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Normalization requires
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Solving the Schrédinger equation for U with E =0 gives

=95 eV

d%y
(1) (T)
Uelam) Ty
Iy = Ae™ 1" then 612—1’5—(4Ax3 6AxL2)(%)e_x ",




6-6

6-9

6-10

=Y

\ 3
ml?

¥ (x) = Acos kx + Bsin kx

d
_11) = —-kAsin kx + kB cos kx
Jx
92
a_q; = —k% Acos kx — k*Bsin kx
x

2

(—hzm)(E Uy - (_imE)(Acoskx +Bsin kx)

2
d -2
The Schrédinger equation is satisfied if a—l’g =( - Zm ) (E-U)y or
x

—kz(Acos kx + Bsin kx) = (_iTE)(Acos kx + Bsin kx).

2,2
Therefore E = K
2m

212 2
nh 3h
E, =—— so AE=E, -E =
" gml? 20T T gr?

(1240 eV nm/c)’
§(938.28 x 10° eV/[* (10~ nm)

AE =(3)

> = 6.14 MeV

2 (663107 Js) s
- = - =6.03x107°] =377 eV
8mL 8(9.11x107! kg)(10™* m]

(a) E, =377 eV
E, =37.7 x2* =151 eV
E; =37.7 x 3% =339 eV
E, =377 x4% =603 eV
he

(b) hf === =E,, ~E,,



he 1240 eV -nm

E, -E,, E, -E,,
For ny=4, n; =1, E, -E, =603eV-37.7 eV=565¢eV, 1 =219 nm
nj=4, nf =2, A=275nm
=4, n =3, A=470 nm
=3, n =1, A=412 nm
3, np =2, A=659 nm

, e =1, A =109 nm
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6-11  Inthe present case, the box is displaced from (0, L) by > Accordingly, we may obtain the

L
wavefunctions by replacing x with x -3 in the wavefunctions of Equation 6.18. Using

e ) i e 2

we get for L X L
- < -
& 2 2

{3 2] -2
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he [ 1 (38)na]"

=7.93x10"" m =793 A.
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6-12 AE = N =L e

)[22 —12] and L=

6-13 (a) Proton in a box of width L =0.200 nm =2 x107° m

2
2 6.626 x1034 J+s
E =1 > = ( ) ~=822x10"]
8myL”  8(1.67 10 kg)(2x10™" m)
8.22 x107%
- 10 ) 513107 ev
1.60x10™ Jlev
(b) Electron in the same box:
2
i (6626 x107 s} s
E, = - ~=1506x107"* ] =9.40 eV .

8mL”  §(911x10 kg)2x10710 m)

(o) The electron has a much higher energy because it is much less massive.
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6-16  (a) y(x) = Asin(T) , L=3 A.Normalization requires

L L LA
1=fLU|2dx=fA2 sinz(nL—x)dx ==
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(b) Y = Asin(looLﬂx) , A= (%)
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(c) Yes: For large quantum numbers the probability approaches 3

6-18  Since the wavefunction for a particle in a one-dimension box of width L is given by
(X)) s - 2 . o H7WX
Y, =Asin - it follows that the probability density is P(x) = |z/1 ,,lz = A" sin ]
which is sketched below:

p(x)h
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From this sketch we see that P(x) is a maximum when T - %, 7n, ?n, =Jr(m + E)

or when

L 1
X=—|m+=— m=0,1,2,3, ..., n.
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Likewise, P(x) is a minimum when =0, m, 2%, 37, ... = mm or when
L
x=—m m=0,1,2,3,...,n
n
1 . . d2w 2m
The Schrédinger equation, after rearrangement, is 2 "\ {U(x) - E}l]} (x). In the well
x

. 2mE
interior, U(x) =0 and solutions to this equation are sin kx and cos kx, where e FERE

The waves symmetric about the midpoint of the well (x = 0) are described by
¥ (x) = Acos kx -L<x <+L

In the region outside the well, U(x) =U , and the independent solutions to the wave

. 2
equation are ¢*“* with o =(h_21) U-E).

(a) The growing exponentials must be discarded to keep the wave from diverging at
infinity. Thus, the waves in the exterior region, which are symmetric about the
midpoint of the well are given by

tp(x)=Ce_aM x>Lor x<-L.

At x =L continuity of y requires AcoskL =Ce™ b For the slope to be

continuous here, we also must require —Aksin kL = -Ce™ k. Dividing the two
equations gives the desired restriction on the allowed energies: ktankL =« .

2mU
(b) The dependence on E (or k) is made more explicit by noting that k> + o = 1:2 ,

12
2mU
which allows the energy condition to be written ktankL = { Z; - kz}

Multiplying by L, squaring the result, and using tan” 0 +1 =sec® 0 gives

2mUr’
(kL)2 sec” (kL) = th from which the desired form follows immediately,

2mU

ksed kL) =

lowest energy. For electrons in a well of height U =5 eV and width 2L =0.2 nm,
we calculate

. The ground state is the symmetric waveform having the

omur? (2)(511x10° ev/[&)(5ev)(0.1 nm)’
W (197.3 eV -nm/c)’

=13127.

With this value, the equation for 6 = kL

~(13127)""

=1.1457
cos 6
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(a)

(b)

(0

can be solved numerically employing methods of varying sophistication. The
simplest of these is trial and error, which gives 6 =0.799 From this, we find

k=7.99nm ™, and an energy

2k (1973 ev-nm/cf' (799 nm™ )’
Cam o (511x10° ev/ &)

=2432 eV.

Normalization requires

1= |l/}|2dx =C2fe_2x(1 —e_x)zdx =C2f(e_2x —2e7 4o )dx. The integrals are

1 (1) 1) ¢
elementary and give 1= C? {E - 2( 5) + Z} TR The proper units for C are those

of (length)_ll2 thus, normalization requires C =(12)1/2 nm 2.

The most likely place for the electron is where the probability |y |z is largest. This

d
is also where v itself is largest, and is found by setting the derivative G equal

dx

Zero:

The RHS vanishes when x = © (a minimum), and when 2¢™ =1, 0or x=In2 nm.
Thus, the most likely position is at x, =In2nm =0.693 nm .

The average position is calculated from

(x) = } x|w|2dx =C2}oxe_2x (1 —e_x)de =C2jx(e_2x —2e™F 4™ )dx.
- 0 0

- 1
The integrals are readily evaluated with the help of the formula [ xe™ dx=—5 to
0 a

1 1) 1 13
get {x) =C? {Z—Z( 5) +E} =C2{m} . Substituting C* =12nm™ gives

13
(x) = E nm =1.083 nm.

We see that (x) is somewhat greater than the most probable position, since the

probability density is skewed in such a way that values of x larger than x, are

weighted more heavily in the calculation of the average.

The symmetry of h} (xx2 about x =0 can be exploited effectively in the calculation of

average values. To find (x)

()= o o



We notice that the integrand is antisymmetric about x = 0 due to the extra factor of x (an
odd function). Thus, the contribution from the two half-axes x>0 and x <0 cancel

exactly, leaving {x) =0. For the calculation of (x2 ), however, the integrand is symmetric

and the half-axes contribute equally to the value of the integral, giving
(x) = fx2|1p|2 dx = 2C2fxze_2xlx“dx.
0 0

3
Two integrations by parts show the value of the integral to be 2( %) . Upon substituting

3,2 12 2\ 12 X
for C?, we get (x2)=2(%)(2)(%) =x2_0 and Ax=((x2>—(x)2)l =(%) =T02.In

calculating the probability for the interval —Ax to +Ax we appeal to symmetry once
again to write

+Ax Ax Ax
pP={ l/}lzdx=2C2Ofe_zx’xodx=—2C2(x—20)e_2x/x°L —1-c® 0757

-Ax

or about 75.7% independent of x .



