PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #5 : BOLTZMANN EQUATION

(1) Consider a monatomic ideal gas in the presence of a temperature gradient ∇T . Answer the following questions within the framework of the relaxation time approximation to the Boltzmann equation.

- (a) Compute the particle current j and show that it vanishes.
- (b) Compute the 'energy squared' current,

$$\label{eq:constraint} \boldsymbol{j}_{\varepsilon^2} = \int\!\!d^3\!p\,\varepsilon^2\boldsymbol{v}\,f(\boldsymbol{r},\boldsymbol{p},t)\;.$$

(c) Suppose the gas is diatomic, so $c_p = \frac{7}{2}k_B$. Show explicitly that the particle current j is zero. *Hint: Note that the gas is diatomic. You may assume* V = F = 0.

(2) Suppose the relaxation time is energy-dependent, with $\tau(\varepsilon) = \tau_0 e^{-\varepsilon/\varepsilon_0}$. Compute the particle current j and energy current j_{ε} flowing in response to a temperature gradient ∇T .

(3) Use the linearized Boltzmann equation to compute the bulk viscosity ζ of an ideal gas.

- (a) Consider first the case of a monatomic ideal gas. Show that $\zeta = 0$ within this approximation. Will your result change if the scattering time is energy-dependent?
- (b) Compute ζ for a diatomic ideal gas.