PHYSICS 210A : STATISTICAL PHYSICS FINAL EXAM

(1) Consider the analog of the van der Waals equation of state for a gas if diatomic particles with *repulsive* long-ranged interactions,

$$
p = \frac{RT}{v - b} + \frac{a}{v^2}
$$

,

where v is the molar volume.

- (a) Does this system have a critical point? If not, give your reasons. If so, find $(T_{\rm c}, p_{\rm c}, v_{\rm c})$.
- (b) Find the molar energy $\varepsilon(T, v)$.
- (c) Find the coefficient of volume expansion $\alpha_p = v^{-1} (\partial v / \partial T)_p$ as a function of v and T.
- (d) Find the adiabatic equation of state in terms of v and $T.$ If at temperature T_1 a volume $v_1 = 3b$ of particles undergoes reversible adiabatic expansion to a volume $v_2 = 5b$, what is the final temperature T_2 ?

(2) Consider a two-dimensional gas of ideal nonrelativistic fermions of spin- $\frac{1}{2}$ and mass m.

- (a) Find the relationship between the number density *n*, the fugacity $z = \exp(\mu/k_BT)$, and the temperature T. You may choose to abbreviate $\lambda_T = \sqrt{2\pi\hbar^2/mk_{\rm B}T}$. Assume the internal degeneracy (*e.g.*, due to spin) is g .
- (b) A two-dimensional area A is initially populated with nonrelativistic fermions of mass m, spin- $\frac{1}{2}$, and average number density $n = N/A$ at temperature T. The fermions are noninteracting with the exception that opposite spin fermions can pair up to form spin-0 bosons of mass 2m and binding energy Δ . In other words, the fermion dispersion is $\varepsilon_f(\mathbf{k}) = \hbar^2 \mathbf{k}^2 / 2m$ and the boson dispersion is $\varepsilon_B(\mathbf{k}) = -\Delta + \hbar^2 \mathbf{k}^2 / 4m$. Assuming the reaction $f \uparrow + f \downarrow \rightleftharpoons B$ has achieved equilibrium, find the relationship between the initial number density n , fugacity z , and temperature T . Hint: The total mass density of the system $\rho_{\text{tot}} = mn$ is conserved. Use this to first find the relation between the equilibrium densities $n_{\rm f}$, $n_{\rm B}$, and $n.$
- (c) Assuming the conditions in (b), in the limit $n\lambda_T^2 \gg 1$ at fixed T, what are the fermion and boson densities $n_{\rm f}$ and $n_{\rm B}$, to leading order?
- (d) Now suppose the initial particles are spin-0 bosons of mass m , which undergo the reaction $2b \rightleftharpoons B$, where B is a boson of mass $2m$. The initial density is again n. What is the relation between n , T , and z ? What are $n_{\rm b}$ and $n_{\rm B}$ to leading order when $n\lambda_T^2 \gg 1$?

(3) On each site *i* of a (two-dimensional square) lattice exists a unit vector \hat{n}_i which can point in any of four directions: $\{\pm \hat{x}, \pm \hat{y}\}$. These vectors interact between neighboring sites. Of the $4^2 = 16$ configurations, two have energy $-J$ and the remaining 14 have energy zero. The nonzero energy configurations for horizontal and for vertical links are shown here:

Figure 1: For both horizontal and vertical links, there are only two configurations with energy $E_{ij} = -J$, depicted here.

Consider a variational density matrix approach to this problem, based on the single site density matrix

$$
\varrho_1(\hat{\mathbf{n}}) = \frac{1}{4}(1+3x)\,\delta_{\hat{\mathbf{n}}\,,\,\hat{\mathbf{x}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\mathbf{n}}\,,\,-\hat{\mathbf{x}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\mathbf{n}}\,,\,\hat{\mathbf{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\mathbf{n}}\,,\,-\hat{\mathbf{y}}}
$$

,

where x is a variational parameter.

- (a) What is the allowed range for x ? Verify that the density matrix ϱ_1 is appropriately normalized.
- (b) Taking $\varrho_{\rm var}(\{\hat{\bm{n}}_i\}) = \prod_i \varrho_1(\hat{\bm{n}}_i)$, find the average energy E. (Please denote the total number of lattice sites by N.)
- (c) Find the entropy S .
- (d) Find the dimensionless free energy per site $f \equiv F/NJ$ in terms of the variational parameter x and the dimensionless temperature $\theta \equiv k_{\text{B}}T / J$.
- (e) Find the Landau expansion of $f(x, \theta)$ to fourth order in x. Hint:

$$
(1+\varepsilon)\ln(1+\varepsilon) = \varepsilon + \frac{1}{2}\varepsilon^2 - \frac{1}{6}\varepsilon^3 + \frac{1}{12}\varepsilon^4 - \frac{1}{20}\varepsilon^5 + \dots
$$

(f) Based on the fourth order Landau expansion of the free energy, sketch the equilibrium curve of x versus θ and identify the location(s) any and all phase transitions, as well as their order(s).

(4) Provide brief but accurate answers to each of the following:

- (a) For a single-component system, the Gibbs free energy G is a function of what state variables? Write its differential and all the Maxwell equations resulting from consideration of the mixed second derivatives of G.
- (b) A system of noninteracting spins is cooled in a uniform magnetic field H_1 to a temperature T_1 . The external field is then adiabatically lowered to a value $H_2 < H_1$. What is the final value of the temperature, T_2 ?
- (c) For a two-level system with energy eigenvalues $\varepsilon_1 < \varepsilon_2$, the heat capacity vanishes in both the $T \to 0$ and $T \to \infty$ limits. Explain physically why this is so. What will happen in the case of a three-level system?
- (d) Sketch the phase diagram of the $d = 2$ Ising model in the (T, H) plane. Identify the critical point and the location of all first order transitions. Then make a corresponding sketch for the $d = 1$ Ising model.