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The particle—wave interaction to arbitrary order in perturbation theory is investigated. One finds
that to every order the ensemble average distribution function obeys a diffusion equation. The dif-
fusion constant specifies how the energy and momentum of particles change in time. By conservation
of energy and momentum between waves and particles, the growth or damping rates of waves to any
order can be determined. The growth rates for nonlinear instabilities and the damping rates for non-
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linear Landau damping are explicitly calculated.

I. INTRODUCTION

Collisionless plasmas, both in space and in the
laboratory, are rarely in thermal equilibrium. Gen-
erally, the plasma coexists with a spectrum of tur-
bulent waves. The time evolution of a particle
distribution funetion is then governed by the manner
in which the individual particles interact with these
turbulent waves. Clearly, this interaction is in some
way responsible for anomalous diffusion and tur-
bulent heating of laboratory plasmas, and for sto-
chastic acceleration of high-energy particles in as-
trophysical plasmas.

The simplest kinetic equation for the distribution
function f(v, £) in the presence of turbulent waves is
the quasilinear diffusion equation.’”® This can be
derived by using the Fokker-Planck equation. Here,
one assumes the turbulence is sufficiently weak so
that a particle orbit differs only slightly from a
straight-line orbit. This deviation is then expressed
as a power series in the turbulent field strength. The
first two terms lead to the familiar quasilinear dif-
fusion equation.

We will show that to any order in perturbation
theory, the Fokker-Planck equation reduces to a
diffusion equation

o _ 98 .n5.9,
at v = ov @

A method of caleulating D to any order will be
derived. The diffusion constant to fourth order in

! W. E. Drummond and D. Pines, Ann. Phys. (N.Y.) 28,
478 (1964).

2 A. A, Vedenov, E. P. Velekov, and R. Z. Sagdeev, Nucl.
Fusion Suppl. Pt. 2, 465 (1962).

3 D. B. Chang, Phys. Fluids 7, 1980 (1964).

4+ P. A. Stwrrock, Phys. Rev. 141, 186 (1966).
( 925 é) Bernstein and F. Englemann, Phys. Fluids 9, 937
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turbulent field strength will be explicitly caleulated
for a variety of turbulent spectra.

Once D is calculated one can determine not only
how particle energy changes with time, but also how
wave energy changes. For example, we will see that
diffusion to fourth order may be interpreted as an
interaction of two waves with frequency and wave-
number (v, k), (o', k') with resonant particles whose
velocity is such that

k£k)v—(wzxo) =0 @)

The dynamics of this interaction may be such
that net energy is lost by the waves. If this is the
case, the process is called nonlinear Landau damp-
ing. On the other hand, the dynamics may be such
that the waves gain energy; then, we have a non-
linear instability. The instability may be such that
both waves grow. In this case the instability is often
called explosive. In the other type of two-wave in-
stability, one wave may grow while the other damps,
in which case the growth is much slower. In any of
these cases, the growth or damping rates may be
calculated in a very simple way from the fourth-
order velocity space diffusion constant. We shall
present calculations of damping rates for nonlinear
Landau damping and of growth rates for nonlinear
instabilities.

Using a Hamiltonian formalism, we will show how
growth rates may be calculated to any order in
perturbation theory in terms of the appropriate
velocity space diffusion constants. Finally, we will
show how diffusion to higher orders provides a means
by which a plasma can tap “free energy’’® which is
not available to it in the linear theory.

¢ C. S. Gardner, Phys. Fluids 6, 839 (1963).
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II. REDUCTION OF THE FOKKER-PLANCK
EQUATION TO A DIFFUSION EQUATION

In any turbulent plasma one assumes there are
random forces on the individual particles. If the
autocorrelation time of the stochastic acceleration
is small compared with the time scale on which
the ensemble average distribution function f(v, f)
changes, the equation for f(v, t) is a Fokker—Planck

equation,”®
6f + v of 1 8 (A, Av)f a gAv @)
at 0x 2 dv; 9y, At v,

If we assume that the acceleration comes from a
random force field dependent upon instantaneous
particle position and velocity, the Langevin equation
becomes

d’x _dv

B ar = Fx,v,1).

4)
For the turbulent plasmas which we will be dis-
cussing, F represents the random electric and mag-
netic fields in the turbulent plasma.

Here we will deal with cases in which the tur-
bulence is sufficiently weak that the orbit of a
particle differs little from an unperturbed orbit.
That is, the deviation from an unperturbed orbit,
Ax, Av during the autocorrelation time of F(f)
must be small compared with the scale on which F
fluctuates in x and v. We will see that this means
that Ax must be small compared with a typical
wavelength of the random fields.

We will now examine the condition under which
the Fokker-Planck equation reduces to a diffusion
equation: ‘

_ 9 3

0y, * Gvi

f il A ®)
to every order in orbit perturbation theory. As will
become apparent, this condition depends on the
details of the orbit of the particle in six-dimensional
phase space under the random acceleration F.

We will determine a condition for Eq. (5) to
apply by comparing the acceleration which a particle
feels as a function of time to the acceleration which
it would feel if it moved along a straight-line orbit.
If at time ¢ = 0, a particle’s position is (x, v), its
acceleration as a function of time will be denoted
a(t; x, v). The diffusion tensor and dynamieal friction
of Eq. (3) may be written as

78. Chandra,sekhar, Rev. Mod. Phys. 15, 1 (1943).
¢ M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys.
17, 323 (1945). ’
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(A, (Av; Avy) 1
2At 2 At

At At

[ an [ dnatas x, vatt; x, v)
0 0

= [ttt x, mae, %, ) ar

+ [ (s x, v, x, v) df]

= 3[D:; + D, (62)
and
@l Mm@

Since the tensor indices serve only as indices of sum-
mation in Eq. (3), the first term on the right can be
rewritten as (9%/0v,9v;) D;;f.

The acceleration which this particle would feel if it
moved along an unperturbed trajectory is simply
F(x - vt, v, t). The functions a and F can be related
to each other as follows:

Fx +vt,v, 1) =alt;x + 0), v+ ¢@)]. (7

For any time ¢, X’ = x 4+ 6and v = v + ¢ are
simply the initial positions a particle must have if
it is to be at (x + vi, v) at time ¢£. The functions
6 and ¢ are assumed small compared to the scale
length on which F and a fluctuate. Thus, the right-
hand side of Eq. (7) can be expanded to give

Fx+ vi, v, = a({;x, v) + e(t)-a% a(t, x, v)

+ 4= al, x, V)

+ Ofla(ax)}’, a(av)’} + (8)

We can now write 8(t), ¢(f) in terms of Ax(t; X/, V')
and Av(f; x/, v'). These latter quantities are the
changes from the unperturbed values of position
and velocity during a time ¢ of a particle which
began at x’, v'. Thus,

0(t) = (v — v))t — Ax(¢; x7, V'),
() = —Av(t, ¥/, v).

The above result may easily be visualized in two-
dimensional phase space as demonstrated in Fig.
1. Here the coordinates of the various points are

= (x, V), B =[x+ AX(t; X, V), v+ Av(t; X, v)},
C=x+vwvv)=x+vi+ &xt;x,v), v +
Av’(t: x/, v’)]’ D = (X', v) = (X + 6, v+ ‘b); E =
(x' + v't, v). The line AD represents the phase

(9)
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space vector (0, ¥), and the line EC represents the
phase space vector [Ax(¢, X/, v), Av(t, X', v/)]. Now,
in Eq. (9), Ax and Av can also be expanded exactly as
was a. The result is

Ax(t; X', v) = Ax(t; x, V) + --- O(Ax)?, (Av)®
Av(t; x/, V) = Av(t;x, v) + -+ O(A%)?, (av)®,
(10)

Inserting Eqgs. (9) and (10) in Eq. (8), one obtains
Fx+v,v,t)=a+ (v— v')t-ba;a

9

J
- Ax-axa— Av-ava+ ey

(11)

where the arguments of the variables on the right

f Y R+ vi, v, ) dt

THEORY 2711

X

F1e. 1. Orbits in two-dimensional phase space.
are now understood to be (¢; x, v). Ensemble averag-

ing each side of Eq. (11) and integrating over ¢ from
0 to At yields

av

’ At
= (Av) — j; dt <aax-(Ax a) + (%-(Av a) — agai-Ax - a~a— Av — (v — v')t-a% a>- (12)

We will rewrite the third and fourth terms in the
integral in terms of the Jacobian of the transforma-
tion® from (x, v) to (x + vt + Ax, v - Av) gen-
erated by the stochastic acceleration F. By looking
at the determinant form of the Jacobian, it is clear
that

149, 9
J =1+ —Ax + oAV + @, (13)

where @ has products of two or more terms such as

d(Ax, Av)

a(x, v = O[(Ax)z: (Av)z]'

Thus, only keeping terms in Eq. (12) which are
linear in Atf, we have

fM (F(x + vt, v, §) dt)

= (Av) — %-</;M Axadt>

:v-< 0“ Ava dt> + OM(a(J — D)Ydi. (14)

Rewriting v in terms of the time integral of a and
assuming the ensemble averaged quantities on the
right have no spacial dependence, we obtain (in

¢ H. Goldstein, Classical Mechanics (Addison-Wesley
PuSiigMng Company, Inc., Reading, Massachusetts, 1950},
p- .

tensor notation)

At

(Fix + vt,v, )

4]

= {Av;) — 5%: j;m dt /: dr{a,(7; X, V)a({; x, V)

At
+ [ (@ = D). (15)
0
Thus we see that if the ensemble average accelera~
tion along the particle’s unperturbed orbit is zero,
and if J = 1, the two terms on the right-hand side
of Eq. (3) may be combined to the form
o L, _ 0, o

at T Vax T B, T 3w, (16)

where D,; is defined by Eq. (6a).

The Jacobian will be equal to one if the trans-
formation from x, vtox + vi + Az, v + Avis a
contact transformation. Thus if F is any random
electric or magnetic field whose average value is
zero, then J will be unity so Eq. (3) reduces to
Eq. (16) or (6). This diffusion equation has been
derived previously using a quantum-mechanical
formulation,'® and also has been derived classically
to lowest order in orbit perturbation theory.*

10V, N. Tsytovich, Usp. Fiz. Nauk 89, 89 (1966) [Sov.
Phys.—Usp. 9, 370 (1966)].



2712

Finally, let us remark that D,; as defined in
Eq. (6a) is not necessarily symmetric. To deter-
mine its symmetry properties, one must actually
calculate them. In every case to be studied here,
it will turn out that D,; is indeed symmetric.

III. PARTICLE DIFFUSION TO ALL ORDERS

We will now restrict ourselves to the case of a
turbulent, infinite homogeneous plasma where the
stochastic acceleration is produced by electric fields
of the form

mdv
e di
= ; Z E(k) exp [i(k-x — wt + ¢)]. (17)

Eix, o) =

In Eq. (3.1), ¢« is the random phase of the kth wave
while o = w(k) and is determined by the dispersion
equation.

In what follows, » will be assumed pure real;
the case of complex w will be treated in a later section.

We shall adopt a convention in which the wave
vector k will be defined as being in the direction of
the wave momentum. That is, k is in the direction
of the wave phase velocity for positive energy waves,
and is directed opposite to the phase velocity for
negative energy waves. Therefore w(k) in this con-
vention is numerically positive for positive energy
waves and is negative for negative energy waves.
We will return in a later section to discuss how
the wave energy is determined.

In accordance with this convention, the k sum-
mation in (17) is limited to k in the direction of wave
momentum. Since the electric field in Eq. (17) must
be real, to every complex term in Eq. (17), we must
add a complex conjugate. These complex conjugate
terms are included by introducing the second sum-
mation Y, which sums over plus and minus k.

We shall now use the Fokker-Planck equation to
find 9f(v, t)/0t for the ease in which the ensemble is
specified by the random phases ¢i. The validity of
the Fokker-Planck equation in this particular prob-
lem has been discussed much more fully elsewhere.*
However, if the Fokker-Planck equation is valid,
it was shown in the previous section that it reduces
to a diffusion equation since (E(x + vi, §)) = 0
and J = 1. Thus, the problem of finding the Fokker—
Planck coefficients reduces to the problem of finding
the diffusion tensor. In order to simplify both the
notation and the mathematics, we will assume the

11'W. M. Manheimer, Ph.D. thesis, Massachusetts In-
stitute of Technology (1967).
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problem to be one dimensional (i.e., E, k, v, and
x will all be scalars). The generalization to three
dimensions is straightforward and will be discussed
later.

To find the diffusion constant, we must solve
sense in some Newton’s equation for the stochastic
acceleration

dv

o= FO,

(18)
where F(t) is determined from Eq. (17). Thus, once
F(t) is known, it becomes a simple matter® to write
the diffusion constant

D=3 [ &G+ or@ya, (9
where the integrand is assumed independent of t.

In this case F(f) is given as a force field which is a
function of space and time; thus, F(t) = Flz(f), t].
The problem is that, initially, F(¢) is not known
since it depends on the, as yet unknown, orbit of
the particle. In order to find F(t), some approxima-
tion scheme for finding the particle orbit must be
used. In this paper the approximation scheme will
be orbit perturbation theory.

We will assume the turbulence is sufficiently
weak so that the particle does not deviate very
much from its straight-line orbit () = x + o, and
that these deviations can be expanded in powers
of the turbulent electric field strength, F = F, -+
F,+ F, 4+ --- where F,is of order E". For instance,
the equation for F, is
dvy _
dt

The acceleration the particle feels from each wave
is at the Doppler-shifted frequency kv — w. To
solve for v; and z,, one simply integrates from ¢ = 0
to t = AL Doing so one finds that z;, and »; also
have Fourier components at kv — w and are propor-
tional to the first power of E. However, we should
note that v, and z, also have Fourier components at
zero frequency arising from the contribution at the
lower limit of integration ¢ = 0. Using the corrected
orbit z(f) = x 4+ vt + z,(¢) on the right-hand side,
Eq. (17) can be iterated further, yielding

F, = 2 E(k) exp [i(ke + ¢4)] exp (kv — w)f].

k.p

F, = %’%‘ = kZ?—E%—) (ih'z,(1)]
-exp [ik'z + ¢)] exp [i(k'y — &Ht],  (20)
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Inserting z,(¢) above yields a contribution to F, at
frequency (kK &+ £')» — (0w & ) as well as a con-
tribution at frequency k'v — o'. In either case F,
is of second power in E and has products of ex-

2713

ponentials of two random phases, ¢, and ¢,.. Thus,
instead of simply writing F = F, 4+ F, 4+ F; +

- 4+ F, + --- , we may generalize to write
F as

F(t) = 22 Bk, v, ) exp [k — )8 + 2 Bulk, k', v, 1) exp {3[(k + & — (@ + ]t} + -

+k2

vrerknp

B, (k.

where the term containing B, will have contributions
from F,, F,.,, --- . The sumamations over p are
now summations over permutations of the signs of
all k;’s. The contribution from F, to B, will be
denoted A, (k, --- ka, v)E(k,) - -- E(k,) exp [i(¢: +
<<+ 4+ @¢,)]. B, is written as a funection of time since
terms secular in time can arise in the perturbation
expansion. Thus, we have a scheme for ordering
F(t) both in powers of the electric field strength
and in frequency. When F(f), given by Eq. (21), is
inserted in Eq. (19), the diffusion constant will
be similarly ordered in powers of E.

Equation (19) shows that D is the spectral density
of the force field evaluated at zero frequency. The
frequencies of the oscillating acceleration have been

1 ©
Dzﬂ = '2_ . dT

k1,20 kan,p

"'kmv) t) exp {i[(kl_i_ e +kn>v~(wl+ e +wﬂ)]t} + B

2y

given in Eq. (21). Thus, diffusion can occur when-
ever one of the following criterion is satisfied:

w, — kw =0,
(W, 2= wy) — (ky & koo = 0,
: (22)
(£ s Fw) Ky = £k =0,

D,, will be defined as the diffusion coefficient de-
seribed by diffusion at the nth resonance in Eq. (22).
Thus, according to Eq. (21), the dominant con-
tribution to D,, is given by

2 A e ko) exp (il + o S R~ (00 F e+ )]

-E(ky) -+« E(kzn) exp [¢(¢, + I S-S 1 V: W (RN )

-exp {t[(knsr +

Using the fact that the wave phases are random,'?

n!
DZn - —é—‘kl Z

AR 798 2

lAn(kl ot km 1))12

NEERDP - B
2w 6[("31 + -+ kn)v - (‘*’1 + - +°~’n)]-

We emphasize that D,, is obtained by iterating the
equation of motion only n times to obtain A, and
squaring. Thus, terms such as (v,,..7,)/24¢ do not
contribute to D,,.

If a lower-order resonance coincides in velocity
with the nth resonance, then diffusion to lower orders

(24)

12 In deriving Eq. (24) from Eq. (23), we should note
that the integral over r is actually from zero to At so that
any secular contribution to A4, WilY give a term going as Af?,
Thus we keep only those terms with no secular behavior.

s ko = (Wawr + 000 F wza)1(E + T)}> (23)

will be dominant, and it can be shown that Eq. (24)
is not valid."* In deriving Eq. (24) that form of 4,
which is symmetric with respect to interchanging
any pair of £’s is used. Thus, the n! simply accounts
for all possible permutations of collapsing the 2n-
fold summation over % into an n-fold summation.
The delta function in Eq. (24) arises from taking
the 7 integral in Eq. (23) from — o to + .

When the turbulent field is given by Eq. (17), A,
is obtained by iterating the equation of motion »
times, and in each iteration, keeping only those
terms whose frequency of osecillation increases by
kw — w; over the previous iteration. Thus, in
taking each time integral involved in the iteration,
we need keep only contributions from the upper
limit,.

Let us note that this proof is not restricted to
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cases for which F(f) is derived from Eq. (17). For example, the electric field may be given by
E(z, ) = 2 E(k) exp [ilhie — ot + 6] + 3 Eolkik)
1.9 k

1,kz.p

*€xp {’L[(kl + kz)x - (‘-’-’1 + wz)t + b, + ¢kn]} + -+ Z En(kl e k,.)

-exp {i[(ky + -+ + EJz — (@ +

where the ¢,’s are random. Clearly, for the above
electric fields, as long as E, is of nth order in E,, the
particle orbit may be iterated as before, and the
expansion for F(t) will be exactly as given in Eq.
(21), except that the individual B,’s will now be
more complicated because of the additional terms
in Eq. (25). For instance,

o =%+ 3 B E)

-exp {¢[(k + Kz + ¢ + du1}
-exp {i[(k + kW — (@ + )]t},  (26)

where dv,/dt is given by Eq. (20). Additional terms
such as the second term on the right of Eq. (26) are
very important in nonlinear media, the reason being
that any spectrum of turbulent waves given by Eq.
(17) which exist in it initially will generate other
electric fields at sum and difference frequencies and
wavenumbers.

Thus, we have a method of calculating D to any
order in perturbation theory. D, can be shown to
be the ordinary quasilinear diffusion coefficient.®*
To further illustrate the method of calculation, let
us obtain D, in the case where F(f) is given by Eq.
(17). Integrating dv./dt twice in time and keeping
only the upper limit of integration each time gives
a contribution to z,(f) [called z{(?)].

eEk) exp [i(kx + ¢:)]
(kv — w)®

~exp [t(kv — w)t].
Inserting Eq. (27) into Eq. (20) gives

() = — 2

k.p m

27)

A 0 = —3 (2) o0 b6 + 1]

% k
'((iw o T = w)z) @8)
and, thus, from Eq. (24),
. 2‘ll'e4 2 2
D= 3 T (E® B®)
% Y
'((kv —oF T — w')z)

Ok + B — (@ 4+ ).

(29)

sorikn,p

o+ g e, (29)

In Eq. (29) the summation over p means that the
wave energies and momenta (w, k) in the delta
function can either add or subtract. We will calculate
the contribution to D, in the case where they sub-
tract. Denoting it also as D,, we get

D, = > (&)~ ol 1B

()
(kv — )&y — ")
Sk — B — (0w — o)].

In Eq. (30), consistent with the adopted convention,
the summation over &k (without Z,) is a summation
over only those k& vectors in the direction of wave
momentum. Use has also been made of the delta
function'® in rewriting Eq. (30).

We will now look qualitatively at the conditions
under which the preceding analysis is valid. First,
in the integral over r used to calculate D,,, we have
made the replacement

(30)

* Ky 0) P |ERY) - -+ B[

f
POV ICAREES T

kx."'.kn.D
) |E(k1) l2 ct lE(kn) |2 27I' a(an))
where
Ay = [(k1 + - 4 kn)y - (wl + .- +0-’n)]-

Thus, - At must be sufficiently large so that the
upper and lower limits of the  integral may be re-
placed with «. This means that for given v, the
autocorrelation time of the nth-order force field,
defined by

G3))

[ wore+ e
Tee T (F.OF.0)

must be small compared with At If (k, + --- +
kv — (w + ++- w,) = 0 for some set of waves in

13 Note that & = &’ for all v is a root of the delta function
in Eq. (30). However, the contribution goes to zero as (k — k)2
so the contribution vanishes.

(32)
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the spectrum, then 7

{(k, + Ak, + ko 4+ -+ + kv — [0k, + AK)
Tt ol

where Ak, is the spectral width of |E(k,)|*. Clearly,
™ depends not only on the spectral width, but
also on the velocity v and the dispersion relation
between w and k. Estimations of = for various
dispersion relations have appeared elsewhere."*
Thus, having determined that = is a lower limit
for At, we may inquire about upper limits. Upper
limits for At [or in effect 7] appear in two ways.
First of all, the replacement of the Kolmogoroff
equation with a Fokker-Planck equation is valid
only if f(») does not change very much in one auto-

correlation time, or if

is given roughly by

(33)

= m,

D,,rl? L (v1)° (34)

for all n. In Eq. (34), vy measures the interval in
velocity space over which f changes significantly;
vy is typically a thermal velocity.

Secondly, if the theory in this section is to be
valid, orbit perturbation theory must be valid for
the time Af. To get F,, we used the orbit generated
byF = (F, + -++ 4+ F,_,), but not F, itself because
F, is of lesser order than the terms we retain. How-
ever, a portion of F,, A, ~ nl A E(k,) --- E(k,)
has almost zero frequency because for some waves in
the speetrum

(@ - Fw)+ G+ - F k=0

Therefore, A, may have a large effect on the particle
orbit, because the particle sees an almost constant
force. During the time 7%, A’ will cause an rms

deviation in the particle orbit of

1 A7 (n)2
iAnTac .

(35)

(36)

This deviation must be small compared with the
smallest wavelength in A/, or otherwise, we will
have a significant error in computing F,. Thus,

A et K %

To first order, A’ = eE..,/m and Eq. (37) becomes

om \* _
Tac << (eErmsk) = Tiry

37)

(38)

where 7., is the trapping time of a particle in a wave
of amplitude E..., and wavenumber k. To nth order
we will define the time 2/[(A47),..k]! as the nth-order
trapping time 7{7’. Then a necessary condition for

2715

the validity of the analysis in this section is
Toe K1Y
as well as Eq. (34).

The analysis in this section has been carried out
for a one-dimensional plasma. The one-dimensional
theory 1s easily generalized to obtain the three-
dimensional theory. The diffusion constant becomes
a diffusion tensor D;; and D,, is nonzero in regions
of velocity space defined by (k, &= -+ £ k,)'v —
(@y 4+ -+ 4+ w,) = 0. To calculate D in three
dimensions from D in one dimension, simply replace
A, by A, in Eq. (23). Clearly, D,, as defined in Eq.
(20) and (23) becomes a symmetric tensor and can
be written D,, = (Av, Av,)/(2 Af). For instance,
had D, been calculated in three dimensions, Eq. (30)
would have been

Dy, = X A(2)' (Be0-Ba

(b — &)k — k);
(kv — )E v — )]

Ok —K) v — (0 — )] (40)

Finally, let us say a few words about the size of the
various contributions to D, and where they con-
tribute in velocity space. The case n = 1 is the
well-known quasilinear diffusion constant and has
been widely discussed in the literature.'** Unfor-
tunately, there are no precise rules by which one can
in general relate the size of D,, to the size of D,
For instance, writing the ratio in the following form:

(Dedes _ [Z |E(k) IT

(Dz) max nmv; 6) (41)

it can be shown that 8 has widely disparite values,
depending on the specific problem at hand. If Eq.
(17) represents plasma waves at frequency o & o,
then for n=2 Eq. (30) shows that

vr \
generally a very small number. If the driven field
E,(k, k') isincluded in the problem, it has been shown
that for a one-dimensional plasma 8 ~ (kvp/w,).°
In three dimensions we will show later that g ~
(kvy/w,).* Thus, the driven field almost cancels
dvy/dt. On the other hand, if the ion dynamics are

~ (6] > (“ (2 ')
( pd 3

14 A, B. MacMahon and W, E. Drummond, Phyé. Fluids
10, 1714 (1967).

(39)
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It is also very difficult to draw any general con-
clusions about the regions in velocity space where
the various D,, make a contribution. The location
of these regions depends on the detailed nature of the
dispersion relation of the turbulent spectrum as well
as the spectral density. It has been shown in three
dimensions that for a spectrum of waves whose phase
velocities lie on a closed surface surrounding the
origin in velocity space, D, ¥ 0 everywhere outside
this surface.®'® In fourth order, if the beat velocity
[(w — &)/|k — k|*](k — k') instead of the phase
velocity lies on a closed surface around the origin,
D, # 0 everywhere outside this surface. Later we
will show that the beat velocities can enclose the
origin even though the wave spectrum may be
quite well columnated.

IV. REVIEW OF WAVE ENERGY AND MOMENTUM

In this section and the next two, the growth rates
of waves to any order in perturbation theory will be
calculated by requiring that momentum and energy
density be conserved between waves and resonant
particles. Before doing so, however, we must look
into how energy and momentum density of waves
are defined. Let us assume that an undamped wave
at frequency w, and wavenumber k;, satisfying the
linear dispersion relation, can be described in terms
of a Hamiltonian density H(p;, Vp;, w:) where p,
is the appropriate field variable at wavenumber k;,
and =, is the canonical momentum density

oL
8p:’
where £ is the associated Lagrangian density and

p: = 9p;/0t. The solution to the canonical equation
of motion is

pi(x, 1) = p; exp [ik:x — w;t + ¢)] = Paem-

The energy density I and momentum density P
associated with the wave are'®

I = ka, (44)
P = kN,, (45)

where Ny is the action density associated with the
wave at k and is given by

2x
Nk = f daﬂ',,
G

(42)

T =

(43)

an; |E(k) I

af

== [w e (k; w)] (46)

Let us now discuss the transformation properties

1 R. Z. Sagdeev and A. A. Galeev, International Center
for ThIeIoretwal Physics, Trieste Paper IC/66/64 (1966),
Chap

1 P, A. Sturrock, in Sirth Lockheed Symposium on MHD,
D. Bershader, Ed. (Stanford University Press, Stanford
California, 1962), p. 47.
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of w, k, N, I, and P as one goes from the laboratory
frame to one moving at velocity v with respect to it.
If primed variables denote the moving frame, the
transformations have been given'® as

Il

o = o — kv,

kK =k,

[

N’ =N, n
P’ = P,

(@ —k-V)N = (‘”———wk—"-)z

From Eqs. (47) it is clear that a negative frequency
refers to a negative energy wave, consistent with the
convention adopted in the last section. In order to
determine whether the wave has negative or positive
energy, one must look at the expression for average
wave energy given by

1) = 5"; [we (K, o)

I’ =

E@[
s 48)

Thus, the sign of the wave energy is given simply
as the sign of the quantity (3/0w)[w € (k, w)].

V. THE ACTION CHANGES OF
INTERACTING MODES
We have seen how particle diffusion is calculated

and in particular how n» waves with wavenumber
k, --- k, interact to diffuse particles with velocity

(2 k;)-v = ,-”;wi'

Now, let us examine how the energy of one of these
n modes changes in such an interaction. The equa-
tions of energy and momentum conservation are

Z i) = f 5 o’ - 9, Dy of Lav,  (490)

k. _ 9 of
Zwl(k,-) = fnomva Dz,, dv

i=1

(49b)

where n, is the average number density, I(k;) is the
energy density associated with the mode at k;, and
D, is that term in Eq. (24) describing the diffusion

from the modes at k,, - - - , k,, or
D.. = 2re(n)’Ak, - - k,VA*k, - - k,v)
@) -+ [Ed)[?
Ok, £ - k) v — (= - o] (50)

In the above we assume that one particular set of
signs relative to k; is chosen in the delta function.
D,, is then the contribution to the diffusion tensor
for that set. In going from Eq. (24) to Eq. (50), we
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have gained an additional factor of 2n!. This ad-
ditional factor occurs because the wave vectors
k, --- k. in Eq. (24) occur in n! different arrange-
ments, and because an interaction with one set of
signs of the k’s is equivalent to an interaction with
all signs negative.

If Egs. (49a) and (49b) were sufficient to determine
the I’s, then the total growth rate of the wave at
k, could be obtained simply by adding up the con-
tributions to Iy, from interactions of a wave at
k, with all possible sets of other waves at k; - - - k,.
The trouble is that in general, Eq. (49) is not suf-
ficient since there are n unknowns and only two
equations. However, for n = 1 or 2, Egs. (49) are
sufficient to determine growth rates. But in the
general case, more information is needed.

Let us assume the resonant particles constitute
only a small fraction of the total number of particles.
Then, we shall postulate that if the resonant particles
are not present, the linear theory of the waves can
be described with a Hamiltonian formalism as dis-
cussed in the last section. If this be the case, it turns
out that Eq. (49) can be solved exactly. This is quite
reasonable, for if a Hamiltonian formalism applies,
the quantitization of the system is straightforward.
Quantum mechanically, the waves become bosons
(for instance, plasmons, photons, or phonons). In
the quantum mechanical interaction of these bosons
with resonant particles, selection rules insure that the
number of bosons change by small integral numbers,
usually plus or minus one. The correspondence
principle guarantees that a similar relation must
hold true in the classical limit. That is, the time
rates of change of the action densities of the various
modes, the classical analog of the occupation num-
bers, must be related by similar selection rules. We
will now sketch a classical proof. Basically, all that
is involved is a proof that the action density of any
system is an adiabatic invariant. For a detailed
discussion the reader is referred to various other
sources.'”"*® Although the proof is somewhat labori-
ous, the final result, Eq. (61), is very simple.

We assume that the n modes and resonant particles
are described by some Hamiltonian density H which
can be expressed as

H = Y Hdp:, Vpi,7)

=1

+ Hpprolwy &=+ £ wn, Ky = -+ £ k)

-+ H,,,(pl * "t Pny Vpl et me LS T 7l',,), (51)

17 G, Schmidt, Physics of High Temperature Plasmas
(Academic Press Inc., New York, 1966), p. 23.
18 Reference 9, p. 288.
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where H, is the Hamiltonian density describing the
mode at k; in the linear picture. Hy,,. is the Hamil-
tonian density of the resonant particles, = n,(p*/2m})
= n,(p}/2m) + n,(pi/2m), where || and L refer to
directions parallel and perpendicular to the vector
k, + -+ % k,, and n, is the number density of
resonant particles where n, < 7. Hy... depends
only on w; & -+ =+ o, k; & --- + Kk, since p, =
m(w, &= - =+ w,)/|k £ -+ £ k| and p, is not
a function of the k’s. H, is the term causing the
interaction between the n modes and resonant parti-
cles, and presumably is small. It is further assumed
that H has no explicit dependence on space or time
and that the frequencies of the modes w, -+ w, are
all independent.

It should be noted that the derivation to follow
can be made to apply to the interaction of the
waves k,, --- , k, with an (» + 1)th wave instead
of the resonant particle.”” The (n -+ 1)th wave must
have a frequency and wavenumber of w; £ -+ &
wa K =& -+ - = k,. This interaction is usually called
resonant wave coupling.

The canonieal equations of motion are

o _ o o _ o
ap,- i ax,- 3(6p.,/6:1:,) 671','

If H,, is deleted from H, the solutions to Eq. (52) are

= p;. (52)

_1i-’.,

pi(x, 1) = Piew‘:

(53)
0; = k;°x — w;t + ¢x;,
for the n waves and
x = x, + (P/m)t (54)

for the resonant particle. They are simply the solu-
tions to the linearized equations of motion. If H,, is
now included, Egs. (563) and (54) are only approxi-
mate solutions. We will assume that the exact solu-
tions have time dependences other than that given
by Eq. (63), but that these other time dependences
are very slow compared with Eq. (53). For instance,
for the n waves we will take

p: = Pi(gn t); Ty = 7".'(0,-, t),

where w(3/36) > 9/4t.

We shall relate the action change of all modes to
the action change of the mode at k,. We wish to
introduce a notation which permits us to take partial
derivatives with respect to w;, 6, with the sums

n
Z @;
i=1

19 P, A. Sturrock, Ann. Phys. (N. Y.) 9, 422 (1960).

(55)

>k, and

]
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held constant. To do so we shall consider «, and
k, dependent variables and @ = &, &= -+ & @, and

K =k, & -+ + k, independent variables. Hence,
let us say
0 = QF o T o F o,
k, =K¥+k, ¥ --- Fk,, (56)
6, =6 F 6, F -+ F 0,

Then, by virtue of Eq. (51) H,,,. can be expressed
as a function of only € and K, and is now independent
of (ws +++ w, ke -+- k,). Thus, 8H,,,./88; = O for
1 # 1.

If p has the form of Eq. (565), the canonical equa-
tions of motion become

OH _ . _ 9p:30: | 9p

ar P = 98,0t T ot (572)
aH K3 oH e = 67r a8, _613
dps < ox; 9(3p./9%;) T T30, ot ot

(57b)

Now, let us consider (0H/d8,)r # 1. Since all 4,
are independent, in differentiating Eq. (51) with
respect to 6,, the only nonzero terms are the first,

the rth, and the last. The result is
T R T £ + o o8
- g}p{ 3’2’ + Z a(ap,/ax,) ag <ap,)
e e 555

oH _aﬂ] . (58)

9 apl)
+ Z a(apl/ax,) 601 (ax 31r1 601

Now, let us make use of the fact that an z de-
pendence appears only through a 6 dependence, or
38/0x = k,(0/060,). Then, the second term on the
left-hand side of Eq. (67b) becomes

I ):
a0, a(api/aei)
and the middle term on the right-hand side of the
second line of Eq. (58) becomes

oH _ &°
3(9p./08,) a6° F&r

Now, let us average Eq. (58) over 4, i.e., integrate
over 0 from O to 2w, making use of the fact that

17 o
'27.-f0 a6 () = o.

AND T. H. DUPREE

This last relation follows from the fact that the
function in the parentheses is assumed periodic in 6.
The left-hand side of Eq. (58) then immediately
averages to zero. The right-hand side can be in-
tegrated by parts over 6, yielding

2T
- g 9 o O,
o=/ do,[ 7. S0+ b 5
a0 i) g
50_11‘_(__‘ pl+P1 7r1):|. (59)

To obtain the above result we have made use of the
canonical equations. Now, one ean make use of the
expressions in Eq. (57) for # and p to obtain

[ a( ap,) G (ap, )
O‘fo do’{_at T30, +ao, at
2362 )
ao,[ at\" 30 +aol at ™ (60)

The factor 36,/98, = = 1 from Eq. (56).
Integrating Eq. (60) over 8 then yields

+

0=N.¥FN, (61)
where
_ 1 9o
N, = 21rf0 a0me Sgr
=L, w BEL

is the action density associated with the wave at k,.
We have considered 6; and { to be independent
variables. Of course, this is not physically possible
since 6; and ¢ are directly related. This independence
of variables is valid when 8 varies much faster than
any other quantity of interest. Thus, it may vary
while other functions of time (i.e., the wave ampli-
tude) are constant. Let us also note that the sign
in Eq. (61) is determined by the sign of 46y,/d6.,
which is determined by (56).

We have seen that the changes in action density
are all related by (61). Also, we recall I, = w,N,
and P,, = k,;N;. These relations have been derived
before when waves interact with other waves, but
not for waves interacting with particles.'” They are
equivalent to the Manley~Rowe relations® applied
to an infinite system which is not in a steady state.

It should be pointed out that once we restriet
ourselves to examining the wave at k, and k,, it
does not make any difference what the waves couple
to. If a wave at (w, + --- w, k; &+ --- &+ k,) were

2 P, Penfield, Frequency Power Formulas (MIT Press,
Cambridge, Massachusetts, 1962).



WEAK TURBULENCE THEORY

a normal mode of the system, the waves k;, --- , k,
could couple to it, and the change in action density
of the wave at k; would also be related to that at
k, by Eq. (61).

VI. GROWTH RATES TO ALL ORDERS

In the last section we have derived ‘‘selection
rules” which must be obeyed in a wave-particle
interaction. For instance, in the interaction of
waves k, k,, and k, with particles such that (k, +
k; — ky)v — (0 + @, — w;) = 0, a plasmon is
destroyed at w, and w, while one is created at ws or
vice versa. The only difference in the quantum-
mechanical case is that the N’s do not change by
integral number. Thus, plasmons are created or
destroyed according to the sign chosen for the fre-
quency.

Using the selection rules which we have deter-
mined, we will now obtain the energy change in
the mode k, from the elementary interaction with
the modes at k,, --- , k,. The equations for conser-
vation of energy and momentum density (49) now
reduce to

6

(wl T = OJ,,)Nl f 2 nomv Dg,, a f dV

(63)
&y &= .- & kn)Nl = f’nomv D2n fdv, (64)

where D,, is the diffusion tensor containing the
waves k;, --+ , k, given by Eq. (50). The signs of
k, ---, k, and «,, - -+ , w, which occur in D, are
determined by the signs chosen in the summation
(k, & --- &+ k,) as in Eq. (50).

One obvious result of Eq. (64) is that momentum
given to particles in the interaction must be in the
direction parallel to the vector k, & .-+ + kK,
This has important implications for the diffusion
tensor. Since D,, was shown to be a symmetric
tensor, it must, therefore, be a dyad in the vector
(k;, = --- = k,). From Eq. (50) we may write
A = K |A| where K = k; «+ --- =+ k,. Then, Eq.
(50) may be written as

D = 2(n)’RK |A, --- k,, V)|
a \E®)|® -+ |E(k,)* 8(Ku — 9), (65)
where @ = (w, & --+ = w,) and where u is the

velocity component in the direction of K, ie,u =
K-v. Then, either Eq. (63 or 64) can be 1ntegrated
by parts to give

'wl:t o
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_ 2mnem [EE&)|” -+ - [EG)[ , e
= deJ. |K|2 (n)
*af
.'A(kl -k K » V1) U |yma/x’ (66)

where v, is the velomty perpendicular to u, lie.,
v — Ru. Equation (66) is valid as long as
+ o, and k; &= --- + k, do not both
equal zero. If they do, these modes can exchange
energy among themselves via resonant mode cou-
pling to order 2n~2. The growth rate for this latter
process will then probably dominate the growth
rate from a wave—-particle interaction to order 2n.

For instance, suppose that df/du |g,x > 0; then,
the particles will give energy to the waves. Further-
more, suppose that the signs in front of w;, -+ v,
are positive and that the signs in front of wm.; - - - @,
are negative. Then, if

Zwi— E wi>0;

i=1 f=m+1

vV, =

waves 1 through m are created and waves m + 1
through n are destroyed.

In order to obtain the total growth rate for a
wave k;, one must add up all possible interactions
in which this wave is involved. For instance, to
fourth order

v, 8mngme [EE&)[?

109 = o) = BOF 22 ] =% —wp
| w228 v
3 L
MU | (w-w)/k-k) + (& — k). (67)

Once I(k) is expressed in terms of |E(k)|?, Eq. (67)
is an expression for the growth rate to fourth order
in terms of the appropriate diffusion tensor. That is,

L2 1y 0,1 VBB _ e,

4 6

By using the transformations given in Sec. IV
and the fact that D,, is independent of the reference
frame, it is not difficult to verify that the growth
rate v, defined by 9 |E(k)|*/dt = 2y |E(k)|? is also
frame independent.

VII. NONRESONANT DIFFUSION

The theory of diffusion to any order in perturba-
tion theory has been developed under the assump-
tion that the wave frequencies are real. However, in
the last few sections we have seen that to order 2n
the waves do indeed grow or damp in order that
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total energy of waves and resonant particles be
conserved. To order 2n, the growth rate v is pro-
portional to the electric field strength to the 2n-2
power.

If the waves are growing, it is well known®'*** that
the resonant diffusion theory must be modified by
adding to the diffusion constant the so-called non-
resonant diffusion constant given by

D,, = Z IE(k)l v kk

k,p m (""

k v)z ‘k\2 (68)
Equation (68) is valid for particle velocities such
that (@ — k-v)® 3> 4°. If the growth rate propor-
tional to |E(k)|** is inserted, Eq. (68) will be a
correction to the 2nth-order resonant diffusion con-
stant which must be included in the theory.

VIII. APPLICATIONS TO NONLINEAR
LANDAU DAMPING

To illustrate the procedure, we now calculate
the diffusion constant and damping rates of electron
plasma oscillations to fourth order. The fourth-order
diffusion tensor is given by

_ [T EOF( + 1)
D —f_m 5 dr, (69)

where F,(t) is the particle acceleration to second
order in the electric field and at frequency
(w — o) — (& — k')-v. There are two contribu-
tions to F,(f); the second iteration of the first term
of Eq. (25) which has been calculated in Sec. III,
and the first iteration of the second term in Eq. (25).
Hence, we must calculate E(k, k') as defined in
Eq. (25). Using a well-known iteration procedure,’
one can obtain

— (& /m")wp(k — k')

e ? —_— —
mEE ) = e e — ) [k — K
dv
E-H)v = (@—a) — %
3 1

of
e R(—tNL
.avk'-v——w'—'irSE( k") v’

where ¢ is the dielectric constant of the plasma, i.e.,

I/ g,

—_— —

(70)

ek, 0) = 1+ fk E (71)

Symmetrizing Eq. (70) with respect to exchanging
k and —k’ and combining with Eq. (26) yields

2 R, E. Aamodt and W. E. Drummond, Phys. Fluids 9,
1816 (1964).

22 B, B. Kadomtsev, Plasma Turbulence (Academic Press
Inc.,, New York, 1964), p. 15.
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= 2165 < B [E)
(e — k(& — K-k (k- v)

Ok —K)v— (0 — )] (72)

after some algebra. To obtain Eq. (72), one must
expand denominators such as (w — k-v)™" and keep
only the lowest nonvanishing terms. Also, £ is a
unit vector in the direction of k and the vector k,
is the component of k which is perpendicular to
(k — k). Note that the contribution to D, from
waves at k and k’ is zero if k and k' are cither
parallel or perpendicular. In a one-dimensional
problem in which all wave vectors are parallel, it
has been shown' that D, is smaller than Eq. (72)
roughly by a factor of (kvy/w,)>

From Eq. (72) one can immediately write the
damping rate from Eq. (67). The result is

. Ek)|? 2 e n, |?
fo= 200 pap 3 B, mgo))
Y o, 20 @3

(w~w’}/Ik~k’|

where Eq. (67) has been integrated over perpen-
dicular velocities assuming f(v) is isotropic. Note
that if 9f(u)/0% |(u—0)/1x-x is positive, net energy
is gained instead of lost by the wave spectrum.
That is, the plasmon which is created has more
energy than the plasmon which is destroyed. Thus,
the system will be nonlinearly unstable. However,
the net energy gain will be small since the total
number of plasmons is conserved. Thus, fourth-
order diffusion provides a means by which the
plasma can tap free energy® which is available in
the form of a positive slope around

u = (0 — «)/[k — K|

This energy is not necessarily available in the linear
theory. In fact, diffusion to order 2n can provide a
means by which the plasma can tap free energy in
the form of a positive slope anywhere on the distri-
bution function. Thus, it would appear that the
only distribution function which cannot couple
energy to the waves is a monotonically decreasing
function of energy.

Let us now consider a two-dimensional plasma
and look for those regions of velocity space for
which D, £ 0 if the wave spectrum is well colum-
nated around wave vector k, on the axis, or around
phase velocity
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Frc. 2. Phase velocities of waves in spectrum.

Rl
- ‘k0l2 @, 0

The regions of nonzero wave spectrum are shown
as the shaded regions of phase velocity space in
Fig. 2, or as the shaded region of k space in Fig. 3.
Let us now look for the values which the beat phase
velocities

0

0w — o

N — 38,2 Ik'2 — ‘_ki
lk—_T'li(k — k) = {r k—KPo
can assume. If k and k' are both along the z axis,
then the beat velocity ranges from 3vr(knia v2/w,) to
30p(kmax V7/w,). The beat phase velocity can also
be perpendicular to the z axis if k — k' is perpen-
dicular to k, and if k = k'. It is also easy to see
that if k — X’ is perpendicular to k,, the magnitudes
of k and k’ can be made to approach each other, so
the beat velocity ecan approach zero in the y direc-
tion. The beat velocity can also point in the negative
z direction if k, < k. while |k|* > [k’|>. Therefore,
the beat phase velocity can take on values in the
shaded region of Fig. 4. Since this region is seen to
enclose the origin in velocity space, there can be
fourth-order diffusion anywhere in velocity space
even though the wave spectrum is well columnated
along k.

(k — k')

IX. APPLICATION TO NONLINEAR INSTABILITIES

In the previous section we have seen how a
plasma can be nonlinearly unstable if

8f/0u |(w—wrrse-rry > 0.

However, the growth rate is very small since, for

ko
Kx

F1a. 3. Wavenumbers of waves in spectrum.

ky
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F16. 4. Beat phase velocities.

every plasmon which is created, one is also
destroyed. If the dynamics of the coupling is such
that both plasmons are either created or destroyed,
the instability may proceed much more quickly.
In one simple case we will show that if f were to
remain constant, the total wave energy may be-
come infinite in a finite time. Such nonlinear insta-
bilities have been studied where the coupling mech-
anism is the resonant interaction between three
waves of negative and positive energy.”'** Recently,
it has been shown that two waves can interact
with particles to give such a nonlinear instability.*
One way in which the coupling to particle differs
from the coupling to waves is that the energies of
the coupling waves can all be of the same sign.

We will demonstrate these concepts by looking
at a very simple nonlinear instability. Consider a
one-dimensional plasma with three components: a
neutralizing positive background, a cold plasma
with density n, and zero streaming velocity, and a
group of energetic particles with thermal velocity v,
about an average streaming velocity v, and with
density pn, where u << 1. This distribution function
is shown in Fig. 5. The density of energetic particles
will be assumed so low that the dispersion relation
of cold plasma waves is unchanged; that is, all
waves have frequency w, and positive energy I, =
|E(k)[*/2x.

The energetic particles, of course, contribute a
“bump on tail,” making waves with phase velocity
v, & v, linearly unstable. However, a wave with
k ~ 2w,/v, can couple nonlinearly with a wave
with k' =~ 0 and particles of velocity

v = (w+ o)/k + K|~ v,

22 M. L. Sloan and R. E. Aamodt, Phys. Rev. Letters 19,
1127 (1967).

24 B, Coppi, Princeton Matt. Report 545 (1967).

% M. Rosenbluth, B. Coppi, and R. N. Sudan, Bull. Am.
Phys. Soc. 13, 283 (1968).
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Fi6. 5. The velocity distribution function.

For such an interaction, it was seen in Sec. V that
N, = N, so that each wave gains or loses energy.

To find the growth rate, we must first find the
velocity space diffusion constant from the amplitude
of the driving force at frequency (0 + o) —
(5 + K)v. There are two contributions to this
amplitude, the second iteration of the equation of
motion given by

1 e\ , E+ kK
5,2 <_> EWEE) Gy =Y — o)

&, \M

(74)
and the driven field given by
%E(k + k0 + o)
=1 é(i)z w(k + k') /
= "1.2,5) G5y PO
) v’
k+ kW — (0+o) — 8
(_6_ 1 9 e 1 §L) :
N kY —o —d8d " @k —w— 183
(75)
In Eq. (75) we have made use of the fact that
ek + ¥, o + o’) &= 0.75. Then, assuming & = w,

and f(v) = &(), Eq. (75) can be integrated and
added to Eq. (74), yielding

p. =2 5 () EwP P 6+ by

£
m

( 1 _ 1_)“
(@, — ko), — K'0) o

-8[2w, — (b + K" )p]. (76)
Using Eq. (66), we can find the growth rate from
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the interaction of two waves at k ~ 2w,/v, and
k' ~ 0 with resonant particles. The result is

d |E’(k)]2 _d |E(k')[2 o2 e\
it - a7 m"’""(?ﬁ)

'((w,, - kv)%w,, — k) c17>

9t

o B®P [E®)L,

(77)

u=2aw5/(k+k")

where we have used the fact that I, = |E(k)|*/2r
for waves in a cold plasma. Equation (77) may be
solved by noting that d |[E(k)|*/d |E(")|> = 1 for
all time. Thus,

[EED = |E®)* + C, (78)

where C is determined by the condition at time
t = 0. Then, Eq. (77) can be rewritten in the form
2
UEBL _ oo \B@F + o BGRF,  (9)
where « is the factor multiplying |E(k)|* |E(K")|” in
Eq. (77). It is positive as long as 8f/0u |zu, ez 18
positive. The change in f will be described by a
diffusion equation. However, to make matters
simple (albeit not physical), let us assume that f
and hence « are constant in time. If |E(k)|* at time
t = 0is denoted by E,, and |E(k")|* at ¢ = 0 by Ej,
the solution of Eq. (79) is

(E(’) _ EO)/Eé]e(Eo'—En)az.
1 — (Bo/Eg)et™ =70

o for

BE®P =

(80)

Thus, |[E®)|* =

Clearly, the above can only be satisfied for
positive a.

Since the total wave energy goes to infinity in
a finite time, these instabilities are sometimes
called explosive instabilities. If there are more than
two waves, the situation is less clear. The total
growth rate of a wave at k is given by

d |E(k)[* 2 ? 4
__J_dt__l_ = 2r lE(k)[ mw kz:n()(%)

.<(wp - kv)éwp ~ kv c17§>2

(81)

(B &L

20 p/ (k+k*)

In Eq. (81) some %' in the sum will be such that
8f/0u |sw,s+xr 1S positive, while for other k', it
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will be negative. To find out if the net effect is
toward stability or instability, one must add the
contributions from all waves.

X. CONCLUSIONS

It has been shown that to any order in perturba-
tion theory the dominant equation for the ensemble
average distribution function is a diffusion equation.
A method of calculating diffusion constants has been
outlined as well as a method of calculating growth
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rates in terms of the resonant diffusion constant.
This method was then applied to problems in non-
linear Landau damping and nonlinear instabilities.
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