
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) For an ideal gas, find the difference Cϕ − CV for the following functions ϕ. You are to
assume N is fixed in each case.

(a) ϕ(p, V ) = p3 V 2

(b) ϕ(p, T ) = p eT/T0

(c) ϕ(T, V ) = V T−1

Solution :

In general,

Cϕ = T

(
∂S

∂T

)

ϕ

.

Note that
d̄Q = dE + p dV .

We will also appeal to the ideal gas law, pV = Nk
B
T . Below, we shall abbreviate ϕV = ∂ϕ

∂V ,

ϕT = ∂ϕ
∂T , and ϕp =

∂ϕ
∂p .

(a) We have
d̄Q = 1

2
fNk

B
dT + p dV ,

and therefore

Cϕ − CV = p

(
∂V

∂T

)

ϕ

.

Now for a general function ϕ(p, V ), we have

dϕ = ϕp dp + ϕV dV

=
Nk

B

V
ϕp dT +

(

ϕV −
p

V
ϕp

)

dV ,

after writing dp = d(Nk
B
T/V ) in terms of dT and dV . Setting dϕ = 0, we then have

Cϕ − CV = p

(
∂V

∂T

)

ϕ

=
Nk

B
pϕp

pϕp − V ϕV

.

This is the general result. For ϕ(p, V ) = p3V 2, we find

Cϕ −CV = 3Nk
B
.

(b) We have
d̄Q =

(
1

2
f + 1

)
Nk

B
dT − V dp ,
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and therefore

Cϕ − CV = Nk
B
− V

(
∂p

∂T

)

ϕ

.

For a general function ϕ(p, T ), we have

dϕ = ϕp dp + ϕT dT =⇒

(
∂p

∂T

)

ϕ

= −
ϕT

ϕp

.

Therefore,

Cϕ − CV = Nk
B
+ V

ϕT

ϕp

.

This is the general result. For ϕ(p, T ) = p eT/T0 , we find

Cϕ − CV = Nk
B

(

1 +
T

T
0

)

.

(c) We have

Cϕ − CV = p

(
∂V

∂T

)

ϕ

,

as in part (a). For a general function ϕ(T, V ), we have

dϕ = ϕT dT + ϕV dV =⇒

(
∂V

∂T

)

ϕ

= −
ϕT

ϕV

,

and therefore

Cϕ − CV = −p
ϕT

ϕV

.

This is the general result. For ϕ(T, V ) = V/T , we find

Cϕ − CV = Nk
B
.

(2) Consider a thermodynamic system for which E(S, V,N) = aS4/NV 2.

(a) Find the equation of state p = p(T, V,N).

(b) Find the equation of state µ = µ(T, p).

(c) ν moles of this substance are taken through a Joule-Brayton cycle (see §2.6.7 of the
Lecture Notes). The upper isobar lies at p = p2 and extends from volume VA to VB.
The lower isobar lies at p = p1. Find the volumes VC and VD.

(d) Find the work done per cycle Wcyc , the heat QAB , and the cycle efficiency.
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Solution :

(a) We can find

p = −

(
∂E

∂V

)

S,N

=
2aS4

NV 3
, T =

(
∂E

∂S

)

V,N

=
4aS3

NV 2
, µ =

(
∂E

∂N

)

S,V

= −
aS4

N2V 2
,

but we need to eliminate the inconvenient variable S from these equations. To do this,
we construct the ratio p3/T 4, in which the S factors manifestly cancel. One then finds
32a p3V = NT 4, i.e.

p(T, V,N) = (32a)−1/3

(
N

V

)1/3

T 4/3 .

This means, for example, that the equation for an isotherm (at fixed N ) is pV 1/3 = const.,
in contrast to the result for the ideal gas isotherm, pV =const. Note also that p, being
intensive, must be expressible as p(T, V/N), which it is.

(b) To obtain µ(T, p), note that 2Nµ = −pV , and from our result for p(T, V/N) we have
V/N = T 4/32ap3. Thus,

µ(T, p) = −
T 4

64a p2
.

(c) The equilibrium adiabatic equation of state for this system is dS = 0. From (a), we see
that at fixed N this means pV 3 = const., so we must have p2V

3
B
= p1V

3
C

and p2V
3
A
= p1V

3
D

.
Hence

VC = VB ·
(
p2/p1

)1/3
, VD = VA ·

(
p2/p1

)1/3
.

(d) From part (a), the energy for our system is E = 1

2
pV . Along the upper (p2) isochore,

WAB =

B∫

A

dV p2 = p2(VB − VA) , ∆EAB = EB − EA = 1

2
p2 (VB − VA) ,

hence
QAB = ∆EAB +WAB = 3

2
p2 (VB − VA) .

The work along the lower (p1) isochore is

WCD = p1(VD − VC) = p2 (VA − VB)

(
p
1

p
2

)2/3

.

Along the BC adiabat,

WBC =

C∫

B

p dV = p2V
3
B

V
C∫

V
B

dV

V 3
= 1

2
p2VB

(

1−
V 2
B

V 2
C

)

= 1

2
p2VB

[

1−

(
p1
p
2

)2/3
]

.
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Similarly,

WDA =

A∫

D

p dV = p2V
3
A

V
A∫

V
D

dV

V 3
= 1

2
p2VA

(

V 2
A

V 2
D

− 1

)

= 1

2
p2VA

[(
p
1

p
2

)2/3

− 1

]

.

Adding up all the individual works, we get

Wcyc = WAB +WBC +WCD +WDA

= 3

2
p2(VB − VA)

[

1−

(
p1
p
2

)2/3
]

.

Dividing by QAB, we obtain the efficiency,

η =
Wcyc

QAB

= 1−

(
p
1

p
2

)2/3

.

(3) Show that (
∂µ

∂T

)

S,N

=
Cp

NTαp

−
S

N
.

Solution :

(
∂µ

∂T

)

S,N

=
∂(µ, S,N)

∂(T, S,N)
=

=1
︷ ︸︸ ︷

∂(µ, S,N)

∂(p, S, V )
·
∂(p, S, V )

∂(p, T,N)
·
∂(p, T,N)

∂(p, V,N)

=

[(
∂S

∂T

)

p,N

(
∂V

∂N

)

p,T

−

(
∂S

∂N

)

p,T

(
∂V

∂T

)

p,N

]

·

(
∂T

∂V

)

p,N

=
Cp

NTαp

−
S

N
.

Equivalently, from Gibbs-Duhem we have Ndµ = −S dT + V dp hence

(
∂µ

∂T

)

S,N

= −
S

N
+

V

N

(
∂p

∂T

)

S,N

But now (
∂p

∂T

)

S

·

(
∂T

∂S

)

p

·

(
∂S

∂p

)

T

= −1

and invoking the Maxwell relation (from dG)
(
∂S
∂p

)

T
= −

(
∂V
∂T

)

p
gives us

(
∂p

∂T

)

S

=
Cp

TV αp

and we are once again done.
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(4) A solution of 4.00 g of hemoglobin in 100 mL of water was prepared and its osmotic
pressure was measured to be π = 0.0130 atm at T = 280K. Estimate the molecular mass of
hemoglobin.

Solution :

We use the formula πv = xRT for the osmotic pressure π of weak solutions. Here v is the
molar volume of the solvent, and x is the molar fraction of solute. If M is the molar mass
of hemoglobin, then

x =
4.00 g

M

/
100 g

18 g
=

18 g

25M
,

since the density of water is 1.0 g/cm3 = 1g/mL. We then have

M = 18

25
g ·

RT

πv

=
18g

25
·

(8.314 × 107 erg/molK)(280K)

(0.013 atm)(1.013 × 106 g/cm s2 atm)(18 cm3/mol)
= 70710 g .

The actual value is M = 65706 g.
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