
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) A six-sided die is loaded in such a way that it is twice as likely to yield an even number
than an odd number when thrown.

(a) Find the distribution {pn} consistent with maximum entropy.

(b) Assuming the maximum entropy distribution, what is the probability that three con-
secutive rolls of this die will total up to seven?

Solution:

(a) Our constraints are

p1 + p2 + p3 + p4 + p5 + p6 = 1

2p1 − p2 + 2p3 − p4 + 2p5 − p6 = 0 .

We can combine these to yield

p1 + p3 + p5 =
1
3

p2 + p4 + p6 =
2
3 .

At this point it should be obvious that the solution is p1,3,5 = 1
9 and p2,4,6 = 2

9 , since
nothing further distinguishes among the even or the odd rolls. This is indeed what the
maximum entropy construction gives. We write

S∗({pn}, λo, λe

)

= −
6

∑

n=1

pn ln pn − λO

(

p1 + p3 + p5 − 1
3

)

− λE

(

p2 + p4 + p6 − 2
3

)

.

Extremizing with respect to each of the six pn, we have

p1 = p3 = p5 = e−(1+λ
O
)

p2 = p4 = p6 = e−(1+λ
E
) .

Extremizing with respect to λ
O,E recovers the constraint equations. The solution is what

we expected.

(b) There are 15 out of a possible 63 = 216 distinct triples of die rolls which will total to
seven:

(1, 1, 5) (2, 1, 4) (3, 1, 3) (4, 1, 2) (5, 1, 1)

(1, 2, 4) (2, 2, 3) (3, 2, 2) (4, 2, 1)

(1, 3, 3) (2, 3, 2) (3, 3, 1)

(1, 4, 2) (2, 4, 1)

(1, 5, 1)
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Of these, six contain three odd rolls and nine contain one odd and two even rolls. Thus,
the probability for three consecutive rolls summing to seven is

π = 6 p31 + 9 p1 p
2
2 =

14
243 = 0.05761.

For a fair die the probability would be πfair =
15
216 = 0.06944.

(2) Show that the Poisson distribution Pν(n) =
1
n! ν

n e−ν for the discrete variable n ∈ Z≥0

tends to a Gaussian in the limit ν → ∞.

Solution:

For large fixed ν, Pν(n) is maximized for n ∼ ν. We can see this from Stirling’s asymptotic
expression,

lnn! = n lnn− n+ 1
2 lnn+ 1

2 ln 2π +O(1/n) ,

which yields
lnPν(n) = n ln ν − n lnn− ν + n− 1

2 lnn− 1
2 ln 2π

up to terms of order 1/n, which we will drop. Varying with respect to n, which we can
treat as continuous when it is very large, we find n = ν − 1

2 +O(1/ν). We therefore write
n = ν + 1

2 + ε and expand in powers of ε. It is easier to expand in powers of ε̃ ≡ ε+ 1
2 , and

since n is an integer anyway, this is really just as good. We have

lnPν(ν + ε̃) = −(ν + ε̃) ln

(

1 +
ε̃

ν

)

+ ε̃− 1
2 ln(ν + ε̃)− 1

2 ln 2π .

Now expand, recalling ln(1 + z) = z − 1
2z

2 + . . . , and find

lnPν(ν + ε̃) = − ε̃(1 + ε̃)

2ν
− ln

√
2πν +

ε̃2

4ν2
+ . . .

Since ν → ∞, the last term before the ellipses is negligible compared with the others,
assuming ε̃ = O(ν0). Thus,

Pν(n) ∼ (2πν)−1/2 exp

{

−
(

n− ν + 1
2

)2

2ν

}

,

which is a Gaussian.

(3) Frequentist and Bayesian statistics can sometimes lead to different conclusions. You
have a coin of unknown origin. You assume that flipping the coin is a Bernoulli process, i.e.
the flips are independent and each flip has a probability p to end up heads and probability
1− p to end up tails.

(a) You perform 14 flips of the coin and you observe the sequence {HHTHTHHHTTHHHH}.
As a frequentist, what is your estimate of p?

(b) What is your frequentist estimate for the probability that the next two flips will each
end up heads? If offered even odds, would you bet on this event?
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(c) Now suppose you are a Bayesian. You view p as having its own distribution. The
likelihood f(data|p) is still given by the Bernoulli distribution with the parameter p.
For the prior π(p), assume a Beta distribution,

π(p|α, β) = Γ(α+ β)

Γ(α) Γ(β)
pα−1 (1− p)β−1 .

where α and β are hyperparameters. Compute the posterior distribution π(p|data, α, β).

(d) What is the posterior predictive probability f(HH |data, α, β)?

(e) Since a priori we don’t know anything about the coin, it seems sensible to choose
α = β = 1 initially, corresponding to a flat prior for p. What is the numerical value
of the probability to get two heads in a row? Would you bet on it?

Solution:

(a) A frequentist would conclude p = 5
7 since the trial produced ten heads and four tails.

(b) The frequentist reasons that the probability of two consecutive heads is p2 = 25
49 . This is

slightly larger than 1
2 , so the frequentist should bet! (Frequently, in fact.)

(c) Are you reading the lecture notes? You should, because this problem is solved there in
§1.5.2. We have

π(p|data, α, β) = p9+α (1− p)3+β

B(10 + α, 4 + β)
,

where the Beta function is B(α, β) = Γ(α) Γ(β)/Γ(α + β).

(d) The posterior predictive is

p(data′|data) = B(10 + Y + α, 4 +M − Y + β)

B(10 + α, 4 + β)
,

where Y is the total number of heads found among M tosses. We are asked to consider
M = 2, Y = 2, so

f(HH|data, α, β) = B(12 + α, 4 + β)

B(10 + α, 4 + β)
.

(e) With α = β = 1, we have

f(HH|data, α, β)
∣

∣

∣

α=β=1
=

B(13, 5)

B(11, 5)
=

11 · 12
16 · 17 =

33

68
= 0.4852941.

This is slightly less than 1
2 . Don’t bet!

It is instructive to note that the Bayesian posterior prediction for a single head, assuming
α = β = 1, is

f(H|data, α, β)
∣

∣

∣

α=β=1
=

B(11 + α, 4 + β)

B(10 + α, 4 + β)
=

B(12, 5)

B(11, 5)
=

11

16
.
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The square of this number is 121
256 = 0.4726565, which is less than the posterior prediction

for two consecutive heads, even though our likelihood function is the Bernoulli distribution,
which assumes the tosses are statistically independent. The eager student should contemplate
why this is the case.

(4) Professor Jones begins his academic career full of hope that his postdoctoral work, on
relativistic corrections to the band structure of crystalline astatine under high pressure,
will eventually be recognized with a Nobel Prize in Physics. Being of Bayesian convic-
tions, Jones initially assumes he will win the prize with probability θ, where θ is uniformly
distributed on [0, 1] to reflect Jones’ ignorance.

(a) After N years of failing to win the prize, compute Jones’s chances to win in year
N + 1 by performing a Bayesian update on his prior distribution.

(b) Jones’ graduate student points out that Jones’ prior is not parameterization-independent.
He suggests Jones redo his calculations, assuming initially the Jeffreys prior for the
Bernoulli process. What then are Jones’ chances after his N year drought?

(c) Professor Smith, of the Economics Department, joined the faculty the same year as
Jones. His graduate research, which concluded that poor people have less purchas-
ing power than rich people, was recognized with a Nobel Prize in Economics1 in his
fifth year. Like Jones, Smith is a Bayesian, whose initial prior distribution was taken
to be uniform. What is the probability he will win a second Nobel Prize in year 11?
If instead Smith were a frequentist, how would he assess his chances in year 11?

Solution:

(a) For the Beta distribution π(θ) = θα−1(1− θ)β−1/B(α, β), one has

〈θ〉 = α

α+ β
. (1)

Assuming α0 = β0 = 1, under the Bayesian update rules, αN = α+P and βN = β+N−P ,

where P is the number of successes in N years. Alas, for Jones P = 0, so αN = 1 and

βN = N + 1, meaning f(prize|reality) = 1/(N + 2).

(b) For the Jeffries prior, take α0 = β0 =
1
2 , in which case f(prize|reality) = 1/(2N + 2).

(c) For Smith, we take P = 1 and N = 10, hence f(prize|reality) = 2/(N + 2) = 1
6 . If Smith

were a frequentist, he would estimate his chances at p = 1
10 .

(5) Consider a system of N real degrees of freedom xj ∈ R with energy E = −JM3/6N2,

where M =
∑N

j=1 xj . The vector x =
{

x1, . . . , xN
}

is constrained to lie on a sphere of

radius
√
N i.e.

∑N
j=1 x

2
j = N .

1Strictly speaking, there is no such thing as a “Nobel Prize in Economics”. Rather, there is a “Nobel Memo-
rial Prize in Economic Sciences”.
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(a) Evaluate the density of states like function,

D(Λ,N) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN δ
(

Λ−
N
∑

j=1

x2j

)

by using the Laplace transform method outlined in chapter 4 of the lecture notes. You
may assume that N is even, so there is no branch cut to consider when evaluating
the inverse Laplace transform.

(b) Evaluate the second density of states like function,

D(Λ,M,N) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN δ
(

Λ−
N
∑

j=1

x2j

)

δ
(

M −
N
∑

j=1

xj

)

/

D(Λ,N) .

Note that
∞
∫

−∞
dM D(Λ,M,N) = 1.

(c) Let the Hamiltonian of our system be H = −JM3/6N2. The partition function is
defined to be

Z(β,N) =

∞
∫

−∞

dM D(M,N) e−βH ,

where D(M,N) = D(Λ = N,M,N), i.e. the vector x =
{

x1, . . . , xN
}

is constrained

to lie along an (N −1)-dimensional sphere of radius
√
N . Show that Z(β,N) may be

written as

Z(β,N) =

1
∫

−1

dm e−Nf(m,θ)+O(lnN) ,

where θ = k
B
T/J is the dimensionless temperature. In the limit N → ∞, we are li-

censed to compute the integral by the steepest descents approximation, which entails
finding the minimum of f(m, θ) as a function of m for fixed θ.2

(d) Sketch f(m, θ) versus m for θ = 0.25, θ = 0.185, θ = 0.1703, and θ = 0.15. Comment
on how the minimum value of m evolves as a function of θ. Hint: You should have
found that the minimum mmin(θ) changes discontinuously at a critical temperature θc.
Later on in the course, we will learn how this is the hallmark of a first order phase
transition.

(e) What is the entropy per degree of freedom, s(m), in the limit N → ∞?

Solution:

2The model you have just solved is called the three spin spherical model.
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(a) Define the density of states like function,

D(Λ,N) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN δ
(

Λ−
N
∑

j=1

x2j

)

.

The Laplace transform in Λ is

D̂(β,N) =

∞
∫

0

dΛ e−βΛD(Λ,N) =





∞
∫

−∞

dx e−βx2





N

=

(

π

β

)N/2

.

Taking the inverse Laplace transform,

D(Λ,N) =

∫

C

dβ

2πi
eβΛ D̂(β,N) =

πN/2 Λ
N

2
−1

Γ
(

N
2

) .

(b) Now define another density of states like function,

D(Λ,M,N) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN δ
(

Λ−
N
∑

j=1

x2j

)

δ
(

M−
N
∑

j=1

xj

)

/ ∞
∫

−∞

dy1 · · ·
∞
∫

−∞

dyN δ
(

Λ−
N
∑

j=1

y2j

)

.

Note that this is normalized by the denominatorD(Λ,N), so
∞
∫

−∞
dM D(Λ,M,N) = 1. Again

we perform the Laplace transform from Λ to β. Writing δ(u) =
∞
∫

−∞

dk
2π eiku for the second

delta function, we have

D̂(β,M,N) =
1

D(Λ,N)

∞
∫

−∞

dk

2π
e−ikM

(

π

β

)N/2

e−Nk2/4β

=
1√
πNΛ

Γ
(

N
2

)

Γ
(

N−1
2

)

(

1− M2

NΛ

)
N−3

2

.

We now set Λ = N , which is the radius of the sphere, i.e.
∑N

j=1 x
2
j = N . This gives us the

density of states

D(M,N) ≡ D(Λ = N,M,N) =
1√
πN

Γ
(

N
2

)

Γ
(

N−1
2

)

(

1− M2

N2

)
N−3

2

.

Let’s check the normalization has worked out. We have, with m = M/N ≡ cosα the
magnetization density,

∞
∫

−∞

dM D(M,N) =
1√
π

Γ
(

N
2

)

Γ
(

N−1
2

)

1
∫

−1

dm
(

1−m2
)(N−3)/2

=
1√
π

Γ
(

N
2

)

Γ
(

N−1
2

)

π
∫

0

dα
(

sinα
)N−2

=
1√
π

Γ
(

N
2

)

Γ
(

N−1
2

) · 2N−2 B
(

N−1
2 , N−1

2

)

= 1 ,
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where B(x, y) = Γ(x) Γ(y)/Γ(x+y) is the beta function, and where we have used the result

Γ(x) Γ(x+ 1
2) =

√
π

22x−1
Γ(2x) ,

with x = 1
2(N − 1). Yay!

(c) OK, so now we wish to evaluate the partition function,

Z(β,N) =

∞
∫

−∞

dM D(M,N) eβJM
3/6N2

,

where we have taken the Hamiltonian to be H = −JM3/6N2. Note that D(M,N) = 0 for
M > |N | so the limits of integration can be extended to ±∞, although this does not matter
for the following analysis, since m will be constrained to the physical interval m ∈ [−1, 1]
anyway. We may now write

Z(β,N) =
1√
π

Γ
(

N
2

)

Γ
(

N−1
2

)

1
∫

−1

dm
(

1−m2
)−3/2

e−Nf(m,θ) ,

where the free energy density f(m, θ) is given by

f(m, θ) = −m3

6θ
− 1

2 ln
(

1−m2
)

,

with θ ≡ k
B
T/J the dimensionless temperature. In the thermodynamic limit N → ∞, all

that remains is to analyze the function f(m, θ).

Clearly f(m, θ) will diverge logarithmically to f → +∞ as m2 tends to unity from below,

regardless of θ. Expanding in m about m = 0, we have f(m, θ) = 1
2m

2 − m3

6θ + O(m4), so
m = 0 is always a local minimum. To find any other extrema, we set

0 =
∂f

∂m
= −m2

2θ
+

m

1−m2
.

This yields the solution m = 0 as well as m
(

1 −m2
)

= 2θ. Graphically, one has that there
are two additional solutions, both with m > 0, provided 2θ < max

(

m − m3
)

= 2
3
√
3
. We

conclude that for θ > 1
3
√
3
, m = 0 is the only minimum.

Because f(m, θ) contains a cubic term, we expect a first order transition at some critical
temperature θc. To find the critical temperature, we require that the curve f(m, θ) be tan-
gent to the m axis for some value m > 0. This yields two simultaneous equations for m
and θ:

f(m, θ) = −m3

6θ
− 1

2 ln
(

1−m2
)

= 0 and
∂f

∂m
= −m2

2θ
+

m

1−m2
= 0 .
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Figure 1: Free energy density at four temperatures θ = 0.25 (red), θ = 0.185 (magenta),
θ = θc = 0.1703 (black), and θ = 0.15 (blue).

Eliminating θ from these equations, we obtain

m2 + 3
2

(

1−m2
)

ln
(

1−m2
)

= 0 .

Using Mathematica to find the nontrivial root, we find m = 0.730472. Substituting into
either of the previous equations then yields θc = 0.1703. We check this numerically by
plotting f(m, θ) versus m for four different values of θ. Note that θc <

1
3
√
3
= 0.1925 . As θ

increases from θ = 0, the magnetization m(θ) decreases from m(θ = 0) = 1 to m(θ = θc) =
0.730472, at which point it drops discontinuously to m(θ > θc) = 0.

(d) See Fig. 1.

(e) The dimensionless entropy per degree of freedom is s = 1
N lnD(M,N) , hence in the

thermodynamic limit N → ∞ we have s(m) = 1
2 ln(1−m2) .
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