PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #2

(1) Consider a single classical anharmonic oscillator with the Hamiltonian

$$h = \frac{p^2}{2m} + V(q)$$

with $V(q) = \frac{1}{2}\kappa q^2 - \frac{1}{3}bq^3 + \frac{1}{4}uq^4$.

- (a) Write down an expression for the partition function $\zeta(T)$. You may the *p* integral exactly, but you will have to leave the rest of the expression in the form of an integral over *q*.
- (b) At low temperatures, the amplitude of the thermal oscillations is small. This means that you may perturb in the coefficients b and u. Find the free energy up to terms of order T^2 .
- (c) Write down an expression for the heat capacity c(T) valid to first order in T.

(2) A nonlinear quantum oscillator has the Hamiltonian

$$h = \hbar\omega(n + \frac{1}{2}) + \lambda\hbar\omega(n + \frac{1}{2})^2$$

Here λ is the dimensionless anharmonicity.

- (a) Find the partition function $\zeta(u, \lambda)$ to first order in λ , where $u \equiv \hbar \omega / k_{\rm B} T$.
- (b) Find the heat capacity to the same order in λ .

(3) Consider a one-dimensional system of free identical nonrelativistic particles of mass m, each of which is endowed with an internal degree of freedom S which takes on values $S \in \{-1, 0, 1\}$. The Hamiltonian is

$$H = \sum_{j=1}^{N} \left(\frac{p_j^2}{2m} - hS_j \right)$$

where h is a magnetic field (with dimensions of energy). The linear dimension of the system is L.

- (a) Find the Helmholtz free energy F(T, L, N, h).
- (b) Find the magnetic susceptibility $\chi_{MM} = \frac{1}{L} \frac{\partial M}{\partial h}$, where $\hat{M} = \sum_j S_j$ is the magnetization operator and $M = \langle \hat{M} \rangle$. Do not set h = 0 at the end of the calculation.
- (c) Define the operator $\hat{Q} = \sum_{j=1}^{N} S_j p_j$. Let λ be the conjugate force. Find the susceptibility $\chi_{QQ}(T, h = 0, \lambda = 0)$.

- (d) Working in the grand canonical ensemble, find an expression for $\Omega(T, L, \mu, h, \lambda)$.
- (e) What is the lowest order term in *h* and λ which contributes to the cross-susceptibility $\chi_{QM} = -\frac{1}{L} \frac{\partial^2 \Omega}{\partial h \partial \lambda}$?

(4) Atoms and ions with partially filled shells experience a magnetic field according to the effective Hamiltonian

$$H_{\rm eff} = g_{\rm\scriptscriptstyle L} \mu_{\rm\scriptscriptstyle B} \, \boldsymbol{J} \!\cdot\! \boldsymbol{H} / \hbar \quad, \label{eq:Heff}$$

where $\mu_{\rm B}=e\hbar/2mc$ is the Bohr magneton (m is the electron mass), J is the total angular momentum, and

$$g_{\rm L} = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$

is the Landé *g*-factor.

- (a) For a gas or solution of N such objects in a volume V, find an expression for the magnetization density, $m = \frac{M}{V} = -\frac{N}{V} \frac{\partial F}{\partial H}$ at finite H and T. Show that $m = n\gamma JB_J(J\gamma H/k_{\rm B}T)$, where n = N/V, $\gamma = g_{\rm L}\mu_{\rm B}$, and $B_J(x)$ is a function called the *Brillouin function*. Find and sketch $B_J(x)$ for a few different values of J.
- (b) Taking the limit $H \to 0$, you should find $m = \chi H$, where $\chi(T)$ is the magnetic susceptibility. Find $\chi(T)$.