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THE BBGKY KINETIC THEORY

We have seen how, in the case of the plasma at moderate and low densi-
ties, the philosophy which underlay the older kinetic theory has broken
down. The reason for the breakdown is twofold: (1) the long range
of the Coulomb force invalidates the model in which two particles inter-
act at a time, in an infinitely short time interval; and (2) the introduction
of a probabilistic description of the plasma was unsystematic and vague.
Most of the various attempts to overcome these difficulties have
in common that they begin by postulating some sort of probability
distribution over the possible states of the plasma. For the purely
classical case, which we are considering, this probability distribution
is most conveniently defined by giving a (nonnegative) probability
density everywhere in the phase space of the many-particle system.
The question of how the probability distribution, or “ensemble,” is to
be chosen is deliberately left unanswered. There is no hypothesis of
assigning equal probabilities to equal phase-space volumes a priori,
as there is in equilibrium statistical mechanics, and an ensemble set up to
represent a given set of data will depend upon many things, including
the degree of completeness that the data imply. In so far as possible,
one hopes to derive a formalism which is ndependent of the details of the
probability distribution, invoking only such general properties as differ-
entiability, integrability, and perhaps analyticity. The validity of the
procedure can ultimately be determined only by comparing its predic-
tions with experiment.
The approach we shall describe is the so-called “BBGKY theory.”
It is by no means the only contender among the various theories of
nonequilibrium statistical mechanics, but it is the one which appears
to us to be the most systematic and the most powerful. To compare it
with alternative approaches would take us far afield, and is better left
to authors more acquainted with these than we are.
41
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In the interests of clarity we shall develop the theory throughout
the following chapters for a one-component plasma with no magnetic
field interactions. However, in our later applications in Part III, we
shall occasionally require the kinetic equations for more complex plasmas.
We have therefore, in Chaps. 5 and 7, derived for future use some more
general equations for such plasmas.

4.1 DERIVATION OF THE HIERARCHY; THE CLUSTER EXPANSION

We take as our system of interest an electron plasma moving in a
uniform background of immobile positive charge. There are to be N
electrons, and the sth one has six phase-space coordinates X; = (g;,p;),
where the q; and p;: are canonical Hamiltonian variables. For simplicity,
we take the particle interactions to be derivable from a scalar potential
¢(q) = ¢(ja]) = €*/|q|, where q is the separation of any two electrons.
The Hamiltonian of the system is then

N p ¥y N
HN = %jn + z ¢ﬁ + z [QWB-ll(qi') + ‘I’ion(qi)] (41)

i=1 i<j=1 f=1

where ¢i; = €2/|q; — |, ®wan represents some potential barrier at the
boundary of the configuration-space volume of the system, and ¥ion(q.)
is the potential of the 7th electron moving in the potential of the smeared-
out positive background. ®wan serves only to turn around those particles
striking the wall; it is a purely formal device, and will not appear in
the eventual formulation of the theory.

The probability distribution Dy(X; - + - Xw;t) is normalized to 1:
fDydX, - - - dXy = 1, where the integration runs over the entire
accessible region of phase space. By Liouville’s theorem, Dy develops
in time according to

dDn

Y + {Dy;Hx} =0 (4.2)

where the Poisson bracket of any two quantities A and B, which depend
on the q; and p;, is defined by

N

{4;B} = Y

i=1

[aA 0B 94 aB] @.3)

9g: 9p Op ou

It should be noted that magnetic, or O(v?/c?), interactions could be
included in the formalism, as could interaction with an externally imposed
magnetic field. A word of caution is perhaps in order: inclusion of
magnetic interactions correctly sometimes involves going to a relativistic
description. We are presently interested in keeping the formalism as
simple as possible.
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Let us also agree to treat only Dy’s which are symmetric under the
' interchange of like particle coordinates. This amounts to a (voluntary)
limitation to situations in which like particles are taken to be indis-
tinguishable. In kinetic-theory discussions of the test-particle problem
(4) one may lift this restriction of symmetry.

We consider that we are dealing with an isolated ‘(as opposed to

driven) system: Dy(X, - + + Xu; 0) is understood as given, and (4.2)
determines its subsequent development. I is an easy matter to verify
rmalizati ed by (4.2).

We now define reduced probability distributions f,/V°, where V is
the configuration-space volume of the system, by

= [ Dy dXey: - - - dXn (4.4)

The f,/V*.are probability distributions in the phase space of s particles.
We can identify f; with the quantity which was defined as the probability
distribution in one-particle phase space in Chaps. 1 to 3, although it
is to be stressed that this is by no means the only way of making the
meaning of f; exact.

Let us now write out the Poisson bracket in (4.2) in detail:

N
aDN ; aDN 0Pqn dDn
+ zm 4q; ZE aq; ) ap:

d’n a‘I’ion (q.i)

3 o _ (4.5)

where . ¢E; =

‘"‘Mz -

N
¥

s’

is e times the electric field seen by the ith electron at position ¢;. Then,
integrating (4.5) over the X,,; - - - X~ subspace, using the definition of
the f, and the symmetry of Dy, and assuming that Dy vanishes outside
some large but finite region of phase space, we have

af’+2 74'%*2 zaaZij'%

i=1j=1

e
_ (N - 8) a¢1s+1 afs+1 ..
TZ / !« T (X, X, Xop1) dXon1
aq’wall ((b) a‘I’ion (qi) . i]fg
) ;( 99 b ) o 49

In an effort to calculate only intensive (as opposed to extensive, or
volume-proportional) effects, we remove the boundary of the plasma
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to infinity,
N—>

V- o

but in such a way that ne = N/V, the mean particle number density,
remains finite. In this limit, the ®w.u terms vanish at all finite g;, and
the equation for f, can be written compactly as

af’ 2+ (ol = o [ {z Brasti for1} s @7

g

In (4.7), H, is the Hamiltonian of s particles,

H, = \ -E‘f-i- 2 & + i Vion(qs)

t=1 i<j=1 i=1

Equation (4.7) is formally a linear partial differential equation for f, in
terms of f.,;. In so far as the class of Dx’s we are considering is con-
cerned, solution of the coupled chain (4.7) is equivalent to the solution
of the Liouville equation, and no simplification has been achieved yet.

For the infinite system, ¥ion(q:) is only a constant, and so will be
dropped from the equations hereafter, in the interests of simplicity.
One rather ticklish point should be borne in mind as we go along: some-
times it is convenient to derive an electric field as an auxﬂlary variable
directly from Poisson’s equation,

2
E'E-—%D

where p is the electrical charge density. The uniform background does
contribute to this p and must balance the electron density in any field-
free equilibrium. However, its inclusion does not modify the dynamics
expressed in (4.7), so we do not carry it along in the following treatment.

Evaluating the Poisson brackets and writing out the first two mem-
bers of the hierarchy, we have

afl P Ofr _ 912 3f2
+ m 6q1 = N aqz apl aX, (4-8)

3fs dg1 @ 0¢12 9
at +(m aq +m aq)f”"(ﬁa o apz>f2

_ d¢1s Ofs | ¢ s
- no-[(a‘h aP1+ 9q. aP)dX *9)

It should be noted that we have not yet used the fact that ¢, is the
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Coulomb interaction; (4.8) and (4.9) apply for an arbitrary two-body
scalar interaction and might, for example, include a departure from the
1/72 force at short distances.

Expectation values of most of the measurable quantities are cal-
culable in terms of f, and f.. If there were some scheme by which f,

L and f: could be calculated without knowing fs, fs, . . . , [i.e, if we
could break the chain of equations represented by (4.7)], it is apparent

 that a vast and practical simplification would have been achieved. It
should be stated unequivocally that there is not yet even one non-
equilibrium situation where a clean proof of the correctness of such a
procedure has been given. There do exist good reasons to hope that it
is sometimes possible, however, and if it is not, plasma physics stops
here. :

If the system were isolated and in thermal equilibrium, Dy would
be constant and uniform on the energy shell in the N-particle phase
space, as N — o. It is one of the better-known results (2) of classical
equilibrium statistical mechanics that it is useful, as N — «, to consider
writing the f, in the form

f1(Xy) = fu(Xy)
(X1 X3) = fi(X)f1(Xe) + PX 1 Xa) =%
[:(X1X:X3) = fulX)fu(X)f1(Xs) + fiX)P(X:Xs) + f1(X2) P(X3X0)
+ N1X)P(X:X1) + T(X:1X.X3) (4.10)

This is called the Mayer cluster expansion (2) and is described in any
standard text on statistical mechanics. Up to terms of O(1/4/N), it
turns out that f; is the Maxwell distribution,

fi (Maxwell) = (W

1 3%
er-—-p*/ 2mKT

In the theory of probability, two random variables z and y are said
to be uncorrelated, or independent, if the joint probability f(X,Y) that
z = X simultaneously with y = ¥ can be factored:

H(X,Y) = fLX)f(Y)

This statement means that the relative probability that x = X, y = ¥
to that for z = X,y = Y, does not depend on X. If this is not possible,
then the correlation function for the variables z and y is defined by

PX,Y) = fu(X,Y) — [X)f(Y) (4.11)

Thus P is that part of f» which is not factorable.
Thinking loosely, we may imagine the positions in phase space of
two particles to be random variables, describable by some joint prob-
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ability distribution f. This can be true only in some average sense, of
course; the positions of particular particles in particular experiments are
well-defined delta functions, in classical physics.

The expansion (4.10) is principally useful in situations where the

successive pair, triplet, ete., correlation functions P, T, .. . are in 1
some sense “small,”’ or relatively ‘“unimportant,” compared with the
factorable parts of fs, f5, . . . . To see how this might come about, let

us imagine that the particles are neutral molecules, with forces which
go to zero above a few angstroms separation. Suppose, moreover, that
the density of the gas is very low, so that the average kinetic energy of a
particle is much greater than its average potential energy. Then it
suggests itself that if |q; — qs| >> the range of the forces, ‘“particle 1’ will
not greatly care where ‘‘particle 2” is. However, if particle 2 gets |
close enough to particle 1, its motion will affect that of particle 1, and
the positions in phase space can no longer be prescribed independently.
But at low densities, the fraction of the total phase space over which
P is nonvanishing, relative to fify, is very small, and roughly speaking,
this statement becomes more accurate as the gas becomes less dense.
The notion that the effect of P is negligible compared with f,f; and that
the ternary correlation 7 is “small,” relative to Pf,, seems quite well
motivated for this case. The structure of (4.8) and (4.9) rightly suggests
that this smallness might become the basis for a noneguslibrium pertur-
bation expansion as well. This idea, in one form or another, has occurred
to all the authors listed in Ref. 1. Most of the original work was con-
cerned with molecular gases, but our primary concern here is with the
modification of the theory for the plasma case. The authors with whose
work we shall be principally concerned in the next few chapters are
Guernsey (3), Rostoker and Rosenbluth (4), Lenard (5), Balescu (6), and
Dupree (7). Since our interest here is more in a clear exposition of the
theory than in assigning proper program credits, we do not always say
explieitly which contribution is due to which author.

The situation is not so clear-cut for Coulomb interactions, since
¢:; extends to infinity in this case; one might guess that the pair correla-
tion would have to be given equal footing with the one-body distribution.
However, it turns out that over almost all the two-particle phase space
(the “hole” over which the statement does not apply has a configuration-
space volume ~g?ny~t), the quantity P/f1f:is of order g = 1/nLp? where
Lp? = kp~? = KT/4mnee? K being Boltzmann’s constant, T the temper-
ature. As we have already seen (Table 3.1), g is often quite small.
This is true despite the long range of the Coulomb force.

The explanation given in Chap. 2 was one of “‘shielding.” Associ-
ated with any charge, we said, is a (statistical) cloud of charge of the
opposite sign, which screens the potential at large distances, converting
its effective form from 1/r to (1/r)e*>". A careful consideration of the
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equilibrium thermodynamical situation (Appendix A) reveals that the
exponentially damped term again appears. Stated in the more precise
pair-correlation language, for |q: — q2| > €?/KT, the equilibrium pair
eorrelation is
_e2 e~ *pla—as|

P., ~ g7 4 — 'fx(Pl)fl(Pz) (4.12)

where f, is a Maxwell distribution. The two-body distribution is there-
fore, for equilibrium,

e? e—Fplarail
et ] (4.13)

f2(X:X9) = f1(p1)f1(p2) [ KT — ¢

- which rapidly approaches the form fi(pi)fi(pz)—the uncorrelated (i.e.,
noninteracting) form—if kp~' becomes appreciably less than |q; — qaf.
Therefore, except for a tiny hole cut out of the two-particle phase space,
it is an excellent approximation in equilibrium to treat P/f.f, as a small
' quantity.f

The hope is that such statements will also apply to nonequilibrium
gituations. So far, this is only a hope, for any situations except those
close to thermal equilibrium, as has been stressed by Meeron [8]. Let
us bear this restriction in mind throughout the following chapters.

The approach of Rostoker and Rosenbluth is essentially a formal
| expansion procedure for (4.8) and (4.9), in which T (XX ,X,) is regarded
as of higher than first order in ¢ (though not necessarily of second order),
P is regarded as of first order, and f, as of zeroth order. One keeps
only terms of O(1) and O(g), and the result is a closed system of equations
for f; and P. Thus we make a nonequilibrium cluster expansion of (4 8)
and (4.9), of the form (4.10):

af1 e P, af, =n d¢12 afl (Xl)f (Xs) dX,

m 3q ] oq
+n [‘;";lf op (X X9 %, (4.14)

t So as not to generate unnecessary confusion, we have at this point made the
analogy between the plasma case and the case of the rarefied molecular gas seem
closer than it actually is, for there is one important difference. Both situations can
be viewed as perturbation expansions, but the dimensionless expansion parameter is
different.. In the molecular gas case, the short range of the forces means that the
pair correlation between two particles vanishes except over a region of configuration
space of the order of a%, where a is the range of the force; thus the dimensionless
expansxon parameter is nga?. However, in the region where P is nonzero, P/f:f1 is
in no sense “small.” For the plasma, on the other hand, the assumption is that the
shielding of the Coulomb force so weakens the interaction between particles that
[P/f\f1| < 1 for nearly all the two-particle phase space. In both cases the effect is
to render the collision integral [the right-hand side of Eq. (4.18)] a “small” quantity.
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p: 9
(3+2 2 +2 ) Py

01z 0 9¢1s 0
- ( L ) (X Df(Xs) + P(X0X5)]

+no[ [ axunox) 322 2+ o) | P

[6f1 /6¢13 P(X:X3) dXs + (1 (_)2)]

+ o / [«;iu o T HZ)] T(X.X2Xs5) dXs (4.15)

We shall use the symbol (1 «»2) to mean the immediately preceding
expression, with indices 1 and 2 interchanged.

If g = 1/nlp® = (4wnee?/KT)*/nois to be ‘‘small,” we must specify
which qua.ntities are to be held finite for the meaning of the expansion
to be precise for all the terms in (4.14) and (4.15). If the thermal veloctity

KT/m is of O(1), then g = (noe?/m)¥ng=t X O(1). If the plasma
frequency v/4rnee?/m is also to be held finite, then 1/no must be a small,
or O(g), quantity. Therefore ¢2/m must be O(g). If the charge-mass
ratio of an electron is to be held finite, then e/m must be O(1). If finally
follows that e and m must be O(g) quantities.

We have shown that, if we keep the thermal velocity, the plasma
frequency, and the acceleration imparted to an electron by a finite
electric field all finite, then ¢, m, and 1/n, (sometimes called “discreteness
parameters’”’) must all be treated as O(g) quantities, with P/fif; = O(g)
and q, p/m both O(1). These assignments have an element of arbi-
trariness in them and are physically, rather than mathematically, moti-
vated. The (unproved) assumption which allows us to close the system
is that T is of higher than first order in g.

Rewriting (4.14) and (4.15) under these assumptions, we get

i ;1 Ofr 6¢13 af
Biym i no[ (X)dX,]

a4’12 apP (XIXZ)
Fre _apl dX, (4.16)

] P(X1X,)

d
5 P + |2 aq1+fn? N

aq;
+ n [ / dX fi(Xs) S22 ""’“ 3 H e 2)] P(X.X5)

[afl l‘ 6¢13 P(XgXa) dXs + (1 — 2)] (4.17)

[a¢12 + (1 — 2)]f1(X1)f1(X1)
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Most of the literature is being written in terms of velocity-space,
- rather than momentum-space, distributions, so we set

f1(a,p) dp = f(x,v) dv
P(X1X2) dpl dpz = P(x1v1x2v2) dV1 dV2

and rewrite (4.16) and (4.17) in the form which we shall use most:

Tl | [ amar, a“"”f(xz »] o &ivy)

6v1
a¢1z oP (X1V112V2)
=2 BT dxydvy (418)
P d 1}a
—a—t— + (V1 ax + v )P = _1’;1, [?’% . Tx + (1 L d 2)]f(X1V1)f(x2V2)

[ [ dxs avi fexiv) 22 s, 31 + (1o 2)] P

axl

+ ;rf [af 5;1‘71) . 3¢13 P(XszX:Nz) dx;dvs + (1 & 2)] (4.19)
1

Equations (4.18) and (4.19) ha.ve proved far too difficult to solve
A large amount of the effort of theoretical plasma physics has been
devoted to finding approximate schemes for doing so, and some of these
attempts are described in the following chapters. First we shall describe
an even simpler (but still not generally solvable) situation: the limit
g = 0, in which all terms in (4.19) are trivially zero and the right-hand
side of (4.18) vanishes. What is left of (4.18) is then called the Viasov

equation, or sometimes the collisionless Bollz jon,.or correlation-
_less kinetic_equation. The nomenclature is unfortunately far from

standard.

Ezercise. Show that f = f., Maxwell's distribution, and P = P,,,
as given by Eq. (4.12), is a time-independent solution of (4.16) and
(4.17), or equivalently, (4.18) and (4.19). Can you find any others?

Show that P,, can be written as

Py = [ dk; [ dk, eiimitie x’)fm(vl)fm(v2)7((kl)a(kl + ki)
where x(k) =

T 8rtng k2 + k* + kp? (4.20)
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5

.THE VLASOV EQUATION; ELECTRON
PLASMA OSCILLATIONS

?
The limit g — 0 (or equivalently, e, m, 1/n,— 0) as described at the
end of the last chapter simplifies (4.18) and (4.19) considerably. The
system in that limit reduces to the Vlasov equation:

of Lo _mo 912 . of (xy,v1) _
3% + v x  m / dx; dv, ax, J(x2,¥2) v 0 (5.1

Equation (5.1) is deceptively simple-looking. An enormous amount
of effort has been spent on it in the last few years, but the only fully
general and yet tractable solutions which exist are perturbation-theoretic
ones. We shall first describe some of its general properties, and then
investigate these linear solutions in some detail.

Several purposes are served by going into such detail. First,
Eq. (5.1) and its generalizations to include positive-ion motions and
magnetic forces have been the basis of many of the practical studies of
high-temperature plasma physics. Second, the sort of mathematics
that appears when one sets about solving the linearized version of (5.1)
arises over and over again throughout the subject. The least painful
way to introduce this type of calculation (which relies heavily on complex
function theory) is a thorough study of Landau’s solution to the linear-
ized version of (5.1). When read in the light of a clear understanding
- of Landau’s paper, much of what appears superficially complicated in
modern plasma theory becomes actually quite simple.
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5.1 GENERAL PROPERTIES OF VLASOV’'S EQUATION (1)

It is instructive to write the electric field in (5.1) explicitly:
af_;_vl o _eg. ¥ _y

6x1 m av1

(5.2)
where eB(xyt) = no [ x, dv2 f(xz,vz,t) (5.3)
It is clear that (5.2) is simply a statement that the time derivative

of f is zero, computed along a particle trajectory, the equations of which
are

dx(t) V)
5.4)
mo __e (
arTa ﬁ E(x(1),)
In the language of partial differential equations, the orbits (5.4) are the
characteristics of the partial differential equafion (5.2) or (5.1). The

general solution of (5.2), therefore, is any function of the constants of
the motion (which may contain a time dependenge) described by (5.4).
The thing that makes the problem so difficult is that E itself is not
given, but must be self-consistently determined by (5.3) at every instant
in time. The identification of the solution of (5.1) with a function of
constants of the particle motion has not proved an algebraically useful
device, to any great extent.

That (5.1) is time-reversible may readily be seen by noting its invari-
ance under the transformation

Vi— —V;
X;— Xy
t— —t

That it also conserves what we defined as entropy for the molecular gas
in Chap. 1 is readily seen by observing that

at/ f1nf dxy dv = /atdxldv1+f In f fdxldvl
= V(—-vr—a‘t-}-iE af)dxldvl
1

f L
+ Vlnf(-—vl-.&-;+EE avl)dx,dvh

where we have performed integrations by parts and assumed that f |
obeys penodlc boundary conditions over some arbitrarily large but
_finite volume in (xl,vl) space, which we have called V. If the positive
background were allowed to move also, one could show that (5.1) con-
serves energy and momentum, as well as particle number.
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. We may show that if f > 0 initially, all x,, vy, it stays > 0 for all
~ time. For if f were initially >0 everywhere in the x;, v, space and
went negative at some time ¢, at some particular point x, v, the following
conditions would have to apply at this point:

(@ -zl; <0 \
® ¥
(o) éa{ = |

That these are manifestly inconsistent can be seen from (5.2).
So much for the general properties of Vlasov’s equation. We turn
now to Landau’s perturbation-theoretic solution of it.

5.2 LANDAU'S SOLUTION (2)

Observe first that any f(x;,v1,) = fo(v) only is a solution of (5.1)
for which -

[ 1o(@) %‘;—‘1’ dvsdxs = 0

fo ddes fot have to be a Maxwell distribution, in keeping with the com-
plete reversibility of (5.1). The electron number density, noffo(v) dv,
it is well to bear in mind, must be balanced by the ‘“uniform, immobile,
positive background”’ we have been assuming in these calculations. This
point, while not apparent from (5.1), has its mathematical origin in the
fact that the limit N — o, V' — « has to be performed in such a way
that the [fo(v2)(0¢12/9%1) dva dx, remains finite, otherwise. This requires
a special shape of the surface at infinity, which is clearly something
we should like to avoid on physical grounds. A neutralizing positive
background removes the restriction, since there 7s no net ‘“‘charge at
infinity” contributing to the electric field. This positive background
contributed nothing of significance to the Hamiltonian, so we'did not
bother to carry it along formally. It should be stressed that the formal-
ism could be developed, treating the protons on an equal footing with the
electrons. Some general results for multicomponent systems are col-
lected in later sections.

Landau’s approach was to study spatially varying perturbations on
& uniform equilibrium, using (5.1), assuming

f(xhvlit) = fo(vl) + f(l)(xlyvht) (5-5)

keeping only first-order terms in f®, The resulting equation for f¥
is linear, and can be solved by a combination of Fourier and Laplace
analysis.



