
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider a single classical anharmonic oscillator with the Hamiltonian

h =
p2

2m
+ V (q)

with V (q) = 1
2κq

2 − 1
3bq

3 + 1
4uq

4.

(a) Write down an expression for the partition function ζ(T ). You may do the p integral
exactly, but you will have to leave the rest of the expression in the form of an integral
over q.

(b) At low temperatures, the amplitude of the thermal oscillations is small. This means
that you may perturb in the coefficients b and u. Find the free energy up to terms of
order T 2.

(c) Write down an expression for the heat capacity c(T ) valid to first order in T .

Solution:

(a) We have

ζ(T ) = Tr e−βh = h−1
√

2πmk
B
T

∞
∫

−∞

dq e−βV (q) .

(b) We have
∞
∫

−∞

dq e−κq2/2k
B
T q2n =

(

2πk
B
T

κ

)1/2 (2n)!

2n n!

(

k
B
T

κ

)n

.

Thus,

f(T ) = −k
B
T ln

(
√

m

2πκ~2
k
B
T

)

− k
B
T

(

3uk
B
T

4κ2
+

5b2k
B
T

4κ32

)

+O(T 3) .

(c) We have

cV (T ) = −T
∂2f

∂T 2
= k

B

{

1 +

(

3u

2κ2
+

5b2

2κ3

)

k
B
T + . . .

}

.

(2) A nonlinear quantum oscillator has the Hamiltonian

h = ~ω(n+ 1
2 ) + λ~ω(n+ 1

2)
2 .

Here λ is the dimensionless anharmonicity.
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(a) Find the partition function ζ(u, λ) to first order in λ, where u ≡ ~ω/k
B
T .

(b) Find the heat capacity to the same order in λ.

Solution:

(a) Let u = ~ω/k
B
T . Then

ζ(u, λ) =

∞
∑

n=0

e−u(n+ 1

2
) e−λu(n+ 1

2
)2

=

(

1− λu
∂2

∂u2
+ . . .

)

1

2 sinh(u/2)

=
1

2 sinh(u/2)

(

1− 1
2λu−

λu

sinh2(u/2)
+ . . .

)

.

(b) The heat capacity is given by

cV = −T
∂2f

∂T 2
= −k

B
β2 ∂

2(βf)

∂β2

= k
B

[

α2

sinh2α
+

8λα2 coshα

sinh3α
−

8λα3

sinh2α
−

12λα3

sinh4α
+O(λ2)

]

,

with α = 1
2u = ~ω

2k
B
T .

(3) Consider a one-dimensional system of free identical nonrelativistic particles of mass
m, each of which is endowed with an internal degree of freedom S which takes on values
S ∈ {−1, 0, 1}. The Hamiltonian is

H =

N
∑

j=1

(

p2j
2m

− hSj

)

,

where h is a magnetic field (with dimensions of energy). The linear dimension of the
system is L.

(a) Find the Helmholtz free energy F (T,L,N, h).

(b) Find the magnetic susceptibility χ
MM = 1

L
∂M
∂h , where M̂ =

∑

j Sj is the magnetiza-

tion operator and M = 〈M̂〉. Do not set h = 0 at the end of the calculation.

(c) Define the operator Q̂ =
∑N

j=1 Sj pj . Let λ be the conjugate force. Find the suscepti-
bility χ

QQ(T, h = 0, λ = 0).

(d) Working in the grand canonical ensemble, find an expression for Ω(T,L, µ, h, λ).
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(e) What is the lowest order term in h and λ which contributes to the cross-susceptibility
χ
QM = − 1

L
∂2Ω
∂h ∂λ?

Solution:

(a) The single particle partition function is

ζ(T,L, h) =
1
∑

S=−1

L
∫

0

dq

∞
∫

0

dp

h
e−βp2/2m eβhS

=
L

λT

1
∑

S=−1

eβhS =
L

λT

(

1 + 2 cosh(βh)
)

,

with λT = (2π~2/mk
B
T )1/2 is the thermal wavelength. The Helmholtz free energy is then

F = −k
B
T lnZ with Z = ζN/N ! , hence

F (T,L,N, h) = −Nk
B
T ln

(

L

NλT

)

−Nk
B
T −Nk

B
T ln

(

1 + eh/kBT + e−h/k
B
T
)

.

(b) Here we may set λ = 0 but we are asked to keep h finite. We have

M = −
∂F

∂h

∣

∣

∣

∣

λ=0

=
2N sinh(βh)

1 + 2 cosh(βh)
.

The magnetic susceptibility is then

χ
MM =

1

L

∂M

∂h
=

2n

k
B
T

·
4 + 2 cosh(h/k

B
T )

(

1 + 2 cosh(h/k
B
T )
)2 ,

where n = N/L is the number density.

(c) Now we have

ζ(T,L, h, λ) =

1
∑

S=−1

L
∫

0

dq

∞
∫

0

dp

h
e−βp2/2m eβhS eβλSp

=
L

λT

2
∑

S=−1

eβhS eβmλ2S2/2 =
L

λT

(

1 + 2 eβmλ2/2 cosh(βh)
)

,

and

F (T,L,N, h, λ) = −Nk
B
T ln

(

L

NλT

)

−Nk
B
T

−Nk
B
T ln

(

1 + emλ2/2k
B
T eh/kBT + emλ2/2k

B
T e−h/k

B
T
)

.
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Note that we have added a term ∆H = −λ
∑

j Sj pj to the Hamiltonian. We now set h = 0,
and since we also set λ = 0 at the end of our calculation, we only need to evaluate the free
energy to order λ2, which is F = F0−

1
3Nmλ2+O(λ4). Thus χQQ(T, h = 0, λ = 0) = 2

3nm .

(d) From Ξ = e−βΩ =
∑

∞

N=0 ζ
NeNβµ/N ! = exp(ζeβµ), we have

Ω(T,L, µ, h, λ) = −Lk
B
T λ−1

T

(

1 + 2 cosh(h/k
B
T ) emλ2/2k

B
T
)

eµ/kBT .

(e) We expand Ω in h and λ to obtain

Ω = −Lk
B
T λ−1

T eµ/kBT
(

1 +
mλ2

k
B
T

+
h2

(k
B
T )2

+
m2λ4

8(k
B
T )2

+
mh2λ2

4(k
B
T )3

+
m3λ6

48(k
B
T )3

+ . . .

)

.

The first term which survives the operator ∂2/∂h∂λ is the term of order h2λ2. Thus, we
have χ

QM(T, µ, h, λ) = hλ ·mλ−1
T eµ/kBT /(k

B
T )2 + . . . , which is of order hλ. Note that we

have computed here the susceptibility at fixed chemical potential. Were we to compute it at
fixed density, we would need to work from the Helmholtz free energy F and not the grand
potential Ω. Typically under experimental conditions, it is n which is fixed rather than µ.

(4) Atoms and ions with partially filled shells experience a magnetic field according to the
effective Hamiltonian

Heff = g
L
µ

B
J ·H/~ ,

where µ
B
= e~/2mc is the Bohr magneton (m is the electron mass), J is the total angular

momentum, and

g
L
= 3

2 +
S(S + 1)− L(L+ 1)

2J(J + 1)

is the Landé g-factor.

(a) For a gas or solution of N such objects in a volume V , find an expression for the mag-
netization density,m = M

V = −N
V

∂F
∂H at finite H and T . Show that m = nγJBJ(JγH/k

B
T ) ,

where n = N/V , γ = g
L
µ

B
, and BJ(x) is a function called the Brillouin function. Find

and sketch BJ(x) for a few different values of J .

(b) Taking the limit H → 0, you should find m = χH , where χ(T ) is the magnetic
susceptibility. Find χ(T ).

Solution:

(a) The partition function is

Z = e−F/k
B
T =

J
∑

j=−J

e−jγH/k
B
T =

sinh
(

(J + 1
2)γH/k

B
T
)

sinh
(

γH/2k
B
T
) .
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The magnetization density is

M = −
N

V

∂F

∂H
= nγJ BJ(JγH/k

B
T ) ,

where BJ(x) is the Brillouin function,

BJ(x) =
(

1 + 1
2J

)

ctnh
[(

1 + 1
2J

)

x
]

− 1
2J ctnh (x/2J) .

The magnetic susceptibility is thus

χ(H,T ) =
∂M

∂H
=

nJ2γ2

k
B
T

B′

J(JγH/k
B
T )

= (Jg
L
)2 (na3

B
) (e2/~c)2

(

e2/a
B

k
B
T

)

B′

J(gµB
JH/k

B
T ) .

(b) At H = 0,

χ(H = 0, T ) = 1
3(gL

µ
B
)2 n

J(J + 1)

k
B
T

.

The inverse temperature dependence is known as Curie’s law.

Figure 1: Reduced magnetization curves for three paramagnetic salts and comparison with
Brillouin theory predictions. L(x) = BJ→∞(x) = ctnh (x)− x−1 is the Langevin function.
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