PHYSICS 210A : STATISTICAL PHYSICS FINAL EXAM

(1) Consider the analog of the van der Waals equation of state for a gas if diatomic particles with *repulsive* long-ranged interactions,

$$p = \frac{RT}{v-b} + \frac{a}{v^2}$$

,

where v is the molar volume.

- (a) Does this system have a critical point? If not, give your reasons. If so, find (T_c, p_c, v_c) .
- (b) Find the molar energy $\varepsilon(T, v)$.
- (c) Find the coefficient of volume expansion $\alpha_p = v^{-1} (\partial v / \partial T)_p$ as a function of v and T.
- (d) Find the adiabatic equation of state in terms of v and T. If at temperature T_1 a volume $v_1 = 3b$ of particles undergoes reversible adiabatic expansion to a volume $v_2 = 5b$, what is the final temperature T_2 ?

(2) Consider a two-dimensional gas of ideal nonrelativistic fermions of spin- $\frac{1}{2}$ and mass m.

- (a) Find the relationship between the number density n, the fugacity $z = \exp(\mu/k_{\rm B}T)$, and the temperature T. You may choose to abbreviate $\lambda_T = \sqrt{2\pi\hbar^2/mk_{\rm B}T}$. Assume the internal degeneracy (*e.g.*, due to spin) is g.
- (b) A two-dimensional area A is initially populated with nonrelativistic fermions of mass m, spin-¹/₂, and average number density n = N/A at temperature T. The fermions are noninteracting with the exception that opposite spin fermions can pair up to form spin-0 bosons of mass 2m and binding energy Δ. In other words, the fermion dispersion is ε_f(k) = ħ²k²/2m and the boson dispersion is ε_B(k) = −Δ + ħ²k²/4m. Assuming the reaction f↑ +f↓ = B has achieved equilibrium, find the relationship between the initial number density n, fugacity z, and temperature T. Hint: The total mass density of the system ρ_{tot} = mn is conserved. Use this to first find the relation between the equilibrium densities n_f, n_B, and n.
- (c) Assuming the conditions in (b), in the limit $n\lambda_T^2 \gg 1$ at fixed *T*, what are the fermion and boson densities n_f and n_B , to leading order?
- (d) Now suppose the initial particles are spin-0 bosons of mass *m*, which undergo the reaction 2b ⇒ B, where B is a boson of mass 2*m*. The initial density is again *n*. What is the relation between *n*, *T*, and *z*? What are *n*_b and *n*_B to leading order when *n*λ²_T ≫ 1?

(3) On each site *i* of a (two-dimensional square) lattice exists a unit vector \hat{n}_i which can point in any of four directions: $\{\pm \hat{x}, \pm \hat{y}\}$. These vectors interact between neighboring sites. Of the $4^2 = 16$ configurations, two have energy -J and the remaining 14 have energy zero. The nonzero energy configurations for horizontal and for vertical links are shown here:

Figure 1: For both horizontal and vertical links, there are only two configurations with energy $E_{ij} = -J$, depicted here.

Consider a variational density matrix approach to this problem, based on the single site density matrix

$$\varrho_1(\hat{\boldsymbol{n}}) = \frac{1}{4}(1+3x)\,\delta_{\hat{\boldsymbol{n}},\hat{\boldsymbol{x}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{x}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},\hat{\boldsymbol{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} - \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} = \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} = \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} = \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} = \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{n}},-\hat{\boldsymbol{y}}} + \frac{1}{4}(1-x)\,\delta_{\hat{\boldsymbol{x}},-\hat{\boldsymbol{y}}} = \frac{1}{4}(1-x)\,\delta$$

where x is a variational parameter.

- (a) What is the allowed range for *x*? Verify that the density matrix ρ_1 is appropriately normalized.
- (b) Taking $\rho_{\text{var}}(\{\hat{n}_i\}) = \prod_i \rho_1(\hat{n}_i)$, find the average energy *E*. (Please denote the total number of lattice sites by *N*.)
- (c) Find the entropy S.
- (d) Find the dimensionless free energy per site $f \equiv F/NJ$ in terms of the variational parameter x and the dimensionless temperature $\theta \equiv k_{\rm B}T/J$.
- (e) Find the Landau expansion of $f(x, \theta)$ to fourth order in x. *Hint:*

$$(1+\varepsilon)\ln(1+\varepsilon) = \varepsilon + \frac{1}{2}\varepsilon^2 - \frac{1}{6}\varepsilon^3 + \frac{1}{12}\varepsilon^4 - \frac{1}{20}\varepsilon^5 + \dots$$

(f) Based on the fourth order Landau expansion of the free energy, sketch the equilibrium curve of x versus θ and identify the location(s) any and all phase transitions, as well as their order(s).

(4) Provide brief but accurate answers to each of the following:

- (a) For a single-component system, the Gibbs free energy G is a function of what state variables? Write its differential and all the Maxwell equations resulting from consideration of the mixed second derivatives of G.
- (b) A system of noninteracting spins is cooled in a uniform magnetic field H_1 to a temperature T_1 . The external field is then adiabatically lowered to a value $H_2 < H_1$. What is the final value of the temperature, T_2 ?
- (c) For a two-level system with energy eigenvalues $\varepsilon_1 < \varepsilon_2$, the heat capacity vanishes in both the $T \to 0$ and $T \to \infty$ limits. Explain physically why this is so. What will happen in the case of a three-level system?
- (d) Sketch the phase diagram of the d = 2 Ising model in the (T, H) plane. Identify the critical point and the location of all first order transitions. Then make a corresponding sketch for the d = 1 Ising model.