PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #3

(1) For an ideal gas, find the difference $C_{\varphi} - C_V$ for the following functions φ . You are to assume *N* is fixed in each case.

- (a) $\varphi(p,V) = p^3 V^2$
- (b) $\varphi(p,T) = p e^{T/T_0}$
- (c) $\varphi(T, V) = VT^{-1}$

(2) Consider a thermodynamic system for which $E(S, V, N) = aS^4/NV^2$.

- (a) Find the equation of state p = p(T, V, N).
- (b) Find the equation of state $\mu = \mu(T, p)$.
- (c) ν moles of this substance are taken through a Joule-Brayton cycle (see §2.6.7 of the Lecture Notes). The upper isobar lies at $p = p_2$ and extends from volume V_A to V_B . The lower isobar lies at $p = p_1$. Find the volumes V_C and V_D .
- (d) Find the work done per cycle W_{cyc} , the heat Q_{AB} , and the cycle efficiency.
- (3) Show that

(3) A solution of 4.00 g of hemoglobin in 100 mL of water was prepared and its osmotic pressure was measured to be $\pi = 0.0130 \text{ atm}$ at T = 280 K. Estimate the molecular mass of hemoglobin.