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Power spectral densities (PSD’s) calculated by the maximum entropy method (MEM) for
Rossler system indicated exponential decay with a large number of well-defined spectral lines.
The spectral lines were confirmed to indicate a complete bifurcation up to the fifth-order period-
doubling. An extremely anomalous behavior was recognized in the region of ¢ = 4.18-4.21 which
is considered to be a transition region. The contribution of the power of the fundamental mode
to the total power was overwhelmingly large: it becomes larger than 90%. A prediction of
time series including chaotic ones was performed and the satisfactory results obtained. It will be
discussed that the fluctuations due to amplitude instability of time series in the periodic solutions
generate, resulting in the continuous component of PSD structured through the subharmonic
cascade process, and this continuous region is restructured in the inverse cascade process (the

socalled broad continuum in the chaotic mixing).
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§1. Introduction

Many works have been carried out for spectral analy-
sis of chaotic time series in theoretical and experimental
points of view and some of the results are summarized in
several monographs.1*®) Researchers have established a
conclusion that the power spectra of chaotic time series
show power lows in the form f=# (f: frequency). Espe-
cially, in the case of 8 = 1 the socalled “1/f noise” has
been well-known as an intermittent chaotic phenomena.
On the other hand, many experimental and theoretical
studies have reported the power spectra of exponential
form: exp (—=Af).#12) Among them, Frisch and Morf re-
ported in their theoretical work!® that the very-high-
frequency behavior of the power spectrum shows up the
overall amplitude decreasing exponentially. And, the ex-
ponential decrease of PSD has been widely found out in
many experimental works on turbulence.*5%9 In addi-
tion, it was confirmed in our preceding paper!3) that the
behaviors of power spectral densities (PSD’s) for nonlin-
ear systems such as Lorenz, Rossler and Duffing models
universally exhibit exponential characteristics. Therein,
it was concluded that exponential spectra are caused by
nonlinear phenomena including chaotic motions. How-
ever, we are scarce of systematic works on the spectral
analysis of time series generated from nonlinear systems.

In the present study, we attempt to investigate com-
prehensively, in detail, the time series generated by
Rossler system throughout a series of bifurcations as well
as chaotic regime.
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§2. Time Series for Rossler Model

2.1 Rossler model and parameters used
Rossler model is described by

dX/dt=-Y — Z
dY/dt = X + aY
AZ/dt=b+ XZ - cZ (1)

where X, Y and Z are variables, a, b and c parameters
to be chosen. In the present study, we used a = b =
0.2. With respect to the third parameter ¢, nine values
(2.6, 3.5, 4.1, 4.18, 4.21, 4.23, 4.30, 4.60 and 5.7) were
adopted. The first eight values of parameter ¢ correspond
to A-H denoted in Fig. 3 in Crutchfield et al.’s paper®
where the largest Lyapunov characteristic exponents are
plotted as a function of parameter c¢. The last three
values correspond to the chaotic regime, among them
¢ = 5.7 being the growest state of chaos.

2.2 Time series

We solved numerically the differential eqs. (1) using
the fourth order Runge-Kutta algorithm with the time
interval At = 0.01 (arbitrary unit) and the initial values
Xo = Yo = Zyp = 1.0. The calculations were performed
over 36000 steps (the time range 0-360). For the present
analysis, we averaged every five steps and the resultant
data become 7200 points.

For each parameter value of ¢, the time series X are
shown in Fig. 1 (the upper figure in the left side for each
parameter), accompanied with some of the results ob-
tained for the corresponding time series. It is easily seen
in the figure that the maximum amplitudes of time se-
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Fig. 1. Original time series, phase trajectory and MEM-PSD for every values of parameter c. (A) ¢ = 2.6, (B) ¢ = 3.5, (C) ¢ = 4.1,
(D) c=4.18, (E) c =4.21, (F) c = 4.23, (G) ¢ = 4.30, (H) ¢ = 4.60 and (I) ¢ = 5.7. For every parameter, the upper figure in the left
side: original time series, the lower figure in the left side: its phase trajectory, the upper figure in the right side: MEM-PSD (semi-log
scale), and the lower figure in the right side: the close-up of the MEM-PSD.

ries and fluctuations of amplitudes gradually increase as
the value of ¢ increases, and that the wave trains largely
fluctuate on the approach of ¢ = 5.7.

2.3 Phase trajectory
Phase trajectory on the dX/d¢-X plane was obtained
after transients (>1000 points). The phase trajectories

are drawn directly below each time series in Fig. 1. These
results topologically agree with those by Crutchfield et.
al., although their trajectories are drawn on the X-Y
plane. From these trajectories, we can easily conjecture
a complete bifurcation sequence for the cases of ¢ = 2.6,
3.5 and 4.1. The patterns for the cases of ¢ = 4.18-4.30
are indistinguishable from each other at a glance.
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§3. Power Spectral Densities

The spectral analyses were made for 3000-point data
in the time range 125-275, based on the maximum en-
tropy method (MEM). The MEM-PSD’s were obtained
for each parameter. The formulation of MEM-PSD are
described in elsewhere!316) (see eq. (4) in ref. 13, for
example).

8.1 Spectral gradients

The semi-log plots of MEM-PSD are displayed in Fig. 1 -

(the upper figure in the right side for each parameter). It

Power Spectral Density for Rossler System
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frequency

Fig. 2. The close-up of semi-log plots of PSD for ¢ = 2.6 shown
in Fig. 1.

can be found that the whole spectrum for each parameter
universally indicates clearly exponential characteristics
until it levels off at a limit determined by the accuracy
of the present computation. That is, the overall trend of
the PSD can be described as an exponential form

P(f) ~ exp (=Af) (2)

where ) is a coefficient of exponent. The close-up of semi-
log plots of overall PSD for ¢ = 2.6 in Fig. 1 is shown in
Fig. 2, indicating an exponential decay with numerous
discrete spectral lines. The difference between the top of
the spectral line and the bottom becomes the order of 10
in logarithm scale. Then, to obtain the magnitude of A,
we calculated the mean power of PSD from integrating
PSD over small frequency interval Af, that is, the mean
power of PSD is the power in the interval of frequen-

“cies [f, f + Af]. The line of PSD gradient is calculated

as a regression line against the mean powers, and thus
obtained is drawn in Fig. 2. We could determine the
precise value of A based on this procedure. The values of
A obtained for each parameter are listed in Table I and
plotted in Fig. 3.

As cleraly seen in Fig. 3, the values of A decrease as
the parameter ¢ increases. The decreasing trend sep-
arates two regions (solid and dashed lines indicated in
Fig. 3). As stated in §3.2.1 and 3.2.2, the solid line cor-
responds to a subharmonic cascade and the dashed line
an inverse cascade. This result is very interesting as sug-
gesting a difference of period-bifurcation from the inverse
cascade. The anomalous behavior around ¢ = 4.18-4.23
bestriding the boundary between periodic and chaotic

6 — — s

gradient of PSD
N

parameter ¢

Fig. 3. Gradinets of MEM-PSD against the parameter c. Solid
line: subharmonic bifurcations, and dashed line: inverse cascade.
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Table I. MEM-PSD gradients.
Parameter Gradient
c A
2.6 5.582
3.5 3.843
4.1 3.124
4.18 3.493
4.21 3.124
4.23 3.095
4.3 3.388
4.6 3.202
5.7 2.328

domains (Fig. 3 in ref. 3) is considered to correspond to
a transition region between two decreasing trends.

3.2  Spectral lines

Figure below each MEM-PSD in Fig. 1 shows the close-
up of the range 0-1 of the MEM-PSD. Specifications for
each spectral line observed in the frequency range up
to the fundamental mode (the frequency of this mode
is labelled as f1) are summarized in Table II. From
Fig. 1(A)-1(I) and Table II, we can see a cascade of
subharmonic bifurcations in the cases of ¢ = 2.6, 3.5 and
4.1 and an inverse cascade in the cases of ¢ = 4.30. 4.60
and 5.7. The cases of ¢ = 4.18, 4.12 and 4.23 are con-
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sidered to correspond to a transition region. This result
slightly differs from that by Crutchfield et al. (see Table I
in ref. 3).

8.2.1 Subharmonic bifurcations

Case (A) (¢ = 2.6): the most prominent peak, which
corresponds to the fundamental mode, is observed at
f = 0.1737, and its harmonics are also observed at
f =0.3476, 0.5220, 0.6950 and 0.8667.

A broad peak with lower intensity at f = 0.0903 is
considered to correspond to the first subharmonics (the
frequency of this subharmonics is labelled as f1/3). The
ratio of the power of f;/;-mode (0.000003) to that of
fi-mode (0.09) becomes ~1075, and consequently, the
contribution of f; /2-subharmonics to the total power be-
comes 0.0008% and is negligibly small. Thus, in the case
of ¢ = 2.6, it can be considered that only one fundamen-
tal mode occurs substantially.

Case (B) (¢ = 3.5): sharp spectral line at f = 0.1733
corresponds to the fundamental mode (f1), and those at
f =0.3460, 0.5192, 0.6929 and 0.8660 correspond to its
harmonics (fz, f3, fa and f5, respectively). Like, sharp
spectral lines observed at f = 0.0867, 0.2595, 0.4331,
0.6066, 0.7795 and 0.9528 correspond to the first sub-
harmonics and its odd harmonics (f1/2, fa/2, fs/2, fr/2,
fos2 and fi1/2, respectively). It can be understood that

Table II. Contribution of dominant subharmonics and harmonics. —: negligible small, *: unused for LSF.
Parameter MEM-PSD Frequency Period Optimum LSF Cl'll‘Ve Sque.ired Contribution
mode phase amplitude amplitude

c A; A? A? /Q (%)
(A) 2.6 f 0.1737 5.757 0.999 4.3183 18.6477 98.901
residual SD? 0.0023 0.012
total power Q 18.8551 100.001
(B) 3.5 f1y2 0.0867 11.534 10.151 0.7780 0.6053 2.112
f1 0.1733 5.770 1.460 5.1856 26.8904 93.837
residual SD? 0.0080 0.028
total power Q 28.6567 100.000
(C) 4.1 f1/4 0.0435 23.015 5.011 0.0722 0.0052 0.002
fi/2 0.0863 11.585 4.441 0.8891 0.7905 0.317
faya 0.1285 7.727 4.214 0.4523 0.2045 0.082
f1 0.1726 5.793 1.536 15.7268 247.3322 99.135
residual SD? 0.0055 0.002
total power Q . 249.4919 99.999
(D) 4.18 f1/4 0.0436 22.941 4.750 0.0367 0.0013 0.002
0.0484 20.642 10.827 0.0354 0.0013 0.002
fi/2 0.0866 11.544 4.858 0.6651 0.4423 0.787
0.0851 11.746 2.571 0.3530 0.1246 0.222
fa/a 0.1276 7.839 0.972 0.1973 0.0389 0.069
f1 0.1729 5.796 1.578 7.3531 54.0686 96.228
residual SD? 0.0030 0.053
total power Q 56.1880 98.998
(E) 4.21 fi/8 0.0238 41.997 * * * *
f1/4 0.0431 23.204 8.215 0.0484 0.0023 0.019
fays 0.0648 15.429 12.662 0.0307 0.0009 0.005
fi/2 0.0866 11.554 5.122 0.8920 0.7957 3.801
fs/8 0.1061 9.422 6.673 0.0748 0.0056 0.027
fasa 0.1290 7.754 7.598 0.4843 0.2345 1.120
fr/8 0.1517 6.593 1.764 0.0728 0.0053 0.025
f1 0.1723 5.819 0.864 4.1972 17.6164 84.156
residual SD? 0.0115 0.055
total power @ 20.9330 99.582
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Parameter MEM-PSD Frequency Period Optimum LSF Curve Squ:.ared Contribution
mode phase amplitude amplitude
c Aq A2 A2/Q (%)
(F)4.23 (f1/16)
fi/s 0.0217 46.18 1.322 0.0063 — —
(f3/16)
f1/4 0.0416 24.06 8.401 0.0462 0.0021 0.007
f5/16 0.0539 18.53 * * * *
fase 0.0644 15.54 2.356 0.0388 0.0015 0.003
fr/16 0.0745 13.42 * * * *
f1y2 0.0865 11.56 5.049 1.1048 1.2205 2.710
fo/16 0.1036 9.652 6.234 0.0312 0.0009 0.002
fs/8 0.1094 9.138 8.116 0.0859 0.0074 0.016
f11/16 0.1202 8.321 2.740 0.0517 0.0027 0.006
fa/4 0.1292 7.738 0.285 0.4565 0.2084 0.463
f13/16 0.1392 7.183 6.581 0.0510 0.0026 0.006
frys 0.1484 6.738 0.401 0.0642 0.0041 0.009
f15/16 0.1700 5.882 4.651 0.3416 0.1167 0.259
f1 0.1725 5.797 1.657 6.4332 41.3864 91.890
residual SD? 0.0078 0.017
total power Q 45.0392 99.996
(G) 4.30 0.0408 24.515 1.726 0.0514 0.0026 0.007
f1/4 0.0445 22.477 1.189 0.0563 0.0032 0.008
0.0562 17.793 * * * *
0.0737 13.566 * * * *
f1/2 0.0860 11.628 4.669 0.9528 0.9079 2.394
0.0869 11.508 3.288 0.3422 0.1171 0.309
0.1006 9.938 7.873 0.0467 0.0022 0.006
0.1122 8.915 7.699 0.0371 0.0014 0.004
f3/4 0.1274 7.848 4.568 0.2924 0.0855 0.225
0.1309 7.640 3.700 0.3052 0.0931 0.246
0.1451 6.989 0.397 0.0473 0.0022 0.006
0.1569 6.374 1.261 0.0253 0.0006 0.002
f1 0.1722 5.809 1.366 5.9290 35.1530 92.707
residual SD? 0.0124 0.033
total power @ 37.9192 100.000
(H) 4.60 0.0160 62.460 * * * *
0.0342 29.240 12.841 0.0478 0.0023 0.004
0.0540 18.518 14.041 0.1331 0.0177 0.029
0.0667 14.995 1.276 0.1190 0.0142 0.024
f1/2 0.0865 11.565 11.222 0.8427 0.7101 1.186
0.1060 9.436 8.424 0.1635 0.0267 0.045
0.1146 8.723 1.077 0.1358 0.0184 0.031
0.1193 8.382 2.350 0.4226 0.1786 0.298
0.1395 7.170 4.023 0.3801 0.1445 0.241
0.1527 6.551 5.761 0.1691 0.0286 0.048
f1 0.1713 5.837 0.925 7.5628 57.1964 95.532
residual SD? 0.0717 0.120
total power Q 59.8717 100.000
@ 5.7 0.0490 20.420 9.313 0.2143 0.045922 0.088
0.0567 17.651 14.782 0.1075 0.011566 0.022
0.0600 16.665 16.366 0.5796 0.3359 0.646
0.0720 13.883 2.167 0.1007 0.0101 0.020
0.0875 11.434 * * * *
0.0997 10.032 6.869 0.1922 0.0369 0.071
0.1107 9.036 6.030 1.4469 2.0935 4.023
0.1158 8.634 0.776 0.3227 0.1041 0.200
0.1224 8.169 2.617 0.8781 0.7721 1.482
0.1358 7.362 * * * *
0.1475 6.778 0.946 0.3263 0.1065 0.205
0.1586 6.305 0.168 0.5703 0.3252 0.625
f1 0.1711 5.846 1.653 6.5901 43.4294 83.459
: residual SD? 0.1448 0.278
total power @ 52.0363 99.801
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a complete bifurcation occurs. (The term “odd harmon-
ics” is conventionally used in the present section. How-
ever, it will be discussed in the latter section §6 that this
terminology is incorrect.)

Case (C) (c = 4.1): in additon to f; and f;/, and
their harmonics previously observed, more spectral lines
emerge from the positions of half frequency of f; /7, that
is, f1/2/2 (=f1/4) and its odd harmonics (f3/4, f5/4, fr/4
and so on). The values of frequencies of these lines are
also listed in Table II. We can see a complete bifurcation
in this regime of parameter c.

A small spectral line is observed at the further half
frequency f1/4/2 (=f1/s) and its odd subharmonics are
also observed at due frequencies in Fig. 1. This may sug-
gest that this parameter regime already undergoes the
next subharmonic bifurcation though the contribution
of these peaks to the total power is negligibly small.
3.2.2 Inverse cascade

Case (G) (c = 4.30): we can observe the subharmonics
f1/2 and f1/4 as well as their odd harmonics in addition
to the fundamental mode f; and its harmonics. How-
ever, no higher-order subharmonics f;/s and f/16 are
observed. Many spectral lines are observed at frequencies
close to higher-order subharmonic lines, but definitely
shift from the position of higher-order subharmonic fre-
quencies. For example, while spectral lines emerge from
frequencies of 0.0562 and 0.0737, f3/s-mode locates just
at the middle of these two frequencies. No spectral line
is observed at the position of this f3/s-frequency.

Case (H) (¢ = 4.60): one subharmonic line f;/, and
its odd harmonics can be recognized in addition to the
fundamental mode f; and its harmonics. Like the case of
¢ = 4.30, spectral lines close to higher-order subharmon-
ics appreciably shift from due frequencies, and no spec-
tral line can be observed at the subharmonic frequency
fi/a-

Thus, the processes of ¢ = 4.30 and 4.60 should be
understood to be the socalled “inverse cascade”. The
Lyapunov exponents calculated for these two parameters
become positive, as seen in Fig. 3 in ref. 3 (or Fig. B.1 in
ref. 1). These two states locate definite chaotic regime.

Case (I) (¢ = 5.7): more numerous discrete peaks are
observed. It can be recognized that only the fundamen-
tal mode (f;) and its harmonics emerge from normal
frequency positions. f;/o subharmonic spectral line ap-
pears no longer at frequency of f; 5.

The total number of spectral lines rather increase in
the inverse cascade, as the growth of chaos. Higher-
order subharmonics and their harmonics are considered
to be modulated and buried with numerous emergences
of spectral lines. The trend of MEM-PSD gradient in
the inverse cascade is indicated by dashed line in Fig. 3.
3.2.83 Transition region

Case (D) (¢ = 4.18): as seen in Fig. 1(D), the pat-
tern of spectral lines is extremely anomalous. We ex-
pected the next period-doubling of f; /g in this case, but
we could observe no additional subharmonic higher-order
peaks. We can see from the figure that f; /4 subharmonic
and its odd harmonic lines markedly broaden. We don’t
know whether this process indicates the onset of inverse
cascade or not. This anomalous result may be related

Norio OHTOMO et al.
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to the fact that the parameter ¢ = 4.18 locates a critical
region as seen in Fig. 3 in ref. 3 (or Fig. B.1 in ref. 1).

Case (E) (¢ = 4.21): further more spectral lines are
observed. The frequencies of the lines exactly correspond
to the subharmonics and its odd harmonics (fi/s, f1 /49
f3/8, f5/8, f3/4 and so on in the order from low frequency
side) in addition to the fundamental mode (f1) and its
harmonics (fa, f3, f1, and so on). Thus, the subharmonic
bifurcations until f; /3 can be ascertained in this case.

Case (F) (¢ = 4.23): Many spectral lines appears com-
plicatedly. Surprisingly, all spectral lines observed ex-
actly locate at the positions of frequency of spectral lines
generated by the subharmonic bifurcations up to f1/16-
The frequency values of spectral lines are also listed in
Table II. Parts of lines (f1/16 and f3/16) invisible and
these are denoted by ( ) in the table.

From the above-mentioned results, we can ascertained
that a cascade of complete subharmonic bifurcations oc-
curs in the order of (A)—(B)—(C) and an inverse cas-
cade (G)—(H)—(I). With respect to (D), (E) and (F) in
the trasition region, (E) and (F) are considered to be-
long to the subharmonic cascade and (D) to the inverse
cascade.

3.3 Contributions of subharmonics and harmonics to
total power _

In order to investigate the contributions of subharmon-
ics and harmonics to the total power, we calculated the
least squares fitting (LSF) curve to the time series using
a set of periodic modes corresponding to the fundamen-
tal mode, subharmonics and their harmonics (a part of
which is listed in Table II).

8.3.1 Evaluation procedure of contributions of powers

The LSF curve is assumed to be expressed as

N
X(t)= Ao+ Y Ancos{2nfn(t+0,)} +e(t)  (3)

n=1

where f,, (=1/T,) is the frequency of the n-th component
(T,,: its period), Ag a constant, A, and 6,, the amplitude
and the phase of the n-th component, respectively, N the
total number of components, and £(¢) the residual time
series which are obtained by subtracting the LSF curve
from the original time series.

The evaluation of LSF curve was performed by a pro-
cedure in ref. 16. The power of each periodic mode is
evaluated by the square of amplitude, A?, of i-th mode
consitituting LSF curve. The relation between the con-
tribution of each mode and the total power @ is given
by

NA% T
;64‘6—1 4)

where r is the power of residual time series.
8.83.2 LSF curves

The optimum LSF curves to the original time series
were calculated in the time range between 125 and 275
for each value of parameter ¢ and extended to the time
ranges of 50-125 and 275-350. The residual time series
were obtained by subtracting the optimum LSF: curve
from the original data. Figure 4 shows the residual
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Fig. 4. Residual time series which is obtained by subtracting the original time series from the optimum LSF curve. Fitting (analysis)
range and forward and backward prediction ranges. Two small vertical lines indicates the fitting range.

curves in the fitting range (125-275, denoted by two
small vertical lines), including the residuals in the back-
ward time range (50-125) and the forward time range
(275-350). The results in backward and forward ranges
will be used for prediction in §5.

The amplitudes of residual time series in the fitting
range (125-275) are quite small. The optimum LSF
curve thus obtained can satisfactorily reproduce the orig-
inal time series. This suggests that every time series
generated from Rossler model can be expressed by an
appropriate superposition of several periodic functions.
The time series for ¢ = 2.6, 3.5, 4.1, 4.18 and 4.21-5.7
are reconstructed of 5, 11, 27, 30, 36 and 38 periodic
functions, respectively. A part of the periods used for
the fitting is listed in Table II, in which the periods up
to fi-mode are summarized. The amplitudes of residual
time series in the fitting range slightly increase in the
cases of ¢ = 4.60 and 5.7. In the growth of chaos, 38
periodic modes are unsatisfactory for the LSF curve.
8.8.8 Contributions of powers of spectral lines

The contributions of powers of subharmonics and har-
monics to the total power AZ/Q are also listed in Table II
for every parameter c. We can see from the table that the
contirbution of the fundamental mode (f;) is overwhelm-

ingly large: it becomes larger than 90%. Namely, the
time series of Rossler model can be said to be dominated
by the fundamental mode. However, the LSF curve cal-
culated with only one period (1/f1) of fundamental mode
never reproduce the original time series, because an ac-
cumulation of the contributions of other subharmonics
and harmonics, which delicately shift their phases from
each other, cannot be incorporated.
8.8.4 Behaviors of fundamental mode

We then examined in detail the behavior of fundamen-
tal mode (its frequency f1). The variation of f; with the
value of parameter c is shown in Fig. 5(a) and the varia-
tion of the contribution to the total power @ in Fig. 5(b).
With increasing of ¢, fi gradually decreases from 0.1737
(¢ =2.6) to 0.1711 (¢ = 5.7). The anomalous behaviors
of fi are observed in the vicinity of ¢ = 4.2 and this re-
gion corresponds to the transition region as pointed out
in the preceding section. This is conjectured to relate
with the anomalous spectral lines denoted in Fig. 1(D).

The contribution of fi-mode to the total power gradu-
ally decreases as the value of ¢ increases: roughly seeing,
from 99% at ¢ = 2.6 to 83% at ¢ = 5.7. Except for
an anomalous change at the vicinity of ¢ = 4.21, this
trend corresponds to the fact that spectral lines increase



J. Phys. Soc. Jpn. Downloaded from journals.jps.jp by University of California San Diego on 03/05/17

2818
i (a)
0.174 ¢
y \
> R
O r %\\\\Vg
C L
§ 0172} N\
e .
3 N
0.17}
3 4 5 6
parameter ¢
r (b)
~> 100 [ a )
© - °
:':; 95 : e .a
R o
C 90r i
4+ H
c i
s) [ :
© 85 i .
3 4 5 6

parameter ¢
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mode to the total power.

in number as c¢ increases.

§4. Segment Time Series Analysis

In order to investigate the temporal variation of PSD’s,
we divided the time series over 7200 points into many
segments of 1000-point subseries beginning every 250
points and calculated PSD’s for each segment. We then
calculated the mean PSD by the procedure described in
the preceding §3.1. 28 mean PSD’s were thus obtained
and the temporal variations of mean PSD’s (linear scale)
are displayed in Fig. 6 as the three-dimensional spectral
array, taking frequency as the horizontal axis and time
as its perpendicular axis from this side to the other side:
the left side corresponding to the case of ¢ = 3.5 and the
right side the case of ¢ = 5.7, for example.

fi-peaks are marching in a fine array in the figure,

" although accompanied with large fluctuations of the am-
plitudes. Arrays of subharmonics and harmonics are neg-
ligibly small. This well-demonstrates the overwhelming
contribution of f;-mode stated in the preceding section.

The semi-log plots of the temporal variations of mean
PSD’s are demonstrated in Figs. 6(b) and 6(e). The
gradient of log-PSD equals to the coefficient of exponent
of exponential PSD’s (eq. (2)), —\. Figures 6(c) and 6(f)
display the same PSD’s taking time as the horizontal axis
and frequency ns its perpendicular axis. We can clearly
see that all trends of PSD’s are universally exponential,
irrespective of the time range.

The magnitudes of \ are listed in Table III except for
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the time range 0-50 considered to be a transient region.
As seen from Figs. 6(b) and 6(c) and Table III, the \’s
in the case of ¢ = 3.5 are almost constant irrespective of
the variation of time, the variability of A’s being within
ca +0.026 as the center at 3.949.

On the contrary, in the case of ¢ = 5.7 (the growest
state of chaos), the magnitudes of \’s vary intermittently
and the variability is within —0.069-+0.127 as the center
at 2.693. This behavior is clearly seen in Figs. 6(e) and
6(f). This is considered to be one of marked character-
istics of chaotic time series.

All values of \’s listed in Table III are plotted in
Fig. 7(a) and the average values of \’s over the time range
125-275 (the analysis range) are connected by solid and
dashed lines. A monotonous decreasing is shown in the
figure. The average values of \’s continuously decrease
and the discontinuity in the vicinity of ¢ = 4.2 shown
in Fig. 3 is not ever observed. The difference between
Fig. 3 and Fig. 7(a) may be caused by the difference of
data length: the result in Fig. 3 was obtained for 3000-
point data and that in Fig. 7(a) was the average value
of ) obtained for 1000-point data over the time range
125-275.

Figure 7(b) displays the variation of frequencies f; of
the fundamental mode for 1000-point data averaged over
the time range 125-275 (Table IV). The magnitudes of
f1 for ¢ = 4.18-4.2 jut out remarkably from the overall
trend. This is qualitatively consistent with the result
in Fig. 5(a), although fluctuation of PSD for ¢ = 4.18
becomes large.

§5. Prediction

As seen in §3.3, the fittness of the optimum LSF curves
to the original time series is quite preferable within the
fitting range 125-275 indicated two small vertical lines as
previously stated. Then, we extended the optimum LSF
curves (eq. (3)) to two prediction ranges (backward time
range 50-125 and forward time range 275-350). The
fittness within the prediction ranges is also preferable
in the cases of ¢ = 2.6-4.23. Namely, the LSF curves
well-reproduce the original time series.

On the other hand, in the cases of ¢ = 4.30, 4.60 and
5.7, the amplitudes of residual time series within two pre-
diction ranges gradually increase as the growth of chaos.
This indicates a possibility of quantitative evaluation of
the socalled “short-term” prediction of chaotic time se-
ries.

§6. Discussion and Concluding Remarks

6.1 Fluctuations and route to chaos

In the Rossler system, fluctuations caused by the non-
linearity already generate in the periodic stage of time se-
ries, and are stabilized (sturctured) in a series of cascade
processes. The detailed implications will be described in
the present section.
6.1.1 c = 2.6: generation of fluctuations in the peri-

odic time series

The time series at ¢ = 2.6 has been considered to be
a fully periodic wave, that is, to exist in a stable state
in which no subharmonics turn up. In fact, as seen in
Fig. 1(A), the PSD for this periodic time series consists
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Table III. Temporal variation of gradients of PSD’s.

: ¢ 2.6 3.5 4.1 4.18 4.21 4.23 4.30 4.60 5.7

125-175 5.487 3.922 3.466 3.566 3.407 3.416 3.494 3.242 2.632
150-200 5.607 3.961 3.474 3.557 3.408 3.376 3.367 3.233 2.820
175-225 5.569 3.946 3.463 3.543 3.395 3.387 3.345 3.214 2.725
200-250 5.638 3.944 3.461 3.464 3.401 3.437 3.344 3.231 2.643
225-275 5.668 3.974 3.460 3.412 3.520 3.396 3.363 3.160 2.646
average 5.594 3.949 3.465 3.508 3.426 3.402 3.383 3.216 2.693

of the fundamental mode f; and its harmonics f, = nf;
(n = 2,3,4,---). However, exploring the time series
shown in Fig. 1(A) in detail, an extremely small but
systematical fluctuations can be recognized in the am-
plitudes of time series (see Fig. 8(a), the enlargement of
the peak part of the time series). This fact is reflected
in the phase trajectory drawn in Fig. 1(A). Figure 8(b)
denotes the enlargement of the quite small rectangular
region of the phase trajectory. Therein, we can see the

anharmonicity of ¢ = 2.6 trajectories.

As seen in Fig. 8(a), the amplitude of time series re-
peats alternately extensions and reductions with the pe-
riod 27} on the average: T is the fundamental period
of the time series (=1/f1). This behavior is drawn con-
ceptionally in Fig. 8(c). From the consideration of a
simple model, it is shown that this fluctuation results in
the broad continuous peaks of PSD with the extermely
small power generating at fn £ fi/2 (f1/2 = 1/(2T1)):



J. Phys. Soc. Jpn. Downloaded from journals.jps.jp by University of California San Diego on 03/05/17

2820
o ‘
~ _ (a)
w
a g
S
2 4
k3 :
ke .\\9\
© 3 o~
5 o
2 -
02 03 04 05 06
parameter c
0.178 : ®
3 0174} jw~ : .
g | 5 ;
S g | -8
® 017 | I
0.166 |

02 03 04 05 08
parameter ¢

Fig. 7. Behavior of the fundamental mode based on segment time
series. (a) the variation of the positions of frequency fi, and (b)
the contribution of fi-mode to the total power.

the power being the order of |a|?|4,|?, where A, is the
amplitude of f, mode and a the magnitude of ampli-
tude fluctuation (the order of 10™*). In fact, these broad
peaks are observed at the positions of f, & fi/2 in the
PSD (Fig. 1(A)), and their powers exponentially decay
in accordance to |A,|? factor.

For simplicity, we consider a oscillator described as
the form z(t) = Acos(ft — ¢), where f is its frequency.
Here, the amplitude A is taken to fluctuate with the fre-
quency f’ and the small amplitude a around the average
amplitude A.

z(t) = [1 + acos (f't — ¢')]Acos (ft — @)
= Acos (ft = ¢) +1/2aAlcos {(f + )t = (6+ 8}
+eos{(f = f)t— (6 — ¢}
The PSD for () has spectral peaks at the positions of f
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due to the first term and f 4 f’ due to the second term.
The power of the latter spectral peaks becomes ~ |aA[%.
Note that the model presented here is not the socalled
“side band” model.

Inthe case of c=2.6, f = f, (n=1,2,3,---) and f’
fluctuates around f1/2 = f1 /2 on the average. Then, the
PSD consists of the line spectral peaks at the positions
of f, and the broad continuous peaks with the power of
laAn|? at fn + fi/2. In the case of ¢ = 3.5, f = nfi)s
and f, (n=1,2,3,--+) and f' = fi/4, and so on.

6.1.2 c = 3.5: subharmonic cascade and generation of
new fluctuations

In the case of ¢ = 3.5, it can be seen in Fig. 1(B)
that the PSD has spectral peaks at the exact positions
of fn % f1/2. Namely, the broad continuous peaks caused
by the amplitude fluctuations observed at ¢ = 2.6 disap-
pear and the periodic oscillations rise at the same posi-
tions of f, £ fi/2 frequencies. This is considered to be
that the fluctuation at ¢ = 2.6 is stabilized at ¢ = 3.5.
At this moment, the new fluctuations of amplitudes gen-
erate with the period 2 x 277 on the average, and the
extremely small, broad peaks are observed at the posi-
tions of nf1/2 + f1/4 (f1/4 = 1/4T1) in the PSD. Like
the process from ¢ = 2.6 to ¢ = 3.5, these broad peaks
stabilize as a periodic mode with f;/4 at the next stage
c=4.1.

In the Rossler system, amplitude fluctuations are gen-
erated by an instability caused by the nonlinearity of
the system and the frequencies of the fluctuations dis-
tribute around an average value, resulting in the contin-
uous component of PSD. In the next stage, the fluctua-
tions stabilize as a periodic oscillation of amplitudes with
the average frequency only, that is, the broad continuum
is structured.

6.1.8 Inverse cascade process

" The inverse cascade can be regarded as a restructured
process of the continuous region structured in the bifur-
cation cascade process, absorbing the subharmonic peaks
and restructuring the regularity in part. For example, in
the case of ¢ = 4.60, the subharmonic spectral lines of
f1/s and its harmonics are absorbed and disappear by
the chaotic mixing, and then the spectral lines on both
sides are affected. Namely, the region structured in the
bifurcation process is restructured (the socalled continu-
ous component of PSD in the chaotic mixing). Thus, in
the inverse cascade, the whole continuous region grows
as a “bundle” at f,+ f;/, with a more complicated struc-
ture, and the power of the bundle exponentially decays
like the case of bifurcation cascade process.

Table IV. Frequency of fundamental mode f;.

" 2.6 3.5 4.1 4.18 4.21 4.23 4.30 4.60 5.7

125-175 0.1741 0.1747 0.1715 0.1717 0.1711 0.1712 0.1715 0.1710 0.1720
150-200 0.1755 0.1675 0.1740 0.1769 0.1783 0.1727 0.1754 0.1731 0.1685
175-225 0.1717 0.1739 0.1743 0.1788 0.1728 0.1732 0.1726 0.1709 0.1712
200-250 0.1740 0.1763 0.1719 0.1715 0.1714 0.1710 0.1712 0.1712 0.1720
225-275 0.1757 0.1729 0.1734 0.1727 0.1734 0.1734 0.1727 0.1714 0.1713
average 0.1742 0.1731 0.1730 0.1743 0.1734 0.1723 0.1727 0.1715 0.1710
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The remarkable feature of the above-mentioned pic-
ture is the following. First, the continuous component
already generates in the parameter regions of periodic
‘solutions and is structured as the periodic oscillations
stabilized (the bifurcation cascade process). Next, the
structured continuous region is newly restructured (the
inverse cascade process).

6.2 Exponential characteristics

In our preceding work, we made an important finding
that exponential characteristics of PSD were universally
found for chaotic time series of Lorenz, Rossler and Duff-
ing models. At that time, we considered that the expo-
nential spectra may be related to nonlinear phenomena
in general including the chaotic ones. Then, we investi-
agted in detail the PSD for Rossler model in the present
study. As the result, we surely confirmed that the expo-
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nential characteristics are universally found for all time
series generated by Rossler equation from the period bi-
furcations through the chaos, irrespective of variations
of parameters and data lengths. Thus, it is conjectured
that the exponential PSD is profoundly related to some
nonlinearities. It is unknown what mechanism causes
such exponential characteristics at present. The magni-
tudes of coefficients of the exponent ()\) depends on not
only a type of nonlinear models but also the parameters
used.

With respect to the exponential behavior of PSD,
many experimental and theoretical studies have been re-
ported so far.#12) Among them, we note two theoreti-
cal works on nonlinear Langevin equations: Frisch and
Morf’s!® and Greenside et al.’s'!) ones. Frisch and Morf
reported that the systems of nonlinearly coupled dif-
ferential equations are expected to show exponentially

‘decreasing power spectra at the higher frequencies. In

their paper, Lorenz system and Burgers’s model were
also discussed to show the exponential PSD, and con-
jectures were moreover made about Navier-Stokes tur-
bulence. Greenside et al. verified the exponetial depen-
dence of PSD on frequency for the Lorenz model (see
Fig. 11 in ref. 11), and stated that in the determinis-
tic systems they did not observed a power law over any
significant frequency range. A series of these theoretical
studies as well as other experimental ones suggest our
results. Thus, it is confirmed that the power spectrum
of nonlinear systems including choas decreases exponen-
tially in high frequency region.

In addition to the above descriptions, it is conjectured
that the exponential characteristics of PSD in the dis-
sipative systems such as Rossler and Lorenz models are
the similar nature to the high frequency characteristics
of the spectrum derived from a simple model of Hamilto-
nian system, that is, a universal nature for the system of
nonlinear differential equations.!”) Therefore, this expo-
nential characteristics give the following considerations
on the time series. The time series must have frequency
components. until f — oo, without cut-off band of fre-
quency. The power of spectrum |A4,|?> has to exponen-
tially decays beyond a higher mode of N (NN: integer),
that is, at n > N.17) As seen in the present results, NV is
considered to be relatively small in Rossler system and
N = 2-3 for ¢ = 2.6 and 3.5.

6.8 Contribution of the fundamental mode

From the detailed spectral analysis in the present
study, we obtained a surprising result that the contri-
bution of the power of the fundamental mode to the to-
tal power is overwhelmingly large: it becomes larger than
90% as listed in Table II. This dominant character of the
fundamental mode means that the system is essentially
predominated by only one fundamental mode. That is,
the fundamental mode is considered to play a key role in
preservation of nonlinear phenomena.

Such dominant character of the fundamental mode and
exponential characteristics of PSD’s may be a basis for
the socalled “structural stability.” In our another re-
port on a physiological data,'®) we also confirmed that
the contribution of the fundamental mode becomes pre-
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dominantly large. This may be related to the socalled
“homeostasis” in living bodies. The present study was
the first to evaluate the the contribution of the funda-
mental mode, and that for Rossler model only. With
respect to these speculations, further elucidations are re-
quired for any other nonlinear systems.

6.4 Subharmonic cascade and inverse cascade

Crutchfield et al. reported for Rossler model®) that a
cascade of subharmonic bifurcations occurs in relatively
small values of parameter ¢ and thereafter an inverse cas-
cade follows with increasing the parameter c¢. Moreover,
Berge et al. stated in their textbook!) that the inverse
cascades accompanied by a gradual broadening of the
lines of the Fourier spectrum, and hence the growth of
chaos. With respect to these assertions, however, a slight
amendment should be needed, taking consideration of
the result revealed in the present study, as discussed in
the preceding section (§6.1).

The present study gives the following results. T'wo re-
gions corresponding to a cascade of subharmonic bifurca-
tions and an inverse cascade are confirmed in the bifurca-
tion process with increasing the parameter c, that is, in
the former region, sequent subharmonic bifurcations ap-
pear and grow with increasing c, and, in the latter region,
higher-order subharmonics and their harmonics are mod-
ulated and buried with numerous emergences of spectral
lines with increasing the total number of spectral lines.
There is a transition region between these two regions.
We can conjecture that, in the transition region, subhar-
monics bifurcations are finally completed as structuring
the continuous region and, simultaneously, the modula-
tion of subharmonic bifurcations, that is, inverse cascade,
occurs as restructuring the continuous region structured
by the subharmonic cascade process.

6.5 Predictability of chaotic time series

Many works concerning time series prediction have
been carried out so far and most recently some yields
complied into a textbook (ref. 19). In that textbook,
some marked methods for time series prediction, in par-
ticular, for chaotic time series prediction, are presented:
autoregressive (AR) technique, state-space reconstruc-
tion by time-delay embedding and neural network etc.
AR is unapplicable to chaos process because linear mod-
eling based on AR process is considered to be impossible
to describe nonlinear systems such as chaos. The other
two methods are not easy to master the procedures of
prediction.

The method proposed by the authors is fundamentally
different from these methods. We use an extension of the
optimum LSF curve of eq. (3) to the prediction ranges.
There is a ground for this idea. As stated in ref. 14, our
method is based on Wold’s decomposition theorem?® in
which the PSD is described as a sum of two terms, pre-
dictable and unpredictable parts. Equation (3), except
for €(t), exactly corresponds to the predictable part in
Wold’s decomposition theorem.

Our prediction procedure is quite useful for predicting
time series with relatively high periodicity such as the
case of sunspot number variations,!4) and also satisfac-
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tory for the case of chaos as well as all cases of subhar-
monic bifurcations in Rossler model as clarified in the
present study. Thus, it can be said that our prediction
method is also useful for the prediction of time series
such as chaotic ones.

6.6 Comment on the time range of time series used

We must take some precautions for numerical calcu-
lations using nonlinearly coupled differential equations,
becasue numerical solutions obtained are strongly depen-
dent on the precision of data processing unit due to ac-
cumulation effect of errors caused by truncations and/or
roundings. In order to examine this problem, we per-
formed the calculations of time series to two kinds of
significant digits for Rossler model: the one to 19 deci-
mal places (the limit of significant digit for programming
langauge C) and the other to 33 decimal places (multiple-
precision of programming langauge UBASIC?Y)). More-
over, the same calculations were carried out for Lorenz
model for comparison.

In Fig. 9, the subtractions (Xj9 — X33) of the time
series to 19 decimal places (X19) from those to 33 decimal
places (X33) for Rossler and Lorenz models are displayed.
As seen in the figure, slight differences occur in the time
range over 320 in the case of Rossler model. That is, time
series X9 substantially agrees with X33 till the time 320.
On the contrary, in the case of Lorenz model, remarked
differences occur early near the time 70. Since we carried
out the work on Lorenz model in the preceding study,®
therein we used time series of 6000 points.

However, as seen in Table III in ref. 13, the values of
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Fig. 9. Evaluation of the precision. (a) for Rossler model, and
(b) for Lorenz model.
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A are strongly dependent on the wave form of segment
time series in the case of Rossler model. This is caused
by a transient behavior in this time range (<60). Except
for this transient region and time range >320 (Fig. 9),
we used the time series between 6000 and 32000 points
corresponding to the time range 125-275 in the present
study.

6.7 Concluding remarks

Theoretical elucidation of nonlinear systems will be ex-
pected to be attended with many unavoidable difficulties,
though it remains to be an important subject from this
time on. As a tentative measure, a superior and pow-
erful tool for numerical calculations must be deviced for
analysis of time series data. Especially, a developement
of such tool is indispensable for comprehensively eluci-
dating the complexity of chaotic system. The computing
system for time series analysis, MemCalc, developed by
the authors’ group, is considered to be according to ex-
pectations. The computing system MemCalc based on
Burg’s algorithm in MEM enables us to calculate the
PSD for any time series including chaotic ones with re-
markably high accuracy. And using Wold’s decomposi-
ton theorem we can reprodﬁce the time series from the
PSD estimated by MemCalc. Any modeling such as AR
is not required for this computing process.

By the use of the MemCalc, a detailed study of power
spectral densities was carried out for the time series nu-
merically generated from the Rossler model from the pe-
riod bifurcation process through the chaos. The follow-
ing conclusions were obtained.

(1) All PSD’s indicate an exponential decay with a
large number of well-defined spectral lines until they level
off at a limit determined by the accuracy of the present
computation. The values of the coefficient of exponent,
A, become 5.582, 3.843, 3.124, 3.493, 3.124, 3.095, 3.388,
3.202 and 2.328 for the parameter ¢ = 2.6, 3.5, 4.1, 4.18,
4.21, 4.23, 4.3, 4.6 and 5.7, respectively.

(2) The spectral lines observed are exactly corre-
sponding to the fundamental mode, subharmonics, and
their harmonics and a complete bifurcation up to the
fifth-order period-doubling can be confirmed.

(3) From the results of investigations of values of A
and the assignment of spectral lines, two regions cor-
responding to the subharmonic cascade and the inverse
cascade are confirmed in the bifurcation process with in-
creasing the parameter c. In the region of subharmonic
cascade, sequent subharmonic bifurcations appear and
grow and in the region of inverse cascade higher-order
subharmonics and their harmonics are modulated and
buried with numerous emergences of spectral lines with
increasing the total number of spectral lines.

(4) The amplitude fluctuation of time series, result-
ing in the socalled broad continuum of PSD, caused by
the nonlinearity of Rossler system, generates in the pe-
riodic stage and are stabilized (structured) in a series of
cascade processes. The inverse cascade can be regarded
as a restructured process of the continuous region struc-
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tured in the bifurcation process.

(5) In the region of ¢ = 4.18-4.21, an extremely
anomalous behavior was recognized in the value of A\
and the pattern of spectral lines etc. This region is con-
sidered to be a transition region between two regions
corresponding to the subharmonic cascade and the in-
verse cascade. In the transition region, it is conjectured
that subharmonic bifurcations are finally completed and
simultaneously the modulation of subharmonic bifurca-
tions occurs.

(6) A surprising result was obtained that the con-
tribution of the power of the fundamental mode to the
total power is overwhelmingly large: it becomes larger
than 90%.

(7) A time series prediction was performed by using
an extension of the optimum least squares fitting curve
and satisfactory results obtained indicated the usefulness
of the present method for the prediction of time series
including chaotic ones.

1) P. Berge, Y. Pomeau and C. Vidal: Order within Chaos-
Towards a Deterministic Approach to Turbulence (John
Wiley & Sons, New York, 1984).

2) H. Mori and Y. Kuramoto: Sanitsu-Kouzou to Kaosu (Dissi-
pation Structure and Chaos) (Iwanami-Shoten, Tokyo, 1994)
[in Japanese].

3) J. Crutchfield, D. Farmer, N. Packard, R. Shaw, G. Jones and
R. J. Donnelly: Phys. Lett. 76 A (1980) 1.

4) A. Brandstater and H. L. Swinney: Phys. Rev. A 35 (1987)
2207.

5) X. Z. Wu, L. Kadanoff, A. Libchaber and M. Sano: Phys.
Rev. Lett. 64 (1990) 2140

6) K. Skold and K. E. Larson: Phys. Rev. 161 (1967) 102.

7) J. P. McTague, P. A. Fleury and D. B. DuPre: Phys. Rev.
188 (1969) 303.

8) B. J. Alder, J. C. Beer, H. L. Strauss and J. J. Weis: J. Chem.
Phys. 70 (1979) 4091.

9) P. Atten, J. C. Lacroix and B. Malraison: Phys. Lett. 79A
(1980) 255.

10) U. Frisch and R. Morf: Phys. Rev. A 23 (1981) 2673.

11) H. S. Greenside, G. Ahlers, P. C. Hohenberg and R. W.
Walden: Physica 5D (1982) 322.

12) S. Kim, S. Ostlund and G. Yu: Physica D 31 (1988) 117.

13) N. Ohtomo, K. Tokiwano, Y. Tanaka, A. Sumi, S. Terachi and
H. Konno: J. Phys. Soc. Jpn. 64 (1995) 1104.

14) N. Ohtomo, S. Terachi, Y. Tanaka, K. Tokiwano and N.
Kaneko: Jpn. J. Appl. Phys. 33 (1994) 2821.

15) N. Ohtomo and Y. Tanaka: A Recent Advance in Time-Series
Analysis by Mazimum Entropy Method (Hokkaido University
Press, Sapporo, 1994) p. 11.

16) S. Terachi, N. Ohtomo and Y. Tanaka: A Recent Ad-
vance in Time-Series Analysis by Mazimum Entropy Method
(Hokkaido University Press, Sapporo, 1994) p. 49.

17) G. M. Zaslavsky: Chaos in Dynamic Systems (Harwood Aca-
demic Publishers, London, 1985).

18) N. Ohtomo, Y. Tanaka, T. Kamo and K. Yoneyama: Jpn. J.
Appl. Phys. 35 (1996) No. 10, in press.

19) Time Series Prediction—Forecasting the Future and Under-
standing the Past—, ed. A. S. Weigend and N. A. Gershenfeld
(Addison-Wesley, New York, 1994).

20) A. Papoulis: Probability, Random Variables, and Stochastic
Processes (MacGraw-Hill, New York, 1991) 3rd ed.

21) Y. Kida: UBASIC (Nippon-Hyouron-Sha, Tokyo, 1994) [in
Japanese].




