PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a spin-1 Ising chain with Hamiltonian

$$\hat{H} = -J\sum_{n} S_n S_{n+1} \,,$$

where each S_n takes possible values $\{-1, 0, 1\}$.

(a) Find the transfer matrix for the this model.

(b) Find an expression for the free energy F(T, J, N) for an *N*-site chain and for an *N*-site ring.

(c) Suppose a magnetic field term $\hat{H}' = -\mu_0 H \sum_n S_n$ is included. Find the transfer matrix.

Solution :

(a) The transfer matrix is

$$R_{SS'} = e^{\beta J SS'} = \begin{pmatrix} e^{\beta J} & 1 & e^{-\beta J} \\ 1 & 1 & 1 \\ e^{-\beta J} & 1 & e^{\beta J} \end{pmatrix} .$$

(b) The partition function is

$$Z_{\mathrm{ring}} = \mathrm{Tr}\left(R^{N}
ight) \qquad , \qquad Z_{\mathrm{chain}} = \sum_{S,S'} \left[R^{N-1}
ight]_{SS'} \, .$$

We can derive the eigenvalues and eigenvectors of R almost by inspection. Clearly one eigenvector is

$$\psi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}$$
, $\lambda_0 = 2 \sinh \beta J$.

The remaining two eigenvectors are orthogonal to $\psi^{(0)}$ and may be written as

$$\psi_{\pm} = \frac{1}{\sqrt{2+\alpha^2}} \begin{pmatrix} 1\\ \alpha\\ 1 \end{pmatrix} ,$$

where there are two possible solutions for α which we call α_{\pm} . Applying R to ψ_{\pm} , we have

$$2\cosh\beta J + \alpha = \lambda$$
$$2 + \alpha = \lambda \alpha$$

Using the second equation to solve for λ , we have $\lambda = 1 + 2\alpha^{-1}$. Plugging this into the first equation, we obtain

$$\alpha_{\pm} = \frac{1}{2} - \cosh\beta J \pm \sqrt{\left(\frac{1}{2} - \cosh\beta J\right)^2 + 2}$$

and

$$\lambda_{\pm} = \frac{1}{2} + \cosh\beta J \pm \sqrt{\frac{9}{4} - \cosh\beta J + \cosh^2\beta J}$$

The roots α_{\pm} satisfy $\alpha_{+}\alpha_{-} = -2$, which guarantees that $\langle \psi_{+} | \psi_{-} \rangle = 0$. Note that

$$\langle S | \psi_0 \rangle \langle \psi_0 | S' \rangle = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
$$\langle S | \psi_{\pm} \rangle \langle \psi_{\pm} | S' \rangle = \frac{1}{2 + \alpha_{\pm}^2} \begin{pmatrix} 1 & \alpha_{\pm} & 1 \\ \alpha_{\pm} & \alpha_{\pm}^2 & \alpha_{\pm} \\ 1 & \alpha_{\pm} & 1 \end{pmatrix}$$

and, for any *J*,

 $\left[R^J \right]_{SS'} = \lambda_+^J \cdot \langle S | \psi_+ \rangle \langle \psi_+ | S' \rangle + \lambda_0^J \cdot \langle S | \psi_0 \rangle \langle \psi_0 | S' \rangle + \lambda_-^J \cdot \langle S | \psi_- \rangle \langle \psi_- | S' \rangle .$

Thus,

$$Z_{\text{ring}} = \lambda_{+}^{N} + \lambda_{0}^{N} + \lambda_{-}^{N}$$

$$Z_{\text{chain}} = \lambda_{+}^{N-1} \cdot \frac{(\alpha_{+} + 2)^{2}}{\alpha_{+}^{2} + 2} + \lambda_{-}^{N-1} \cdot \frac{(\alpha_{-} + 2)^{2}}{\alpha_{-}^{2} + 2}$$

$$= \frac{(2\lambda_{+} - 3)^{2} \cdot \lambda_{+}^{N-1}}{2(\lambda_{+} - 2)^{2} + 1} + \frac{(2\lambda_{-} - 3)^{2} \cdot \lambda_{-}^{N-1}}{2(\lambda_{-} - 2)^{2} + 1}.$$

(c) With a magnetic field, we have

$$R_{SS'} = e^{\beta JSS'} e^{\beta \mu_0 H(S+S')/2} = \begin{pmatrix} e^{\beta (J+\mu_0 H)} & e^{\beta \mu_0 H/2} & e^{-\beta J} \\ e^{\beta \mu_0 H/2} & 1 & e^{-\beta \mu_0 H/2} \\ e^{-\beta J} & e^{-\beta \mu_0 H/2} & e^{\beta (J-\mu_0 H)} \end{pmatrix} \,.$$

(2) Consider an *N*-site Ising ring, with *N* even. Let $K = J/k_{\rm B}T$ be the dimensionless ferromagnetic coupling (K > 0), and $\mathcal{H}(K, N) = H/k_{\rm B}T = -K\sum_{n=1}^{N} \sigma_n \sigma_{n+1}$ the dimensionless Hamiltonian. The partition function is $Z(K, N) = \text{Tr } e^{-\mathcal{H}(K,N)}$. By 'tracing out' over the even sites, show that

$$Z(K, N) = e^{-N'c} Z(K', N')$$
,

where N' = N/2, c = c(K) and K' = K'(K). Thus, the partition function of an N site ring with dimensionless coupling K is related to the partition function *for the same model* on an N' = N/2 site ring, at some *renormalized* coupling K', up to a constant factor.

Solution :

We have

$$\sum_{\sigma_{2k}=\pm} e^{K\sigma_{2k}(\sigma_{2k-1}+\sigma_{2k+1})} = 2\cosh\left(K\sigma_{2k-1}+K\sigma_{2k+1}\right) \equiv e^{-c} e^{K'\sigma_{2k-1}\sigma_{2k+1}}$$

Consider the cases $(\sigma_{2k-1}, \sigma_{2k+1}) = (1, 1)$ and (1, -1), respectively. These yield two equations,

$$2\cosh 2K = e^{-c} e^{K'}$$
$$2 = e^{-c} e^{-K'}$$

From these we derive

$$c(K) = -\ln 2 - \frac{1}{2}\ln\cosh K$$

and

 $K'(K) = \frac{1}{2} \ln \cosh 2K .$

This last equation is a realization of the *renormalization group*. By thinning the degrees of freedom, we derive an effective coupling K' valid at a new length scale. In our case, it is easy to see that K' < K so the coupling gets weaker and weaker at longer length scales. This is consistent with the fact that the one-dimensional Ising model is disordered at all finite temperatures.

(3) For each of the cluster diagrams in Fig. 1, find the symmetry factor s_{γ} and write an expression for the cluster integral b_{γ} .

Figure 1: Cluster diagrams for problem 1.

Solution : Choose labels as in Fig. 2, and set $x_{n_{\gamma}} \equiv 0$ to cancel out the volume factor in the definition of b_{γ} .

Figure 2: Labeled cluster diagrams.

(a) The symmetry factor is $s_{\gamma} = 2$, so

$$b_{\gamma} = \frac{1}{2} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 \ f(r_{12}) \ f(r_{13}) \ f(r_{24}) \ f(r_{34}) \ f(r_4) \ .$$

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is $s_{\gamma} = 6$. We then have

$$b_{\gamma} = \frac{1}{6} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 \ f(r_{12}) \ f(r_{13}) \ f(r_{24}) \ f(r_{34}) \ f(r_{14}) \ f(r_{23}) \ f(r_4) \ .$$

(c) The diagram is symmetric under reflections in two axes, hence $s_{\gamma}=4.$ We then have

$$b_{\gamma} = \frac{1}{4} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 \int d^d x_5 \ f(r_{12}) \ f(r_{13}) \ f(r_{24}) \ f(r_{34}) \ f(r_{35}) \ f(r_4) \ f(r_5) \ .$$

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26). Thus, $s_{\gamma} = 2^4 = 16$. We then have

 $b_{\gamma} = \frac{1}{16} \int d^d x_1 \int d^d x_2 \int d^d x_3 \int d^d x_4 \int d^d x_5 \, f(r_{12}) \, f(r_{13}) \, f(r_{14}) \, f(r_{23}) \, f(r_{24}) \, f(r_{34}) \, f(r_{35}) \, f(r_{45}) \, f(r_3) \, f(r_4) \, f(r_5) \, .$

.

(4) The grand potential for an interacting system in a finite volume V is given by

$$\Xi(z) = (1+z)^M \prod_{j=1}^j \frac{1 - (z/\sigma_j)^{L_j + 1}}{1 - (z/\sigma_j)}$$

(a) Find all the zeros of $\Xi(z)$ in the complex plane, along with their orders.

(b) Define the normalized density of states like function,

$$g(\sigma) = \frac{1}{L} \sum_{j=1}^{J} L_j \,\delta(\sigma - \sigma_j) \quad ,$$

with $L = \sum_{j=1}^{j} L_j$. In the thermodynamic limit, take $V \to \infty$, $M \to \infty$, $L_j \to \infty$ with $v_0 \equiv V/M$ and $\alpha \equiv L/M$ constant. Then define the dimensionless density $\nu = Nv_0/V$ and dimensionless pressure $\pi \equiv pv_0/k_{\rm B}T$. Derive expressions for $\nu(z)$ and $\pi(z)$ in terms of z, α , and the function $g(\sigma)$. *Hint: you may find it helpful to consult Example Problem 6.12.*

(c) Suppose $g(\sigma) = A (b - \sigma)^t \Theta(b - \sigma)$ with $A = (t + 1)/b^{t+1}$ and t > -1. Show that there is a phase transition at all values of b > 0, and find expressions for $\nu_c(b)$ and $\pi_c(b)$.

(d) Find the leading singularity in $\pi(\nu)$ as a function of $(\nu - \nu_c)$ on either side of the critical point (*i.e.* for $\nu < \nu_c$ and $\nu > \nu_c$).

Solution :

(a) $\Xi(z)$ has one zero of order M at z = -1, and $L = \sum_{j=1}^{J} L_j$ simple zeros at $z = \sigma_j e^{2\pi i \ell_j / (L_j + 1)}$ for $j \in \{1, \ldots, J\}$ and $\ell_j \in \{1, \ldots, L_j\}$.

(b) We have

$$\pi = \frac{pv_0}{k_{\rm B}T} = \frac{1}{M}\ln\Xi(z) = \ln(1+z) + \frac{1}{M}\sum_{j=1}^J L_j \ln\left(\frac{z}{\sigma_j}\right)\Theta(|z| - \sigma_j)$$
$$= \ln(1+z) + \alpha \int_0^z d\sigma \, g(\sigma) \ln\left(\frac{z}{\sigma}\right)$$

and consequently¹

$$\nu = \frac{Nv_0}{V} = z \frac{\partial \pi}{\partial z} = \frac{z}{1+z} + \frac{1}{M} \sum_{j=1}^J L_j \Theta(|z| - \sigma_j)$$
$$= \frac{z}{1+z} + \alpha \int_0^z d\sigma \ g(\sigma) \quad .$$

In our final expressions for $\pi(z)$ and $\nu(z)$, we have taken $z \in \mathbb{R}_+$. If you are wondering where the temperature *T* is implicit in all this, it is in the quantities $\sigma_j = \sigma_j(T)$, and thus in the distribution $g(\sigma) = g(\sigma, T)$. Note that

$$g(\sigma) = \frac{1}{L} \sum_{j=1}^{J} L_j \,\delta(\sigma - \sigma_j)$$

is normalized, *i.e.* $\int_{0}^{\infty} d\sigma \ g(\sigma) = 1.$

(c) There is a phase transition at $z = z_c = b$, where the function $g(\sigma)$ is singular, and hence where integrals of the form $\int_{0}^{z} d\sigma g(\sigma) F(\sigma)$ are singular, where $F(\sigma)$ is any smooth function. Therefore,

$$\nu_{\rm c} = \frac{b}{1+b} + \alpha$$
$$\pi_{\rm c} = \ln(1+b) + \alpha f(t)$$

where

$$f(t) = -(t+1) \int_{0}^{1} du \, (1-u)^{t} \ln u = \sum_{k=1}^{\infty} \frac{1}{k} \cdot \frac{t+1}{t+1+k} \quad .$$

¹Note that when differentiating $\Theta(z - \sigma_j)$ with respect to z, one obtains $\delta(z - \sigma_j)$. However, this vanishes when multiplied by $\ln(z/\sigma_j)$, which vanishes linearly as a function of $z - \sigma_j$. This is because the distribution $x \, \delta(x)$ may be set to zero provided it is not weighted by a divergent function of x which would effectively cancel the x prefactor.

(d) With $g(\sigma) = (t+1) (b-\sigma)^t \Theta(b-\sigma) / b^{t+1}$, defining $\sigma \equiv bu$, we have

$$\nu(z) = \frac{z}{1+z} + (t+1) \alpha \int_{0}^{z/b} du (1-u)^{t} \Theta(1-u)$$
$$\pi(z) = \ln(1+z) + (t+1) \alpha \int_{0}^{z/b} du (1-u)^{t} \left\{ \ln\left(\frac{z}{b}\right) - \ln u \right\} \Theta(1-u)$$

Let us write $z = b \pm \varepsilon$ with $\varepsilon > 0$ and expand in powers of ε . We must separately consider the cases z > b and z < b.

For $z = b + \varepsilon$ we have

$$\begin{split} \nu(z)\big|_{z=b+\varepsilon} &= \nu_{\rm c} + \left(\frac{b+\varepsilon}{1+b+\varepsilon} - \frac{b}{1+b}\right) \\ &= \nu_{\rm c} + \frac{\varepsilon}{(1+b)^2} + \mathcal{O}(\varepsilon^2) \end{split}$$

and

$$\begin{split} \pi(z)\big|_{z=b+\varepsilon} &= \pi_{\rm c} + \ln\left(\frac{1+b+\varepsilon}{1+b}\right) + \alpha \ln\left(1+\frac{\varepsilon}{b}\right) \\ &= \pi_{\rm c} + \left(\frac{\alpha}{b} + \frac{1}{1+b}\right)\varepsilon + \mathcal{O}(\varepsilon^2) \quad . \end{split}$$

For $z = b - \varepsilon$ we have

$$\begin{split} \nu(z)\big|_{z=b-\varepsilon} &= \nu_{\rm c} + \left(\frac{b-\varepsilon}{1+b-\varepsilon} - \frac{b}{1+b}\right) - \alpha \,\frac{\varepsilon^{t+1}}{b^{t+1}} \\ &= \nu_{\rm c} - \frac{\varepsilon}{(1+b)^2} - \alpha \,\frac{\varepsilon^{t+1}}{b^{t+1}} + \mathcal{O}(\varepsilon^2) \end{split}$$

and

If t>0, to lowest order in $\Delta\nu=\nu-\nu_{\rm c}$, we find

$$t > 0$$
 : $\pi(\nu) = \pi_{\rm c} + (1+b)^2 \left(\frac{\alpha}{b} + \frac{1}{1+b}\right) (\nu - \nu_{\rm c}) + \dots$

When t = 0, the above result holds for $\nu > \nu_{\rm c}$, but for $\nu < \nu_{\rm c}$ the slope is different:

$$t > 0, \ \nu < \nu_{\rm c} : \qquad \pi(\nu) = \pi_{\rm c} + \left(\frac{\alpha}{b} + \frac{1}{(1+b)^2}\right)^{-1} \left(\frac{\alpha}{b} + \frac{1}{1+b}\right) (\nu - \nu_{\rm c}) + \dots$$

When -1 < t < 0, provided $\nu > \nu_{\rm c}$, we still have

$$-1 < t < 0 , \nu > \nu_{\rm c} : \qquad \pi(\nu) = \pi_{\rm c} + (1+b)^2 \left(\frac{\alpha}{b} + \frac{1}{1+b}\right) (\nu - \nu_{\rm c}) + \dots \quad .$$

However when $\nu < \nu_{\rm c},$ we find a new behavior:

$$-1 < t < 0 , \ \nu < \nu_{\rm c} \ : \qquad \pi(\nu) = \pi_{\rm c} - \left(\alpha + \frac{b}{1+b}\right) \left(\frac{\nu_{\rm c} - \nu}{\alpha}\right)^{1/(t+1)} + \ \ldots \quad .$$