . In the thermodynamic limit, take V → ∞, M → ∞, Lj → ∞ with
v0 ≡ V/M and α ≡ L/M constant. Then define the dimensionless density ν = Nv0/V and
dimensionless pressure π ≡ pv0/kBT . Derive expressions for ν(z) and π(z) in terms of z,
α, and the function g(σ). Hint: you may find it helpful to consult Example Problem 6.12.

(c) Suppose g(σ) = A (b− σ)t Θ(b− σ) with A = (t+ 1)
/
bt+1 and t > −1. Show that there

is a phase transition at all values of b > 0, and find expressions for νc(b) and πc(b).

(d) Find the leading singularity in π(ν) as a function of (ν− νc) on either side of the critical
point (i.e. for ν < νc and ν > νc).

Solution :

(a) Ξ(z) has one zero of order M at z = −1, and L =
∑J

j=1 Lj simple zeros at z =

σj e
2πi`j/(Lj+1) for j ∈ {1, . . . , J} and `j ∈ {1, . . . , Lj}.
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(b) We have

π =
pv0
kBT

=
1

M
lnΞ(z) = ln(1 + z) +

1

M

J∑
j=1

Lj ln
( z
σj

)
Θ
(
|z| − σj

)
= ln(1 + z) + α

z∫
0

dσ g(σ) ln
( z
σ

)

and consequently1

ν =
Nv0
V

= z
∂π

∂z
=

z

1 + z
+

1

M

J∑
j=1

Lj Θ
(
|z| − σj

)
=

z

1 + z
+ α

z∫
0

dσ g(σ) .

In our final expressions for π(z) and ν(z), we have taken z ∈ R+. If you are wondering
where the temperature T is implicit in all this, it is in the quantities σj = σj(T ), and thus
in the distribution g(σ) = g(σ, T ). Note that

g(σ) =
1

L

J∑
j=1

Lj δ(σ − σj)

is normalized, i.e.
∞∫
0

dσ g(σ) = 1.

(c) There is a phase transition at z = zc = b, where the function g(σ) is singular, and hence

where integrals of the form
z∫
0

dσ g(σ)F (σ) are singular, where F (σ) is any smooth function.

Therefore,

νc =
b

1 + b
+ α

πc = ln(1 + b) + α f(t) ,

where

f(t) = −(t+ 1)

1∫
0

du (1− u)t lnu =

∞∑
k=1

1

k
· t+ 1

t+ 1 + k
.

1Note that when differentiating Θ(z − σj) with respect to z, one obtains δ(z − σj). However, this vanishes
when multiplied by ln(z/σj), which vanishes linearly as a function of z − σj . This is because the distribution
x δ(x) may be set to zero provided it is not weighted by a divergent function of x which would effectively
cancel the x prefactor.
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(d) With g(σ) = (t+ 1) (b− σ)t Θ(b− σ)
/
bt+1, defining σ ≡ bu, we have

ν(z) =
z

1 + z
+ (t+ 1)α

z/b∫
0

du (1− u)t Θ(1− u)

π(z) = ln(1 + z) + (t+ 1)α

z/b∫
0

du (1− u)t
{

ln
(z
b

)
− lnu

}
Θ(1− u)

Let us write z = b± ε with ε > 0 and expand in powers of ε. We must separately consider
the cases z > b and z < b.

For z = b+ ε we have

ν(z)
∣∣
z=b+ε

= νc +

(
b+ ε

1 + b+ ε
− b

1 + b

)
= νc +

ε

(1 + b)2
+O(ε2)

and

π(z)
∣∣
z=b+ε

= πc + ln

(
1 + b+ ε

1 + b

)
+ α ln

(
1 +

ε

b

)
= πc +

(
α

b
+

1

1 + b

)
ε+O(ε2) .

For z = b− ε we have

ν(z)
∣∣
z=b−ε = νc +

(
b− ε

1 + b− ε
− b

1 + b

)
− α ε

t+1

bt+1

= νc −
ε

(1 + b)2
− α ε

t+1

bt+1
+O(ε2)

and

π(z)
∣∣
z=b−ε = πc −

ε

1 + b
− α ln

(
1− ε

b

)
− α ln

(
1− ε

b

)
εt+1

bt+1
− (t+ 1)α

ε/b∫
0

ds st ln(1− s)

= πc −
(
α

b
+

1

1 + b

)
ε− α

t+ 2

εt+2

bt+2
+O(ε, εt+3) .

If t > 0, to lowest order in ∆ν = ν − νc , we find

t > 0 : π(ν) = πc + (1 + b)2
(
α

b
+

1

1 + b

)
(ν − νc) + . . . .
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When t = 0, the above result holds for ν > νc, but for ν < νc the slope is different:

t > 0 , ν < νc : π(ν) = πc +

(
α

b
+

1

(1 + b)2

)−1(α
b

+
1

1 + b

)
(ν − νc) + . . . .

When −1 < t < 0, provided ν > νc , we still have

−1 < t < 0 , ν > νc : π(ν) = πc + (1 + b)2
(
α

b
+

1

1 + b

)
(ν − νc) + . . . .

However when ν < νc, we find a new behavior:

−1 < t < 0 , ν < νc : π(ν) = πc −
(
α+

b

1 + b

)(
νc − ν
α

)1/(t+1)

+ . . . .
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