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Chapter 1

Hamiltonian Mechanics

1.1 References

- R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics (Harwood,
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A thorough treatment of nonlinear Hamiltonian particle and wave mechanics.

— E. Ott, Chaos in Dynamical Systems (Cambridge, 2002)
An excellent introductory text appropriate for graduate or advanced undergraduate
students.

— W. Dittrich and M. Reuter, Classical and Quantum Dynamics (Springer, 2001)
More a handbook than a textbook, but reliably covers a large amount of useful ma-
terial.

— G. M. Zaslavsky, Hamiltonian Chaos & Fractional Dynamics (Oxford, 2005)
An advanced text for graduate students and researchers.

— L. Percival and D. Richards, Introduction to Dynamics (Cambridge, 1994)
An excellent advanced undergraduate text.

— A.J. Lichenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer,
1983)
An advanced graduate level text. Excellent range of topics, but quite technical and
often lacking physical explanations.
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1.2 The Hamiltonian

Recall that L = L(q, ¢,t), and
0L

o

The Hamiltonian, H (g, p) is obtained by a Legendre transformation,
H(g,p)=> p,dy— L.
o=1

Note that
oL oL d'a> oL

dH = di. +q dp. — 22 dq — 22 _ T
;(pg o+ do dpy = 5= ddy = 5= dd o

"/ oL oL
_;<qadpa_a—qadQU> _Edt

Thus, we obtain Hamilton’s equations of motion,

oH .o _ oL
O g, 0g,  1°
and
dH _0H _ 0L
a ot ot

Some remarks:

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

e As an example, consider a particle moving in three dimensions, described by spher-

ical polar coordinates (r, 6, ¢). Then

L= %m (7’*2 +726% + r? sin29<;52) —U(r,0,0) . (1.6)
We have
oL oL 9 oL 9 . 9,
= —— =mr |, = —=mr“6 = — = mr® sin“f , 1.7
Pr= % o= 56 Po = 59 i 47
and thus
H=p,i+pyf+pyd—L
(1.8)
2 2 2
Py pG p¢
— i U(r,0 .
2m + 2mr? + 2mr? sin?6 +U(r0,¢)
Note that H is time-independent, hence %—If = %—Ij = 0, and therefore H is a constant

of the motion.
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In order to obtain H(q,p) we must invert the relation p, = gTLa = ps(q,¢) to obtain

do(q, p). This is possible if the Hessian,

Opa _ 0L
0ds  04a 0qp

(1.9)

is nonsingular. This is the content of the ‘inverse function theorem” of multivariable
calculus.

Define the rank 2n vector, {, by its components,

. if1<:<
=% Lo=r=r (1.10)
i, ifn<i<2n.

Then we may write Hamilton’s equations compactly as

: OH
& =1, o (1.11)
J 86]
where
O I
J — nxn nxn (1.12)
<_Hn><n @nxn>
is a rank 2n matrix. Note that J* = —J, i.e. J is antisymmetric, and that J* = —L,, o, .
We shall utilize this ‘symplectic structure” to Hamilton’s equations shortly.
1.2.1 Modified Hamilton’s principle
We have that
ty ty
0= 5/dtL = 6/dt (po 4o — H)
ta ta
i OH OH
= /dt {pa 5q‘a + QU 5pa - 5qa - 5po‘} (113)
995 Ops

ta
ty

tp
. OH . OH
= /dt{ — <p0 + a—qg> 5q0 + <qo - a—po> 5110} + (po(sqo) ¢
t

a

)
a

assuming 0qs (ta) = 0¢o(t,) = 0. Setting the coefficients of dg, and ép, to zero, we recover
Hamilton’s equations.
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1.2.2 Phase flow is incompressible

A flow for which V - v = 0 is incompressible — we shall see why in a moment. Let’s check
that the divergence of the phase space velocity does indeed vanish:

04y . Opo
v £ Z{aQU apo}

oé o (1.14)
Z% 2% 5505 -
Now let p(€,t) be a distribution on phase space. Continuity implies
dp :
E+V~(p£)_0. (1.15)
Invoking V - 5’ = 0, we have that
Dp _ 9p B
Dt ot +£-Vp=0, (1.16)

where Dp/Dt is sometimes called the convective derivative — it is the total derivative of the
function p(&(t),t), evaluated at a point £(¢) in phase space which moves according to the
dynamics. This says that the density in the “comoving frame” is locally constant.

1.2.3 Poincaré recurrence theorem

Let g, be the ‘T-advance mapping’ which evolves points in phase space according to

Hamilton’s equations

OH ) OH

T T,

for a time interval At = 7. Consider a region {2 in phase space. Define g7 {2 to be the
n'" image of {2 under the mapping g,. Clearly g, is invertible; the inverse is obtained by
integrating the equations of motion backward in time. We denote the inverse of g, by g, L.
By Liouville’s theorem, g, is volume preserving when acting on regions in phase space,
since the evolution of any given point is Hamiltonian. This follows from the continuity
equation for the phase space density,
9o

o TV (ug) =0 (1.18)

where u = {q, p} is the velocity vector in phase space, and Hamilton’s equations, which
say that the phase flow is incompressible, i.e. V- u = 0:

V-u = zn:{%_i_%}

= 045 Ops

| o0 (oH o) oH
- Z{%(%)*%(‘%)}—O (1)

(1.17)
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Thus, we have that the convective derivative vanishes, viz.
—=—+4u-Vo=0, (1.20)

which guarantees that the density remains constant in a frame moving with the flow.

The proof of the recurrence theorem is simple. Assume that g, is invertible and volume-
preserving, as is the case for Hamiltonian flow. Further assume that phase space volume
is finite. Since the energy is preserved in the case of time-independent Hamiltonians, we
simply ask that the volume of phase space at fixed total energy E be finite, i.e.

/dué(E—H(q,p)) < 00, (1.21)
where dp = [, dg; dp, is the phase space uniform integration measure.

Theorem: In any finite neighborhood (2 of phase space there exists a point ¢, which will
return to 2 after n applications of g,, where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction.
Consider the set T formed from the union of all sets g"* €2 for all m:

Y= G gm0 (1.22)

m=0

We assume that the set {¢)" 2| m € Z ,m > 0} is disjoint. The volume of a union of disjoint
sets is the sum of the individual volumes. Thus,

vol(T) = i vol(gX* Q) = vol(Q) - i l1=o00, (1.23)
m=0

m=1

since vol(g" ©2) = vol(€2) from volume preservation. But clearly T is a subset of the entire
phase space, hence we have a contradiction, because by assumption phase space is of finite
volume.

Thus, the assumption that the set {¢7* Q2 |m € Z ,m > 0} is disjoint fails. This means that
there exists some pair of integers k and [, with k # [, such that g’ﬁ Qn ng Q # (). Without
loss of generality we may assume k > [. Apply the inverse g, ! to this relation [ times to get
¥ QNQ # 0. Now choose any point ¢ € g 2NQ, where n = k—1, and define ¢, = g; "¢.
Then by construction both ¢, and g7 ¢ lie within €2 and the theorem is proven.

Each of the two central assumptions — invertibility and volume preservation — is crucial.
Without either of them, the proof fails. Consider, for example, a volume-preserving map
which is not invertible. An example might be a mapping f: R — R which takes any real
number to its fractional part. Thus, f(7m) = 0.14159265. ... Let us restrict our attention to
intervals of width less than unity. Clearly f is then volume preserving. The action of f on
the interval [2, 3) is to map it to the interval [0, 1). But [0, 1) remains fixed under the action
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of f, so no point within the interval [2, 3) will ever return under repeated iterations of f.
Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space vol-
umes contract. For a one-dimensional oscillator obeying & + 284 + 22z = 0 one has
V-u = -28 < 0 (8 > 0 for damping). Thus the convective derivative is equal to
D,o = —(V-u)o = +25p which says that the density increases exponentially in the comov-
ing frame, as o(t) = €2! p(0). Thus, phase space volumes collapse, and are not preserved
by the dynamics. In this case, it is possible for the set T to be of finite volume, even if it is
the union of an infinite number of sets g7 2, because the volumes of these component sets
themselves decrease exponentially, as vol(g” Q) = e~2"7vol(Q2). A damped pendulum,
released from rest at some small angle 6, will not return arbitrarily close to these initial
conditions.

1.2.4 Poisson brackets

The time evolution of any function F'(q, p) over phase space is given by

5 Fla(),p(t),1) = == +Z{a—qo%+ a—pop"}

o=1 (1.24)
_OF
=5 {F,H} ,
where the Poisson bracket {-, -} is given by
~ (0A OB 0A OB
(43} =3 (50 5~ ne )
on (1.25)
_ Z J 8_‘4 8_B
= 9604
Properties of the Poisson bracket:
e Antisymmetry:

e Bilinearity: if A is a constant, and f, g, and h are functions on phase space, then
{f+Xg,h} ={f,n}+ g h}. (1.27)
Linearity in the second argument follows from this and the antisymmetry condition.

e Associativity:

{fg.h} = f{g,h} +g{f,n}. (1.28)
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e Jacobi identity:

Some other useful properties:

o If{A,H} =0and % =0, then % =0, ie. A(q,p) is a constant of the motion.

o If {A,H} =0and {B,H} =0, then {{A, B}, H} = 0. If in addition A and B have no
explicit time dependence, we conclude that { A, B} is a constant of the motion.

o Itis easily established that

{da:95t =0, Aparpst =0 .  A{daps}t=0,5 - (1.30)

1.3 Canonical Transformations

1.3.1 Point transformations in Lagrangian mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

Qo = Qul(qyy--5qn>t) - (1.31)
This is called a “point transformation.” The transformation is invertible if
det <8Qa> #0. (1.32)
8q5

The transformed Lagrangian, L, written as a function of the new coordinates Q and veloc-
ities Q, is

£(Q.Q.1) = L(a(Q.1),4(Q. Q. 1).1) + 4 Fla(@.1).1) (133)

where F(q,t) is a function only of the coordinates ¢, (Q,t) and time'. Finally, Hamilton’s
principle,

ty
5/dt L(Q,Q,t) =0 (1.34)
t1

with 0Qs(ta) = 0Qs(t,) = 0, still holds, and the form of the Euler-Lagrange equations

remains unchanged:
OL d [ OL

'We must have that the relation Q, = Q,(q,t) is invertible.




8 CHAPTER 1. HAMILTONIAN MECHANICS

The invariance of the equations of motion under a point transformation may be verified
explicitly. We first evaluate

d (0L _d (0L di\ _d (0L da. o
dt\aQ,) dt\9ds 0Q,) dt\9ds 0Q,) :
where the relation 94, /0Qs = ¢ /0Q, follows from ¢, = % Qo + %L? _We know that

adding a total time derivative of a function F (Q,t)=F (q(Q, t), t) to the Lagrangian does
not alter the equations of motion. Hence we can set /' = 0 and compute

EﬂN} _a_L 0qa +8_L 04a
0Qs 040 0Qs = 0o 0Q,

OL 8qy OL [ 0%qa - 04
- L 4+ — 7(] Q , + 7(]
0qa 0Qs 0Ga \0Qs 0Qs 7 0Q, Ot

_d (0L 9  OL d (4o
Cdt\ 94, ) 0Q,  Oda dt \ 0Q,

_ 4 (0L a _d (0L
Cdt\ 94, 0Q,)  dt\5Q, )’

where the last equality is what we obtained earlier in eqn. 1.36.

(1.37)

1.3.2 Canonical transformations in Hamiltonian mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations —
ones which mix all the ¢’s and p’s. The general form for a canonical transformation (CT) is

qa:qU(Ql,...,Qn;Pl,...,Pn;t)

(1.38)
po- :po-(Q17"'7Qn;P17"'7Pn;t) 9
with o € {1,...,n}. We may also write
with i € {1,...,2n}. The transformed Hamiltonian is H(Q, P,t)., where, as we shall see

below, H(Q, P,t) = H(q,p,t) + 2F(q,Q,1).

What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain
invariant, then

. 0H : OH
Q, = op, P, = ~30, (1.40)
which gives
0Q, 0P, 0

50, + 7P = 0= 35 (1.41)
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Le. the flow remains incompressible in the new (@, P) variables. We will also require that
phase space volumes are preserved by the transformation, i.e.

det (gg) = Haa((ﬁi:;)” 1. (1.42)

Additional conditions will be discussed below.

1.3.3 Hamiltonian evolution

Hamiltonian evolution itself defines a canonical transformation. Let {, = §,(¢) and let
& = &,(t + dt). Then from the dynamics £Z = 8H/8£. , we have

E(t+dt) =&(t) +T,; 7 7€, L +0(dt?) . (1.43)
Thus,
o5, 0 ( OH 9 )
+J dt + O(dt
86] 86] f ik 85 ( )
(1.44)
=0, +1J OH_ +0(dt?) .
% bg; o
Now, using the result det(1 + eM) =1+ € Tr M + O(e?) , we have
o] o°H ) )
Hagj 1+‘,11],€ag 8§kdt+0(dt)_1+(’)(dt) (1.45)
1.3.4 Symplectic structure
We have that SH
&=y 8—§] ) (1.46)

Suppose we make a time-independent canonical transformation to new phase space coor-
dinates, =, = =,(§). We then have

05, . 0=, OH

—_
—

=5 = 1.47
= (1.47)

But if the transformation is canonical, then the equations of motion are preserved, and we
also have

- OH OH 0¢
Ey =34 5 = 1.48
a "Hab I=, "]]ab 8§k a_b ( )
Equating these two expressions, we have
OH OH
i J =1, Mg} (1.49)

7k ag kb 85
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where M, ; = 0=2,/0¢; is the Jacobian of the transformation. Since the equality must hold
for all £, we conclude

MI=J(M)"" = MIM'=1]. (1.50)
A matrix M satisfying M M" = I is of course an orthogonal matrix. A matrix M satisfying
MJM*® = J is called symplectic. We write M € Sp(2n), i.e. M is an element of the group of
symplectic matrices* of rank 2n.

The symplectic property of M guarantees that the Poisson brackets are preserved under a
canonical transformation:

0A OB 0A 0=, OB 05,
{A7B}§:Jij_—:°]]ij = =
agl 85] 8_,1 852 a_b 85] (151)
0A OB 0A OB
=(M.J.. Mt = ={A B\_.
01,3, 080) 92 58 =10 32 08 = (4.5).
1.3.5 Generating functions for canonical transformations
For a transformation to be canonical, we require
ty iy
6/dt {paq.a - H(q7p7t)} =0= 6/dt {PO'QO' - ﬁ(Q7P7t)} . (152)
ta ta
This is satisfied provided
_ ) ~ dF
{po'qO'_H(q7p7t)}:A{PO'QO'_H(Q7P7t)+%}7 (153)
where ) is a constant. For canonical transformations®, A = 1. Thus,
~ . OF oF .
H(Q,Pt)=H t)+ P — D, o+ 7+ Qo
(Q, Pt) (¢,p,t) + P, Q, pgqo+aqaq +8Q0Q
LOF L OF ,  oF .
ap, L7 T oR, 7 ot
Thus, we require
oF oF oF OF
T A T

which says that F' = F(q,Q,t) is only a function of (g, Q,t) and not a function of the
momentum variables p and P. The transformed Hamiltonian is then

JF (q,Q,1)
ot '
2Note that the rank of a symplectic matrix is always even. Note also MJM t=7 implies M JIM =].

*Solutions of eqn. 1.53 with A # 1 are known as extended canonical transformations. We can always rescale
coordinates and/or momenta to achieve A = 1.

H(Q.P.t)=H(qp,t) + (1.56)
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There are four possibilities, corresponding to the freedom to make Legendre transforma-
tions with respect to the coordinate arguments of F'(¢, Q, 1) :

Fi(q,Q,1t) ; po=+5 . Po=—§5 (typeD)

Fy(q, P,t) — P, Qo D pe=+92 . Qo =+5F (typell)
F(q,Q,t) =

F5(p,Q.t) +po ¢o D G =—98 . Po=—4f% (typelll)

Fi(p,Pt)+pods —Pr Qo 5 Go=—52 , Qo=+55 (typelV)

In each case (y = 1,2, 3,4), we have

~ OF.

H(Q.P.t) = H(g.p.t) + 5 . (157)
Let’s work out some examples:

o Consider the type-II transformation generated by

F2(q7P) :Aa(q) Po ) (158)
where A, (q) is an arbitrary function of the {¢, }. We then have
aFQ aFQ 8Aa
— 22 _ A = = P . 1.59
Thus,
Q, = A,(q) p, = Yo (1.60)
o= 4sq ) o 8@0’ by - :

This is a general point transformation of the kind discussed in eqn. 1.31. For a general
linear point transformation, Q. = M o g WE have P, = Ps M Be al, ie. Q = Mg,
P=pMlIf M5 = 0,4, this is the identity transformation. F, = ¢, P; + ¢3P,
interchanges labels 1 and 3, efc.

o Consider the type-I transformation generated by

Fi(q,Q) = A,(q9) Qs - (1.61)
We then have
o0F; 0A,
Pe = 50 = oa. Qq
L om " (1.62)
o 90, o

Note that A,(q) = ¢, generates the transformation

05
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¢ A mixed transformation is also permitted. For example,

F(q,Q) =q, Q1 + (g5 — Qo) Py + (35 — Q3) Ps (1.64)

is of type-I with respect to index o = 1 and type-II with respect to indices o = 2, 3.
The transformation effected is

Qi=p , QQZ‘I3 ) QgZQQ . Pr=—q , Py=py , P3=p,.

(1.65)
e Consider the n = 1 harmonic oscillator,
AT
H(q,p) = o + 5kq” . (1.66)
If we could find a time-independent canonical transformation such that
p= \/W(P)COSQ ) q= %(P) sin @ (1.67)

where f(P) is some function of P, then we’d have H(Q, P) = f(P), which is cyclic
in Q). To find this transformation, we take the ratio of p and ¢ to obtain

p=vVmkqctnQ , (1.68)
which suggests the type-I transformation
Fi(q,Q) = 3Vmk¢® ctn@ . (1.69)
This leads to
oy OF;  Vmkg?
p 0q mkqem@ 0Q 2 sin’Q (170)
Thus,
q= 4;2 sin@) — f(P):U%P:wP, (1.71)

where w = y/k/m is the oscillation frequency. We therefore have H(Q,P) = wP,

whence P = E/w. The equations of motion are

_OH _
0Q

P= 0o Q:%g:w, (1.72)

which yields

Qt) = wt+ ¢, , q(t) = 52 sin (wt + @) - (1.73)
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1.4 Hamilton-Jacobi Theory

We've stressed the great freedom involved in making canonical transformations. Coor-
dinates and momenta, for example, may be interchanged — the distinction between them
is purely a matter of convention! We now ask: is there any specially preferred canonical
transformation? In this regard, one obvious goal is to make the Hamiltonian H (Q,P,t)
and the corresponding equations of motion as simple as possible.

Recall the general form of the canonical transformation:

~ oF t
H(Q7P>t) :H(q>p7t)+% ) (174)
with
oF oF oF oF
o, P w0 eg, - o ap =0 0P

We now demand that this transformation result in the simplest Hamiltonian possible, that
is, H(Q, P,t) = 0. This requires we find a function F such that

OF ., OF

it . 1.7
oy P Py (1.76)

The remaining functional dependence may be taken to be either on Q (type I) or on P
(type II). As it turns out, the generating function F' we seek is in fact the action, S, which
is the integral of L with respect to time, expressed as a function of its endpoint values.

1.4.1 The action as a function of coordinates and time

We have seen how the action S[n(7)] is a functional of the path 7(7) and a function of the
endpoint values {qq,t,} and {g,,%,}. Let us define the action function S(q,t) as

t
S(q,1) = /dTL(n,ﬁ,T) , 1.77)
ta

where n(7) starts at (gq,tq) and ends at (gq,t). We also require that n(7) satisfy the Euler-

Lagrange equations,
oL d (0L
oy dr <3n0> =0 (1.78)

Let us now consider a new path, 7(7), also starting at (q,, t,), but ending at (¢ + dq, t + dt),
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q+dq

n

ta T tottdt
Figure 1.1: The paths n(7) and 7(7).

and also satisfying the equations of motion. The differential of S is

t-+dt

dsS = S[ﬁ(T)] — S[n(T)] = /dT L(ﬁ,ﬁ,T) — /dTL(T/,f/,T)

/d{;f 100) = 10(0)] + 5 [

/df {W (5 } 1,0 = 1p(0)] + o

=0+ 7, (t) on,(t) + L(n(t),n(t),t) dt + O(qdt) , (1.79)

=l
—~
\]
N—
|
3
q
\]
.,
—
+
~
—
S
=
:_/
S
=
:_/
~
SN—
QL
~

|
Pt
~—~
=
|
3
)
~—~
~
=
—_
-
~
—
S
—
~
S—
A
—
~
S—
~
SN—
QL
~

t

where we have defined 7, = 0L/, , and 01y (7) = 715(7) — 15(7) .
Note that the differential dg, is given by
dQU - ﬁo(t + dt) - T/o(t)
= ﬁU(t + dt) - ﬁU(t) + ﬁo‘(t) - na(t) (180)
o (£) dt + 51, (£) = G, (£) dt + G, (£) + O(3q dt) .

Thus, with 7,(t) = p,, we have

dS = Ps dQO’ + (L — P QO') dt

1.81
=p,dq, — Hdt. (L81)
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We therefore obtain
a8 as I s

et SR . =L (1.82)

What about the lower limit at ¢,? Clearly there are n + 1 constants associated with this
limit: {q;(ta), - ... qn(ta);ta}. Thus, we may write
S=8(q1,- @ Ay Ay )+ A, (1.83)

where our n + 1 constants are {A4,,..., 4, ,,}. If we regard S as a mixed generator, which
is type-I in some variables and type-II in others, then each A, for 1 < ¢ < n may be chosen
to be either Q, or P,. We will define

05 _ {+Q0— if Ay = P, L84

°T A, =P, ifA,=Q,

For each o, the two possibilities A, = Q, or A, = P, are of course rendered equivalent by
a canonical transformation (Qs, Py) — (P, —Qs)-

1.4.2 The Hamilton-Jacobi equation

Since the action S (g, A, t) has been shown to generate a canonical transformation for which
H(Q, P) = 0. This requirement may be written as

os oS ) 25

H — e, — —=0. 1.
<Q17 7qn7 aq17 ,8(]”’ + 8t 0 ( 85)

This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation in
n + 1 variables, and in general is nonlinear (since kinetic energy is generally a quadratic
function of momenta). Since H(Q, P,t) = 0, the equations of motion are trivial, and

Q,(t) = const. , P_(t) = const. (1.86)

Once the HJE is solved, one must invert the relations I, = 95(q, A,t)/0A, to obtain
q(Q, P, t). This is possible only if

825
det (8% Mﬁ) £0, (1.87)

which is known as the Hessian condition.

It is worth noting that the HJE may have several solutions. For example, consider the case
of the free particle in one dimension, with H(q, p) = p*/2m. The HJE is

1 [0SV 08
%(a?) + o =0. (1.88)
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One solution of the HJE is

— A)?
S(g, A1) = "4 (1.89)
2t
For this we find
08 m r
Here A = ¢(0) is the initial value of ¢, and I = —p is minus the momentum.
Another equally valid solution to the HJE is
S(q, A, t) = qV2mA — At. (1.91)
This yields
oS 2m [ A

For this solution, A is the energy and I" may be related to the initial value of ¢(t) =
r'/A/2m.

1.4.3 Time-independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one,
writing

S(g,At) =W(g,A) +T(A,t). (1.93)
The HJE becomes
ow orT

Note that the LHS of the above equation is independent of ¢, and the RHS is independent
of q. Therefore, each side must only depend on the constants A, which is to say that each
side must be a constant, which, without loss of generality, we take to be A,. Therefore

The function W (q, A) is called Hamilton’s characteristic function. The HJE now takes the
form
ow ow
H . — ., | =4 1.
<q17 7Qn> 8(]1 b 9 aqﬂ) 1 ( 96)

Note that adding an arbitrary constant C' to S generates the same equation, and simply
shifts the last constant A, ; — A, ; + C. According to Eqn. 1.95, this is equivalent to
replacing t by ¢t — t, with t; = C'/A,, i.e. it just redefines the zero of the time variable.
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1.4.4 Example: one-dimensional motion

As an example of the method, consider the one-dimensional system,

_ P
H(g,p) =5~ +U(q) - (1.97)
The HJE is
1 (8SY
which may be recast as
oS
S = \/mlA-Ula]. (1.99)
with solution
q
S(q, A t) =V2m [dg' JVA-U(q") — At. (1.100)
We now have
oS
p= (9_q =1/2m [/1 — U(q)] , (1.101)

as well as

q(t)
oS [m dq
I'=—=4/— [———t. 1.102
oAV 2 /\/A—U(Q’) L1

Thus, the motion ¢(t) is given by quadrature:

I+t= (1.103)

q(t)
m / _dd
2 ) \JA=U()’

where A and I are constants. The lower limit on the integral is arbitrary and merely shifts
t by another constant. Note that A is the total energy.

1.4.5 Separation of variables

It is convenient to first work an example before discussing the general theory. Consider
the following Hamiltonian, written in spherical polar coordinates:

potential U(r,0,¢)

"= (p" tat gz ) TAN Y T e (1.104)
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We seek a characteristic function of the form W(r,0,¢) = W:.(r) + Wy(0) + W,(¢). The
HJE is then

LW (oW oWy \
2m \ Or 2mr2 \ 96 2mr2sin?0 \ 0¢

(1.105)
BO) Cl) _, _
+AM)+ 7 2sinZe h=E.
Multiply through by 72 sin?6 to obtain
1 8W¢ 2 .. 2 1 aW@ ’
% a—¢ +C’(¢):—sm9 % W +B(9)
(1.106)

2
— r?sin20 {%(8({;47{7“) + A(r) —/11} )

The LHS is independent of (r, #), and the RHS is independent of ¢. Therefore, we may set

1 (OW,Y B
ope (W) +C(¢) = A, (1.107)

Proceeding, we replace the LHS in eqn. 1.106 with A,, arriving at

2 2
! (%) 1 B(o) + -2 :—72{ ! <8;K> +A(r)—/11}. (1.108)

2m sin%6 2m

The LHS of this equation is independent of r, and the RHS is independent of 6. Therefore,

1 (oW Ay
— | — B(60 =A,. 1.1
2m< 00 > +B( )+sin29 s (1.109)
We're left with
1 (oW, As
%< ar > + A(T‘) + ﬁ =A;. (1.110)

The full solution is therefore

Ay
sin26’

r %
S(q,A,t) = \/%/dr' \//11 — A(r") — f% + \/%/de’ \/A3 — B(#') —
(1.111)

@
+\/%/d¢’ Ay —C(¢)) — Ayt
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We then have

oS
Flza—/ll:\/i/\//l_ _2—75

o(t) o(t)

95 _ ao/
e 04, \/7/811129/ \//1 B(0") — A, csc20! ! \/7/\//1 - C(¢)

a(t)
B ﬁ __/m dr’
"o \/;/ 2/, — AGr) - ﬂf/ VA3 — B#) — Ay s

The game plan here is as follows. The first of the above trio of equations is inverted to yield
r(t) in terms of ¢ and constants. This solution is then invoked in the last equation (the upper
limit on the first integral on the RHS) in order to obtain an implicit equation for 6(¢), which
is invoked in the second equation to yield an implicit equation for ¢(¢). The net result is
the motion of the system in terms of time ¢ and the six constants (A, A,, A5, I}, I, I5). A
seventh constant, associated with an overall shift of the zero of ¢, arises due to the arbitrary
lower limits of the integrals.

(1.112)

In general, the separation of variables method begins with?
=> W,(g,,A). (1.113)

Each W, (q,, A) may be regarded as a function of the single variable ¢,, and is obtained by
satisfying an ODE of the form®

H, <qo, %> = A,. (1.114)
dqo
We then have oW oW
= g I = — t. 1.11
Py 8(]0 ’ o 8/10 + 50,1 ( 5)

Note that while each W,, depends on only a single ¢, it may depend on several of the A,.

1.5 Action-Angle Variables

1.5.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by sepa-
ration of variables. Each momentum p, is a function of only its corresponding coordinate

“Here we assume complete separability. A given system may only be partially separable.
°Note that H,(q,, p,) may itself depend on several of the constants A, . For example, Eqn. 1.110 is of the
form H,(r,0,W,, A3) = A,.
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rotations

T e

Figure 1.2: Phase curves for the simple pendulum, showing librations (in blue), rotations
(in green), and the separatrix (in red). This phase flow is most correctly viewed as taking
place on a cylinder, obtained from the above sketch by identifying the lines ¢ = 7 and

¢ = —m.
¢o plus constants — no other coordinates enter:

oW,
po - aqo_ - po‘(qovA) . (1116)

The motion satisfies H,(¢s, ps) = Ao . The level sets of H, are curves C,. In general, these
curves each depend on all of the constants A, so we write C; = C,(A). The curves C, are
the projections of the full motion onto the (¢,,ps) plane. In general we will assume the
motion, and hence the curves Cy, is bounded. In this case, two types of projected motion are
possible: librations and rotations. Librations are periodic oscillations about an equilibrium
position. Rotations involve the advancement of an angular variable by 27 during a cycle.
This is most conveniently illustrated in the case of the simple pendulum, for which

2

H(py, ¢) = Z—? + 2Iw* (1 — cos ¢) . (1.117)

e When F < Iw?, the momentum p,, vanishes at ¢ = +cos™'(2E/Iw?). The system

executes librations between these extreme values of the angle ¢.

e When E > [ w?, the kinetic energy is always positive, and the angle advances mono-
tonically, executing rotations.

In a completely integrable system, each C, is either a libration or a rotation®. Both libra-
tions and rotations are closed curves. Thus, each C, is in general homotopic to (= “can

c, may correspond to a separatrix, but this is a nongeneric state of affairs.
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be continuously distorted to yield”) a circle, St. For n freedoms, the motion is therefore

confined to an n-torus, T™:
n times

T" =St xSt x--- xSt . (1.118)

These are called invariant tori (or invariant manifolds). There are many such tori, as there are
many C, curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the
dynamical system, expressed as a set of coupled ordinary differential equations.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension n.
Phase space is ‘covered’ by the invariant tori, but it is in general difficult to conceive of how
this happens. Perhaps the most accessible analogy is the n = 1 case, where the “1-tori” are
just circles. Two-dimensional phase space is covered noninteracting circular orbits. (The
orbits are topologically equivalent to circles, although geometrically they may be distorted.)
It is challenging to think about the n = 2 case, where a four-dimensional phase space is
filled by nonintersecting 2-tori.

1.5.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (g, p) to new co-
ordinates (¢, J) which specify a particular n-torus T" as well as the location on the torus,

which is specified by n angle variables. The {.J,} are ‘momentum’ variables which specify
the torus itself; they are constants of the motion since the tori are invariant. They are called

action variables. Since J, = 0, we must have
. OH
— =

o= e = 0 = H=HJ). (1.119)

The {¢,} are the angle variables.

The coordinate ¢, describes the projected motion along C,, and is normalized by

7{ dp, =21 (once around C,) . (1.120)
Co

The dynamics of the angle variables are given by

; 0OH
b, = o vy(J) . (1.121)
Thus, the motion is given by
0y (t) = 6,(0) + v, ()t . (1122)

The {v(J)} are frequencies describing the rate at which the C, are traversed, and the period
is To(J) =27 /v ().
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1.5.3 Canonical Transformation to Action-Angle Variables

The {J,} determine the {C,}; each ¢, determines a point on C,. This suggests a type-II
transformation, with generator F,,(q, J):

O R

— == 1.123
po’ 8q0 ) (bo' 8JO- ( )
Note that”
OF, 0%, %)
or — & do — da _ do. — 2 d 1.124
v fan, = Ja(57) = far o w =gy fre. 12
Cg Cg CO’ CU
which suggests the definition
J, = ifpg dg, . (1.125)
2m
Co
Le. J, is (2m) ! times the area enclosed by C,.
If, separating variables,
W(g, 4) = W,(q,,A) (1.126)
is Hamilton’s characteristic function for the transformation (g, p) — (Q, P), then
1 [ oW,
J, = P oa, dg, = J,(A) (1.127)

o

is a function only of the {A,} and not the {I, }. We then invert this relation to obtain A(.J),
to finally obtain

Fy(q,J) = W (g, A(J)) = W, (4, A(J)) - (1.128)
Thus, the recipe for canonically transforming to action-angle variable is as follows:

(1) Separate and solve the Hamilton-Jacobi equation for W(q, A) = > W5(qs, A).

(2) Find the orbits C, , i.e. the level sets satisfying Hy(¢o, ps) = Ao

(3) Invert the relation J,(A) = 5= § 2= dq, to obtain A(.J).
21 090
Co

4) Fy(q.J) =, Wo(go, A(J)) is the desired type-II generator®.

7 . AFy\ _ 9%y
In general, we should write d (55> 7 ) = N

dinates and momenta other than ¢, and p, are held fixed. Thus, & = o is the only term in the sum which
contributes.
®Note that F,(g, J) is time-independent. Le. we are not transforming to // = 0, but rather to H = H(J).

dg., with a sum over . However, in eqn. 1.124 all coor-
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1.5.4 Example : Harmonic Oscillator

The Hamiltonian is )

p
H= o+ mw ¢° (1.129)
hence the Hamilton-Jacobi equation is
dw \? 2.2 2
— | +mwjq® =2mA. (1.130)
dq
Thus,
dw
p= - j:\/2m/1 — m2wiq? . (1.131)
We now define
24
qg= 5 sinf = p=+v2mA cosf, (1.132)
mwg
in which case )
1 1 24 A
J=— pdq:—-—-/de cos? = — . (1.133)
2 2wy wo
0
Solving the HJE, we write
aw  9dq dW 9
oY 2 0. 1.134
0 o0 dg e (1.134)
Integrating, we obtain
W =J0+%Jsin20, (1.135)

up to an irrelevant constant. We then have

¢=%—VJVq=9+§sin29+J(1+cos29)§—§q. (1.136)
To find (96/0.7),, we differentiate ¢ = \/2.J/mwy sin 6:
dq:\/%dt]—i— niio cosfdfd = %q:—% tan @ . (1.137)
Plugging this result into eqn. 1.136, we obtain ¢ = 6. Thus, the full transformation is
97 \1/2
q= <m—wo> sing , p= \/W cos ¢ . (1.138)

The Hamiltonian is
H=uw,J, (1.139)

hence ¢ = %—Ij =wyand J = —%—I; = 0, with solution ¢(t) = ¢(0) + w,t and J(t) = J(0).
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1.5.5 Example : Particle in a Box

Consider a particle in an open box of dimensions L, x L, moving under the influence of
gravity. The bottom of the box lies at z = 0. The Hamiltonian is
2
H—p—x—i—p—y—i-——i-mgz (1.140)
2m  2m = 2m
Step one is to solve the Hamilton-Jacobi equation via separation of variables. The Hamilton-
Jacobi equation is written

L (oW, Y 1 (oW, Y1 (WY _
%< 0w>+%< ay>+%< az>+m92—E=Az. (1.141)

We can solve for W, , by inspection:
W,

() =2mAx . Wy(y) =+/2mA,y. (1.142)

We then have’

= —\/2m(/1z — Ay — Ay — mgz)
2/2
3ymg

(1.143)

W, (z) = (A, — Ay — Ay — mgz)3/2 .

Step two is to find the C,. Clearly p,, = \/2mA, . For fixed p,, the x motion proceeds
from 2 = 0 to x = L, and back, with corresponding motion for y. For =, we have

p.(2) = Wi(z \/Qm A, — Ay — Ay —mgz) | (1.144)

and thus C. is a truncated parabola, with 2z, = (4. — A, — A4,)/mg.

Step three is to compute J(A) and invert to obtain A(.J). We have

Jx:%jépxdaz:—/dw 2mA :&\/Qm/lx
T
Cx 0
. (1.145)
3= o= Poydy =~ [y /2, = 22 /o
v = op pPv W T L [ AUV E Sy = oV Ay
e, 0
and
JZ:;fpzdz:l/dz\/Zm(/lz—/lx—/ly—mgz)
e i (1.146)
22 3/2
=—— (A, — A, — A .
37.(.\/%9( y)

°Our choice of signs in taking the square roots for W, W, and W/ is discussed below.
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P, 2e

% motion Zz motion

25

Figure 1.3: The librations C. and C,. Not shown is C,, which is of the same shape as C,.

We now invert to obtain

y — 7T2 2 A = 7T2 2
TomI2 T ' Yoo2mL2 Y
2/3
g (B oy 7
z 2V2 T 2ml2 T 2mLEY

RS TR

L, L

om2/3g1/3 5 \3/2
FZ(wayazat] J, J):EJI+W—ny+W<J§/3_M> )
Yy

(3m)2/3

We now find

- OF, _ ™ ¢, = % _ ™y
T 9), L, o T eI,
and
s OF, ) 2m2/3g1/3 2 z
= = T —_ —— =77 —
z aJVZ (37TJZ)2/3 Zmax ’
where 2z, (J.) = (37.J./m)?/3 /2g"/3. The momenta are
_B _ 1l _ B _ Ty
pm_@x_Lw ’ py_ay_Ly

and

1/2
P:= 5 = v2m<< N ) J: mgz )

(1.147)

(1.148)

(1.149)

(1.150)

(1.151)

(1.152)

We note that the angle variables ¢, , . seem to be restricted to the range [0, 7], which seems
to be at odds with eqn. 1.124. Similarly, the momenta p,. , . all seem to be positive, whereas
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we know the momenta reverse sign when the particle bounces off a wall. The origin of the

apparent discrepancy is that when we solved for the functions W, , ., we had to take a
square root in each case, and we chose a particular branch of the square root. So rather

than W, (z) = v/2mA, z, we should have taken

W (z) = V2mA, if pp >0 (1.153)
S\ V2mA, (2L, — ) ifpr < 0. '
The relation J, = (Ly/m)v/2mA, is unchanged, hence
S 2ndy — (ma/ L) Jo if pr < 0. '
and
b, = mz/ ifpo >0 (1.155)
m(2Ly —x)/Ly ifpy <O.

Now the angle variable ¢, advances by 27 during the cycle C,. Similar considerations
apply to the y and z sectors.

1.6 Integrability and Motion on Invariant Tori

1.6.1 Librations and rotations

As discussed above, a completely integrable Hamiltonian system is solvable by separation
of variables. The angle variables evolve as

by (£) = vy (J) t + 6,(0) . (1.156)

Thus, they wind around the invariant torus, specified by {.J,} at constant rates. In general,
while each ¢, executes periodic motion around a circle, the motion of the system as a
whole is not periodic, since the frequencies v (J) are not, in general, commensurate. In
order for the motion to be periodic, there must exist a set of integers, {/,}, such that

Zn: lv(J)=0. (1.157)
o=1

This means that the ratio of any two frequencies v, /v, must be a rational number. On a
given torus, there are several possible orbits, depending on initial conditions ¢(0). How-
ever, since the frequencies are determined by the action variables, which specify the tori,
on a given torus either all orbits are periodic, or none are.
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In terms of the original coordinates ¢, there are two possibilities:

qo_ (t) — Z e Z AETZQZ” eizl(bl (t) e elgn(z)n(t)
fH=—0c0  lp=—00 (1.158)
= Z AG 90 (libration)
£

or

0,(t) = 3 6,(t) + > _ B e®?"  (rotation) . (1.159)
I4

For rotations, the variable ¢,(t) increased by Ag, = 27 ¢ .

1.6.2 Liouville-Arnol’d theorem

Another statement of complete integrability is the content of the Liouville-Arnol’d theorem,
which says the following. Suppose that a time-independent Hamiltonian H (¢, p) has n first
integrals I, (q,p) with k € {1,...,n}. This means that (see Eqn. 1.24)

_d N~ (0L, . 0L .\
0=~ 1Ii(a,p) = > <aq0 Qs 5 po> ={L,H} . (1.160)

o=1

If the {1, } are independent functions, meaning that the phase space gradients {V I, } consti-
tute a set of n linearly independent vectors at every point (¢,p) € M in phase space, and
the different first integrals commute with respect to the Poisson bracket, i.e. {I,,I;} = 0,
then the set of Hamilton’s equations of motion is completely solvable!?. The theorem es-
tablishes that!!

(i) The space M; = {(g,p) € M : I,(p,q) = C,} is diffeomorphic to an n-torus
Tm = St x St x ---S!, on which one can introduce action-angle variables (J, ¢) on
patches, where the angle variables are coordinates on M and the action variables
J.(Iy,...,1,) are first integrals.

rTn

(ii) The equations of motion are I, = 0 and (bk =w,(Iy,...,1,).

Note that the Liouville-Arnol’d theorem does not require that H is separable, i.e. that
H(I) =Y, H¥(I,). Complete separability is to be regarded as a trivial state of affairs.

OTwo first integrals I, and I, whose Poisson bracket {1, I;} = 0 vanishes are said to be in involution.
lGee chapter 1 of http:/ /www.damtp.cam.ac.uk/user/md327/ISlecture_notes_2012.pdf for a proof.
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1.7 Adiabatic Invariants

1.7.1 Slow perturbations

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical

system. A classic example: a pendulum with a slowly varying length [(¢). Suppose A(t)

is the adiabatic parameter. We write H = H (q7 P; )\(t)). All explicit time-dependence to

H comes through A(t). Typically, a dimensionless parameter ¢ may be associated with the
perturbation:

1

€= —

wo

(1.161)

dln A
dt |’

where w is the natural frequency of the system when A is constant. We require ¢ < 1 for
adiabaticity. In adiabatic processes, the action variables are conserved to a high degree of
accuracy. These are the adiabatic invariants. For example, for the harmonix oscillator, the
action is J = E/v. While E and v may vary considerably during the adiabatic process,
their ratio is very nearly fixed. As a consequence, assuming small oscillations,

2J

N — 1.162

E=v]=1mglof = 0o

50 0(£) oc 173/4,

Suppose that for fixed A the Hamiltonian is transformed to action-angle variables via the
generator S(q, J; A). The transformed Hamiltonian is

~ 0S8 dA
where
H(¢p,J; X) = H(q(¢, J; A), p(d, J: A); A) (1.164)
We assume n = 1 here. Hamilton’s equations are now
) 9% dx
0= tor =N axer &
B (1.165)
jo_0H __ 9% dx
9 ONOg dt
The second of these may be Fourier decomposed as
S OSm(J; A) img
J=—i) Em: m e e (1.166)
hence
o e [ 3SwlTEN) A g
AJ—J(t——l—oo)—J(t——oo)——z%:m/dtTEe : (1.167)
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Figure 1.4: A mechanical mirror.

Since A is small, we have ¢(t) = vt + 3, to lowest order. We must therefore evaluate

integrals such as
T (08m(T:N) dA) s
Z, = tq————"— ™. 11

. / d { B\ o } e (1.168)
The term in curly brackets is a smooth, slowly varying function of ¢. Call it f(¢). We
presume f(t) can be analytically continued off the real ¢ axis, and that its closest singularity
in the complex ¢ plane lies at ¢ = +i7, in which case Z behaves as exp(—|m|v7). Consider,
for example, the Lorentzian,

1 T r imy —|m|vT
W) =—mrmm =  [dfR)em = v (1.169)

which is exponentially small in the time scale 7. Because of this, only m = %1 need be
considered. What this tells us is that the change AJ may be made arbitrarily small by a
sufficiently slowly varying A(%).

1.7.2 Example: mechanical mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 1.4. A particle
bounces between two curves, y = +D(x), where |D'(z)] < 1. The bounce time given
by 7,, = 2D/v,. We assume 7 < L/v;, where v, , are the components of the particle’s
velocity, and L is the total length of the system. There are, therefore, many bounces, which
means the particle gets to sample the curvature in D(z).

The adiabatic invariant is the action,

D -D
1 1 2
J = o /dymvy + %/dym (—v,) = —mu, D(zx) . (1.170)
-D D
Thus,
1 2,2 1.2 2 J?

E = im(v; + vy) = 5Mu; SmD(2) (1.171)

or

2
2= 22 (%) . 1.172)
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The particle is reflected in the throat of the device at horizontal coordinate z*, where

D(z*) = : (1.173)

1.7.3 Example: magnetic mirror
Consider a particle of charge e moving in the presence of a uniform magnetic field B = B2.

Recall the basic physics: velocity in the parallel direction v, is conserved, while in the plane
perpendicular to B the particle executes circular ‘cyclotron orbits’, satisfying

(1.174)

p c ~ eB '’

where p is the radial coordinate in the plane perpendicular to B. The period of the orbits
is T = 2mp.v, = 2mwmc/eB, hence their frequency is the cyclotron frequency w. = eB/mc.

Now assume that the magnetic field is spatially dependent. Note that a spatially varying
B-field cannot be unidirectional:

0B,

V-B=V,-B
0z

=0. (1.175)

The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if
the field B felt by the particle varies slowly on the time scale 7" = 27 /w,, then the system
possesses an adiabatic invariant:

1 1 .
J:%%p-cM:%?{(m'v—sz)-dﬂ

(1.176)
= 7{ v-dl + — ¢B-ndX.
mt(C)
The last two terms are of opposite sign, and one has
27 mc 2me
) ) (1.177)
:_eBZp :—L'CDB(C):—m fulc’
2¢ 2me 2eB,
where ® ;(C) is the magnetic flux enclosed by C.
The energy is
E= %mvi + %mvf , (1.178)
hence we have
2
v, =y/—(E—-MB). (1.179)

m
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A
___//—\
v

Figure 1.5: B field lines in a magnetic bottle.

where

(& 62

M=——7J= di(C 1.180
mc 2mmc? B(C) ( )

is the magnetic moment. Note that v, vanishes when B = By.x = E/M. When this limit
is reached, the particle turns around. This is a magnetic mirror. A pair of magnetic mirrors
may be used to confine charged particles in a magnetic bottle, depicted in fig. 1.5.

Letv o, v, and B, be the longitudinal particle velocity, transverse particle velocity,

and longitudinal component of the magnetic field, respectively, at the point of injection.
Our two conservation laws (J and E) guarantee

vﬁ(z) + 23 (2) = Uﬁ,o + Ui,o

1.181
vi(z)? ﬁ ( )
By(2)  Bjo
This leads to reflection at a longitudinal coordinate z*, where
(1.182)
The physics is quite similar to that of the mechanical mirror.
1.7.4 Resonances
When n > 1, we have
e -\ «a 857”(‘]’ >‘) im-¢
JY = —iA ; mt— €
(1.183)

r s A) dA 4
AJ* = —Z'Zmo‘/dt 7857%(;\77 ) o gimvt gimp
m — 0o

Therefore, when m - v(J) = 0 we have a resonance, and the integral grows linearly with
time — a violation of the adiabatic invariance of J“.
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1.8 Canonical Perturbation Theory

1.8.1 Canonical transformations and perturbation theory

Suppose we have a Hamiltonian

H(&,t) = Hy(&,t) +eH,(&,1), (1.184)

where € is a small dimensionless parameter. Let’s implement a type-II transformation,
generated by S(q, P, t):'?

~ B
H(Q,P,t)= H(q,p,t) + g S(q, P.t). (1.185)

Let’s expand everything in powers of e:
q, =Q, —|—eq170+62q2’0 +...
p, =P, —|—ep170+62p270+...
H=H,+eH, +H, + ... (1.186)
S = @ +eS; +e2Sy ... .

identity
transformation

Then
B oS B 851 2 852
Qo= =% T5p T gp, T
(1.187)
=Q, + LI P TR VN
- o Q1,g 3Pa € q2,U aPU € e
and
oS 051 5 0S5
g =7—=P +te—+e —+...
Po = 94, 940 Oqo (1.188)
:P0+ep170+e2p270+... .
We therefore conclude, order by order in e,
a8 a8
qk,o’ = _aPk ) pk,o = +£k . (1189)
Now let’s expand the Hamiltonian:
ﬁ(QJ P7t) - Ho(q7p7t) + 6H1(Q7p7t) + E
B 0Hy 0Hy
- HO(Q7P7t) + aQU (qa QO’) + aPO_ (pa PO') (1190)
0
+eH,(Q,P,t) + e+ 5,(Q, P,t) + O(?)

ot

Here S(q, P, t) is not meant to signify Hamilton’s principal function.
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Collecting terms, we have

0Hy 051 . 0H, 05,

H(Q,P,t)zHo(QvP,tH(— 9Q, 0P, ' 9P, 0Q

+ % + H1> e+ 0O(e?)
(1.191)
= Hy(Q,P,t) + <H + {51, Hy} + aSl) e+ 0O(2) .

In the above expression, we evaluate H,(q,p,t) and S, (q, P,t) at ¢ = @Q and p = P and
expand in the differences ¢ — ) and p — P. Thus, we have derived the relation

H(Q,P,t) = Hy(Q, P,t) + eH,(Q, P,t) + ... (1.192)

with
Hy(Q,P,t) = Hy(Q, P, 1) (1.193)
H\(Q,P,t)=H, +{S,,Hy} + % : (1.194)

The problem, though, is this: we have one equation, eqn, 1.194, for the two unknowns

H, and S,. Thus, the problem is underdetermined. Of course, we could choose H, = 0,
Wthh bas1cally recapitulates standard Hamilton-Jacobi theory. But we might just as well

demand that H | satisfy some other requirement, such as that Ho +eH | being integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary
transformation may be implemented to eliminate a perturbation to lowest order in a small
parameter. Consider the Schrodinger equation,

v

thoy = (Ho+€eHy) Y, (1.195)
and define X by
Y=y (1.196)
with
S=eS +e2Sy+.... (1.197)

As before, the transformation U = exp(iS/h) collapses to the identity in the ¢ — 0 limit.
Now let’s write the Schrodinger equation for X. Expanding in powers of ¢, one finds

HX, (1.198)

1 oS
at + s )+ 1>x+

ih 0
where [A, B] = AB — BA is the commutator. Note the classical-quantum correspondence,

(A B}« ~14.B]. (1.199)

ih

Again, what should we choose for S;? Usually the choice is made to make the O(¢) term
in H vanish. But this is not the only possible simplifying choice.
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1.8.2 Canonical perturbation theory for n = 1 systems

Henceforth we shall assume H(&,t) = H(&) is time-independent, with £ = (¢,p), and we
write the perturbed Hamiltonian as

H(&) = Hy(§) +eHy(§) - (1.200)

Let (¢, J,,) be the action-angle variables for H,,. Then

ﬁO(QSO’ ']0) = H, (q(¢07 JO),p(QSO, Jo)) = ﬁo(z]o) . (1.201)

We define N
Hy(¢g; Jy) = Hy (4(d0: Jp)s (69, p)) - (1.202)

We assume that H = ﬁo + eﬁl is integrable!®, so it, too, possesses action-angle vari-
ables, which we denote by (¢, J)!*. Thus, there must be a canonical transformation taking

(69, Jy) — (¢, ), with B
H(¢y(6, ), Jo(e,])) = E(J) . (1.203)

We solve via a type-II canonical transformation:
S(¢g, J) = ¢ + €Sy (g, J) + € Sy, ) + ..., (1.204)

where ¢/ is the identity transformation. Then

B oS B 851 2852
05 _ L 051, 508 |
qﬁ_aj_gbo—i—e 97 +e€ a7 +...,
and
E(J)=Ey(J)+eE (J)+E Ey(J) + ...
(1.206)
= Hy(¢pg, Jy) + €H(9g, ) -
We now expand H (¢, J,) in powers of .J, — J:
ﬁ(%» Jy) = Ho(%a Jo) + Eﬁl(%, Jo)
~ OH

3This is always true, in fact, forn = 1.
“4We assume the motion is bounded, so action-angle variables may be used.
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Collecting terms,

~ = ~  9H, 85,
H(¢0,J0)—H0(J)+<H1+ 8J 8¢0>€
_ _ , (1.208)
dJ Py 2 0J* \ O¢o 0J 0¢o Y

where all terms on the RHS are expressed as functions of ¢, and J. Equating terms, then,

Ey(J) = ﬁo(!])
~ | 0H, 05
OH, 0Sy | 1 9%, <asl >2 OH, 05,

BT =37 960 T2 92 \9as ) T 97 900

How, one might ask, can we be sure that the LHS of each equation in the above hierarchy
depends only on J when each RHS seems to depend on ¢, as well? The answer is that we
use the freedom to choose each S, to make this so. We demand each RHS be independent

of ¢, which means it must be equal to its average, (RHS(¢,) ), where

(£(%0)) = / 0 1 (50) (1.210)

0

The average is performed at fixed J and not at fixed J,,. In this regard, we note that holding
J constant and increasing ¢, by 27 also returns us to the same starting point. Therefore, .J
is a periodic function of ¢,. We must then be able to write

Sy (99, ) ZS ) e (1.211)
{=—o00
for each k£ > 0, in which case
oS\ 1 B
<8750> =5 (S, (2w, J) — 5,(0,J)] =0. (1.212)

Let’s see how this averaging works to the first two orders of the hierarchy. Since ]?IO(J ) is
independent of ¢, and since 95, /0¢, is periodic, we have

this vanishes!

E,(J) = (Hy(¢9, ) + aHO <g§;> (1.213)

and hence S| must satisfy
951 — M (1.214)
I v(J)
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where v (J) = (‘91ij0 /0J. Clearly the RHS of eqn. 1.214 has zero average, and must be a
periodic function of ¢,. The solution is S, = S;(¢,,J) + f(J), where f(J) is an arbitrary

function of J. However, f(J) affects only the difference ¢ — ¢, changing it by a constant
value f’(J). So there is no harm in taking f(.J) = 0.

Next, let’s go to second order in . We have

OH, 08 10 051\ misz;asmml
A e W L 9% /(921 g2
=Gt aa) *a a0 ((5ar) ) (o) - 029

The equation for S, is then

o = ot (o) = (S o)~ Sy iy S

oo v3(J) oJ oJ oJ aJ
(1.216)
10lnyy [, ~ ~ 2 ~ -
5 2 () - agay oty - ) |
The expansion for the energy E(J) is then
E(J) = Hy(J) + € (H,) + el {<W> (H,) — <W H1>
(1.217)

1 0lnyy

557 (<ﬁf—<ﬁl>2)}+0(e3).

Note that we don’t need S to find E(J)! The perturbed frequencies are v(J) = 0E/0J.
Sometimes the frequencies are all that is desired. However, we can of course obtain the
full motion of the system via the succession of canonical transformations,

(0, J) — (P9, Jy) — (q,p) (1.218)

1.8.3 Example : nonlinear oscillator

Consider the nonlinear oscillator with Hamiltonian

HO
——N—
H( P 1202 4 Teag! 1.219
4.p) =5~ + ymi’ +ieaqt. (1.219)

The action-angle variables for the harmonic oscillator Hamiltonian H, are

2
_ p
¢o = tan”" (mroa/p) Jo = 2mie + gmgg” (1.220)
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\/J—O mu

Figure 1.6: Action-angle variables for the harmonic oscillator.

and the relation between (¢, J,,) and (g, p) is further depicted in fig. 1.6. Note H, = v, J,,.
For the full Hamiltonian, we have

T 1 2JO . .
H(py, Jy) = vyJy + zea| [/ —— sing,
o mvo N (1.221)
= vpdo + 3.2 J3 sin'¢o = Hy(do, Jo) + eHi(dg, Jo) -
0
We may now evaluate
_ 0l fdéy ... 3aJ?
By(J) = (Hy(¢g, J)) = w2 | x5 by = Sm2g (1.222)
0
The frequency, to order ¢, is
3eaJ

Now to lowest order in ¢, we may replace J by J, = miA?, where A is the amplitude of
the ¢ motion. Thus,
3eaA?

v(A) =y, + Sy

(1.224)

This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt
method.

Next, let’s evaluate the canonical transformation (¢, J;) — (¢, J). We have

851 aJ2 3 .4
Yy % = m21/02 <§ — sin qﬁo) =
I (1.225)
S(pg, J) = ¢ J + 8673721/5’ (3 + 28in2¢0) sin ¢, cos ¢ + O(€?) .
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Thus,
oS J
¢ = Y by + % (3+2s1n2¢0) sin ¢ cos ¢y + O(e )
oy 2 (1.226)
ex
Jy = ?% =J+ 8m721/8’ (4 cos2¢, — cos4d) + O(?) .
Again, to lowest order, we may replace J by J; in the above, whence
caJ?
J=Jy— 2 (4 cos 2¢, — cosdey) + O(e?)
*o (1.227)

Ji
¢ = ¢y + 86a2 03 (3 + 28in2¢0) sin 2¢, + (9(62) .

Writing ¢ = (2.J,/mu,)"/? sin ¢y and p = (2mu,J,)"/? cos ¢, one can substitute the above
relations, replacing pairo with pair in the O(€) terms on the RHS of each equation, to obtain
(q,p) in terms of (¢, J), valid to O(e).

1.8.4 n > 1systems : degeneracies and resonances

Generalizing the procedure we derived for n = 1, we obtain

Jo=95 ey 951, 20%
a_ﬁ_ o 051 2 0859
ey Ty N S TR
and
EO(J) = ﬁo(J)
oS
E(J)=H, +v0 2L
() = Hy +15 5 P (1.229)

OH, S, 1 dvg 8S, dS, OH, dS,

B =57 905 ' 2 0J5 0gg oyl 0J° 9y

where v (J) = 9H,(J)/d.J*. We now implement the averaging procedure, with

T 21
de} o
<f(¢5,...,¢6‘,J1,...,J")>=/$ ~~~/%f(¢é,...,¢3,J1,...,J"). (1.230)

0 0

The equation for S| is

o 051

0 gge L — (Hy (g, ) — Hy(¢hg, J) = =3 V() €%, (1.231)
0

y4
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where £ = {¢1 (% ... ("}, with each (7 an integer, and with £ # 0. The solution is

S1(¢o, J) = izleyio . (1.232)
l

where £ - v, = [“v§. When two or more of the frequencies v, (J) are commensurate, there
exists a set of integers [ such that the denominator of D(l) vanishes. But even when the
frequencies are not rationally related, one can approximate the ratios /v’ by rational
numbers, and for large enough [ the denominator can become arbitrarily small.

Periodic time-dependent perturbations

Periodic time-dependent perturbations present a similar problem. Consider the system
H(¢,J,t) = Hy(J) + eV(, 1) , (1.233)

where V (¢t +T') = V(t). This means we may write

V(g J,t) =Y V(g J)e ™
k
_ Z Z Vk,e(‘]) ol ikt
k £

by Fourier transforming from both time and angle variables; here 2 = 27 /T. Note that
V(g,J,t) is real if Vi'p = V_, ;- The equations of motion are

(1.234)

) OH . at il-gp —ik(2
J :—%:—ZE;Z Vk,é(‘])e ¢6 t
. (1.235)
o OH o Ve o(J) il —i
(b :+ﬁ:VO(J)+€ Wee(be th'
k£
We now expand in e:
¢a:¢8+6¢%+62¢%+'” (1.236)
JE= I8 e T+ TS '
To order €’, we have J® = J§ and ¢§ = vt + (5. To order €',
J'loc - Z 1« Vk,Z(JO) vy —kQ)t jil-f, (1.237)
k,l
and .
go— 008 4o Wet) iewy ke s, (1.238)

1 7 978"Y1 e}
o.J" o oJ
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where derivatives are evaluated at J = J|,. The solution is:

1“Vio(Jo) :
=y ke(J0) iev,—k0)t ieg,

k2~ Ly, .
6o — ov§ & Vk,e(JO) 3Vk,£(e]0) 1 SiEv, kD)t itB,
8J] (k2 —£-vy)? OJ§ k2 — b,
When the resonance condition,
k$2 = Lvy(J) (1.240)
oo

holds, the denominators vanish, and the perturbation theory breaks down.

1.8.5 Nonlinear oscillator with two degrees of freedom

As an example of how to implement canonical perturbation theory for n > 1, consider the
nonlinear oscillator system,

2 2
P P
H= Lt 22 4 gmef g} + jmed @3 + febufudal gl (1.241)

Writing H = H, + eH,, we have, in terms of the action-angle variables (gb(()l’2), Jél’z)),
Hy(Jy) = w IV + wy g (1.242)
with g, = (2JF /mw,)'/?sin ¢ and p, = (2mw, JE)'/? cos ¢k with k € {1,2}. We then have
H, (g, J) = bw, wy JD I sin26{V sin2p? (1.243)
We therefore have E(J) = Ey(J) + ¢E,(J) with Ey(J) = Hy(J) = w; JV + w,J?) and
By(J) = (H (¢, J)) = Lbwyw, JVJE (1.244)
Next, we work out the generator S, (¢, J) from Eqn. 1.231:
(Hy (9, D)) = Hy (g, T) = beoyry TDT® [ — sinef sinf | (1.245)
= bwyws Jm g2 {— % cos (2¢(()1) + 2(2582)) — % cos (2(1581) — 2¢(()2))
+ cos 2<;5((]1) + cos 2(;5((]2)} ,

and therefore, from Eqn. 1.232,

sin(20)) +205)  sin(2e8” — 26) | 2sin 26 | 2sin 26
(1.246)

Si(bo,J) = %bwlwz JW 52 {

We see that there is a vanishing denominator if w; = w, .
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1.8.6 Particle-wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field B = B2
and a space- and time-varying electric field E(x, t), described by the Hamiltonian

1
H=5—(p—2A)" + eV coslk o + k2 —wi), (1.247)
m
where € is a dimensionless expansion parameter. This is an n = 3 system with canonical
pairs (z,p,), (y,p,), and (z,p,).

Working in the gauge A = By, we transform the first two pairs (z,y,p,,p,) to convenient
variables (Q, P, ¢, J), explicitly discussed in §1.11.2 below), such that

2 k., P 2
H:wCJ+p_Z+eeVO cos (k:zz—l— = +k; J sinqb—wt) . (1.248)
2m mwe mwe
Here,
P 2J 2J
T = + sin ¢ , y=0Q+/ cos ¢ , (1.249)
MWe MWe MW

with w. = eB/mc, the cyclotron frequency. Here, (Q, P) describe the guiding center degrees
of freedom, and (¢, J) the cyclotron degrees of freedom.

We now make a mixed canonical transformation, generated by

. kP - -
F=¢J+ <k:zz o wt)K ~ PO, (1.250)

where the new sets of conjugate variables are {(qz?, J), (Q,P), (), K )} We then have

~  OF oF ~
b="==0 50 (1.251)
oF kLK -~ - oF
-7 P=—=P 1.252
Q=-5p = +0Q G (1252)
~ OF kP oOF -
The transformed Hamiltonian is
oF
H =H+ —
o
- (1.254)

k2 -, ~ ~ 2J . -
=we + = K —wK +eeVcos (Y+ k| sing | .
2m mw

C

Note the guiding center pair (Q, P) doesn’t appear in the transformed Hamiltonian H’.
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We now drop the tildes and the prime on H and write H = H, + € H;, with

k2
HO:wCJ+—ZK2—wK
2m

57 (1.255)
H, = eV cos <¢+ ARV, o sinqS) .
When e = 0, the frequencies associated with the ¢ and i) motion are
OH, OHy K’K
wgza—;:wc , w2’28—[{0: 7Zn —w=kuv, —w, (1.256)

where v, = p./m is the z-component of the particle’s velocity.

We are now in position to implement the time-independent canonical perturbation theory
approach. We invoke a generator

S(¢, T, ¥, K) = ¢T + K + € S1(¢, T, ¥, K) + € So(6, T, 00, K) + ... (1.257)

to transform from (¢, J, ¢, K) to (®, 7, ¥, K). We must now solve eqn. 1.231:

95, 05,
wga—¢+w2,%:<Hl>—Hl. (1.258)

That is,

051 k2K 051 27 .
w°8—¢+<m —w>%— eAOcos<1/J—i-l<:L o smqﬁ)

= —eA, Z J, (lﬁ_\/ 7721—‘(1) cos(¢) + no) ,

n=—oo

where we have used the result

el = N7 (2) e (1.259)

n=—oo

The solution for S, is then

v
S1(¢,T,¢,K) = Z - Wj_okg K/ J, (kﬂ / %) sin(y) + no) . (1.260)

We then have new action variables J and K, where

K—IC‘FE@‘FO(E )

(1.261)
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Figure 1.7: Plot of A versus 1 for ¢ = 0 (Poincaré section) for w = 30.11 w. Top panels are
nonresonant invariant curves calculated to first order. Bottom panels are exact numerical
dynamics, with x symbols marking the initial conditions. Left panels: weak amplitude
(no trapping). Right panels: stronger amplitude (shows trapping). From Lichtenberg and
Lieberman (1983).

Defining the dimensionless variable

2J

)
Mwe

A=k,

(1.262)

we obtain the result!®

mw? 5 mw? ) ndy(A) cos(h + ng) )
<2€Vbl€i>A N <2€Vb/€i>)\ B 627; w/we —n — k2 K/mw. +O() (1.263)

where A = k| (27 /mw.)'/2.
We see that resonances occur whenever
w k2K B

We MW

n, (1.264)

Note that the argument of J,, in eqn. 1.263 is A and not A. This arises because we are computing the new
action J in terms of the old variables (¢, J) and (¢, K).
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for any integer n. Let us consider the case k., = 0, in which the resonance condition is
w = nw.. We then have

A2 N GZ n Jp(A) cos(¢ + nog) ’ (1.265)

20 20 ~ w/we —n

where

EO CkJ_
o= — -

1.2
B (1.266)

is a dimensionless measure of the strength of the perturbation, with £, = &k V{. In Fig.
1.7 we plot the level sets for the RHS of the above equation A(¢)) for ¢ = 0, for two differ-
ent values of the dimensionless amplitude «, for w/w. = 30.11 (i.e. off resonance). Thus,
when the amplitude is small, the level sets are far from a primary resonance, and the an-
alytical and numerical results are very similar (left panels). When the amplitude is larger,
resonances may occur which are not found in the lowest order perturbation treatment.
However, as is apparent from the plots, the gross features of the phase diagram are repro-
duced by perturbation theory. What is missing is the existence of ‘chaotic islands” which
initially emerge in the vicinity of the trapping regions.

1.9 Removal of Resonances in Perturbation Theory

We follow the treatment in chapter 3 of Lichtenberg and Lieberman.

1.9.1 The case of n = 15 degrees of freedom

Consider the time-dependent Hamiltonian,
H(J,¢,t) = Hy(J) + €V (J,0,t) (1.267)

where V(J,¢,t) =V (J, ¢+ 2m,t) =V (J,¢,t +T) is periodic in time as well as in the angle
variable ¢. We may express the perturbation as a double Fourier sum,

V(J,0,1) =Y Vi y(J) o e (1.268)
k0

where (2 = 27 /T. Hamilton’s equations of motion are

J = _on = —iez k Vi (J) eth? it
¢ k.l 7

(1.269)

OH _ . 8Vk,l(‘]) otk =it

o oJ
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where w,(J) = 0H,/0.J. The resonance condition is obtained by inserting the zeroth order
solution ¢(t) = w,y(J)t + B into the perturbation terms. When kw,(J) = 12, the pertur-
bation results in a secular forcing, leading to a linear time increase and a failure of the
solution at sufficiently large values of t.

To resolve this crisis, we focus on a particular resonance, where (k,¢) = £(ky,¢,), The
equation kqw(J) = ¢, (2 fixes the value of J. There may be several solutions, and we focus
on a particular one, which we write as J = J,. There is still an infinite set of possible
(k,1) values, because if (k,¢,) yields a solution for J = .J;, so does (k,{) = (pk,, p{,) for
p € Z. However, the amplitude of the Fourier components V;;ko ol is, in general, a rapidly
decreasing function of |p|, provided V (J, ¢,t) is smooth in ¢ and ¢. Furthermore, p = 0
always yields a solution. Therefore, we will assume &, and ¢, are relatively prime and take
p = 0 and p = £1. This simplifies the system in Eqn. 1.269 to

J = 2ekyVy sin(kyp — 02t + 6)
ov 5V (1.270)
¢ = wo(J) + ea—JO + 2Ea—j cos(kop — L2t +9)
where V[, y =V} and Vko,fo = ij()’_ 0= V, €. We then expand, writing J = J, + AJ and
Y = koo — £y82t 4 6 + 7, resulting in the system

A
dd—tJ = —2€k0V1(J0) Sin¢
) (1.271)
Y by wh(Jo) AT + ekoV(Jy) — 2ekgV{ (o cost
which follow from the Hamiltonian
K(AJY) = $kowo(Jy) (AT)? + ekg Vi (Jo) AT — 2ekgVy (Jy + AJ)costp (1.272)

with dy/dt = 0K/O(AJ) and d(AJ)/dt = —0K /0. Concerning the last term, we can
drop the AJ term in the argument of V,, leaving V;(J,), because it will yield a term of
second order in smallness in the equation of motion for 7). The remaining term in K linear
in AJ can then be removed by a shift of AJ — AJ — eVj(J,))/wj(Jy). This is tantamount
to shifting the value of J,, which we could have done at the outset by absorbing the term
eVy(J) into Hy(J), and defining w(J) = wy(J) +¢€ %. We are left with a simple pendulum,
with

Y +~2sineg =0 (1.273)

with vy = \/2ek2 w'(J,)V; .

What do we conclude? The original 1-torus (i.e. circle) with J = J;, and ¢(t) = wy(J,) t + B
is destroyed. It and its neighboring tori are replaced, in the case k; = 1, by the separatrix
in the left panel of Fig. 1.8 and the neighboring librational and rotational phase curves.
The structure for k, = 6 is shown in the right panel. The amplitude of the separatrix is
(AT)pax = V8€V)/wj . In order for the approximations leading to this structure to be
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Figure 1.8: Librations, separatrices, and rotations for kg = 1 (left) and ko = 6 (right), plotted
in the (¢, p) phase plane. Elliptical fixed points are shown in magenta. Hyperbolic fixed
points are located at the self-intersection of the separatrices (black curves).

justified, we need (A.J)
written as

< Jy and Aw < wy, where Aw = ~. These conditions may be

max

1
e<a< -, (1.274)
€

where a = dInw,/dIn J|JO = Jolwp|/wp-

1.9.2 n = 2 systems

Consider now the time-independent Hamiltonian H = Hy(J) + eH,(J, ¢) with n = 2
degrees of freedom, i.e. J = (J;, J,) and ¢ = (¢, ¢). We Fourier expand

Hy(J,¢) = Vi(J)e? | (1.275)
£

with € = ({,4y) and V_,(J) = V5 (J) since V,(J) are the Fourier components of a real func-
tion. A resonance exists between the frequencies w, , = 9H,,/0.J, , if there exist nonzero
integers r and s such that rw; = sw,. We eliminate the resonance in two steps. First, we
employ a canonical transformation (¢, J) — (¢, J ), generated by

Fy(,T) = (rog — sdo)Jh + ¢ Ty (1.276)
We then have
_OFy _ _O0F _
Ji = 96, =rJ P = 07, =T — 509 (1.277)
_O0F, _OF,
Jy = % =Ty — s P2 = 07, =¢y . (1.278)
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This transforms us to a rotating frame in which ¢, = r¢, — 56, is slowly varying, while
¢y = ¢y = w,. Note that we could have chosen F, = ¢,J, + (16, — s¢5)T,, in which
case we’d have obtained ¢, = ¢, with an unperturbed natural frequency of w; and ¢, =
r¢, — s¢y slowly varying, i.e. with an unperturbed natural frequency of zero. Which trans-
formation are we to choose? The answer is that we want to end up averaging over the
slower of w, ,, so the generator in Eqn. 1.276 is appropriate if w; > wy. The reason has to
do with what happens when there are higher order resonances to be removed — a state of
affairs we shall discuss in the following section.

At this stage, our transformed Hamiltonian is

H(T, @) = Hy(J(T)) + eH, (J(T), p())

il ls
—901+Z —‘1’52 Yol

where H(J) = Hy(J(J)) and V,(J) = V,(J(T)). Note that ¢; = L, + £ p,. We now
average over ¢, , which requires s¢; +1¢, = 0. Thus, /; = —pr and ¢, = ps for some p € Z,
and

(1.279)

—|—EZV£ ) exp

(Hy) =Y V_o(T)e P (1.280)

—pr,ps
P

The averaging is valid close to the resonance, where |¢,| > |¢,|. We are now left with the
Hamiltonian

K(T. @) =Hy(T)+ €Y Vo (T)e P . (1.281)
p

Here, 7, is to be regarded as a parameter which itself has no dynamics: 7, = 0. Note that
Jy = 2J; + J, is the new invariant.

At this point, ¢, has been averaged out, J, is a constant, and only the (.7}, ¢, ) variables are
. . . . s Lo 0K _ 0K __

dynamical. A stationary point for these dynamics, satisfying 97, = b5, = 0 corresponds

to a periodic solution to the original perturbed Hamiltonian, since we are now in a rotating

frame. Since the Fourier amplitudes V. _prps(J ) generally decrease rapidly with increasing

|p|, we make the approximation of restricting to p = 0 and p = £1. Thus,

K(T. 1) ~ Hy(T) + Vo o(T) + 26V, _(T)cospy (1.282)

where we have absorbed any phase in the Fourier amplitude ‘7 S(J ) into a shift of ¢,

and subsequently take ‘7,,7_8(‘7 ) to be real. The fixed points (j ,gpl ) of the (J,,¥;)
dynamics are solutions to

H, 0V v, _,
0:804—6 00 4 2¢ —— COS (1

a7, " a7, a7, (1.283)
0= 2e ‘N/n_s sin ¢
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Figure 1.9: Motion in the vicinity of a resonance, showing elliptical fixed point in green,
hyperbolic fixed point in red, and separatrix in black.

Thus, ¢; = 0 or 7 at the fixed points. Note that

dH, OH, dJ, L 0H, 9y
8J,  9J, 0J,  9J, 8,

=7Tw; —Swy =0, (1.284)

and therefore fixed points occur for solutions jl(o) to

Moo v,

=0 |, 1.285
where the upper sign corresponds to gpgo) = 0 and the lower sign to 9050) = 7. We now

consider two cases.

(i) accidental degeneracy

In the case of accidental degeneracy, the resonance condition rw, = swj is satisfied only
for particular values of (J;,J,), i.e. on a set J, = J,(J;). This corresponds to the case
where H(J;,J,) is a generic function of its two arguments. According to Eqn. 1.282,
excursions of J; relative to its value j at the fixed points are on the order of e V,,’_
while excursions of ¢, are O(1). We may then expand

OH, 10%H,

0
ZO0A
T, ity TR

s/

Hy(J,, ) = Hy(7", 7,) + (AT +... (1.286)

where the derivatives are evaluated at J; = jl(o . Thus, we arrive at what is often called
the standard Hamiltonian,

K(ATy, ¢1) = 3G (AT))* — Feosg; (1.287)
with
9°H,

. F(%) = —2eV,_ (7", 3) . (1.288)
8‘71 j(o)

G(T2) =
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Thus, the motion in the vicinity of every resonance is like that of a pendulum, meaning libration,
separatrix, and rotation in the phase plane. F'is the amplitude of the first Fourier mode
of the perturbation (i.e. [p| = 1), and G the ‘nonlinearity parameter’. For F'G > 0 the el-
liptic fixed point (EFP) is at ¢; = 0 and the hyperbolic fixed point (HFP) at ¢; = =. For
FG < 0, the locations are switched. The frequency of libration about the EFP is given

by v, = VFG = (’)(\/ dN/T’_S > The frequency decreases to zero as the separatrix is ap-
proached. The maximum excursion along the separatrix is (AJ})max = 2v/F/G which
is also O (\ / dN/T’_S > The ratio of semiminor to semimajor axis lengths for motion in the

vicinity of the EFP is
(Ajl)ma F 1/2
———= =/ ==0e . 1.289

(A(pl)max G ( ) ( )

(ii) intrinsic degeneracy
In this case, H(J;, J,) is a function of only the combination s.J; + rJ, = 7,, so

K(T 1) = Ho(Jo) + Voo (T) +2¢ V(T cos oy (1.290)
In this case excursions of 7; and ¢, are both 0(6‘7.’.), and we are not in general licensed

to expand in AJ,. However, in the vicinity of an EFP, we may expand, both in A7, and
Ay, resulting in

K=1iG(AT)? + 3F (Ap))* | (1.291)
where
92H %V, 9V, _, _
G(Jp) = | 573 +e gz + 2523 L PR =26V, (3 )
Ji Ji NG O 7

(1.292)
For the case of intrinsic degeneracy, the first term in brackets on the RHS of the equation for
G(J,) vanishes, since H, is a function only of 7,. Hence F and G are both O(€V,, , ), hence
v, = VFG = O(e) and the ratio of semiminor to semimajor axis lengths of the motion is

=0(1) . (1.293)

1.9.3 Secondary resonances

By averaging over the ¢, motion and expanding about the EFP, we arrived the Hamilto-
nian in Eqns. 1.291 and 1.292. In so averaging, we dropped all terms on the RHS of Eqn.
1.279 for which s¢; + r¢y # 0. We now restore those terms, and continue to expand about
the EFP. The first step is to transform the harmonic oscillator Hamiltonian in Eqn. 1.291 to
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action-angle variables; this was already done in §1.8.3. The canonical transformation from
(AT, Apy) to (I, x;) is given by

AJ, = (2RI,)"? cos x, , Ag, = (2R'I)Y?siny, (1.294)
with R = (F/G)Y/?. We will also define I, = 7, and x, = ¢,. Then we may write
KT o1) — Ko(D) = By(5" L) + (L) Ly = 5 GL) T+ . (1295)

where the last term on the RHS before the ellipses is from nonlinear terms in Ag,;. The
missing terms we seek are

ﬁ{ _ Z ";ve(jl((])’lz) eiél(ZR*1]1)1/2 sin x4 /7 ei(rél—i-sZQ)Xz/r ] (1296)
£

Note that we set J; = jl(o) in the argument of XN/Z(J ), because AJ, is of order €'/2. Next
we invoke the Bessel function identity,

eiusinx _ Z Jn(u) einx ’ (1297)
SO we write B N 4 '
Hi — K (I, x) = Z Z We’n(I) Xy i(rly+sly)xo /T 7 (1.298)
£ n
where
~ b |21
WD) = V(7. 1) J,, (71\/ f ) : (1.299)
We now write N N B
K(I,x) = Ko(I) + L (I, x) - (1.300)

Here, while € = ¢ it is convenient to use a new symbol since ¢ itself appears within /.

A secondary resonance will occur if r'vy = s'vy, with v;(I) = K, /01 ;and ', s" € Z. Note

that v, = O(¢'/?) while v, = O(1) in the case of an accidental primary resonance. As be-
fore, we may eliminate this new resonance by transforming to a moving frame in which
the resonance shifts to zero frequency to zeroth order and then averaging over the remain-
ing motion. That is, we canonically transform (I,x) — (Z,%) via a type-II generator
Fy = (r'xy = 'X2) I; + X I,, yielding

OF OF!
I,=—2=4'7 =—2 =y, — 4§ 1.301
1 3X1 T4 Py Z?Il X1 — S X2 ( )
OF! OF!
IL,=—2=17,-4§7T =2 1.302
2 8X2 2 —S1Lq g 812 X2 ( )

The phase angle in Eqn. 1.298 is then

s n ns st
(a+26)u=S0+ (5 + S )u, (1309
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ATy
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%S J P

Figure 1.10: Motion in the vicinity of a secondary resonance with ' = 6 and s’ = 1.
Elliptical fixed points are in green, hyperbolic fixed points in red, and separatrices in black
and blue.

Averaging over 1,(t) then requires nrs’ + ¢, sr’ + {yrr’ = 0, which is satisfied when
n=gr' . ly=kr , ly=—js —ks (1.304)

for some j, k € Z. The result of the averaging is

()

2

= Ko(I(D) + €Y T _ju(T) eI (1.305)
J

where
= 0 21,(T)
FjT’,—jS/(I) p— WkT,—jS’—kS,j?", (I(I)) = VkT,—jS,—kS (jl( )712) erf (]{7 1T . (1-306)

Since <IC> »
invariant for the new oscillation.

is independent of 15, the corresponding action Z, = j—:[ 1 + I, is the adiabatic
2

Strength of island resonances

To assess the strength of the secondary resonances, we consider r = s = j = k = s’ =1,
in which case ' = v,/v; = O(e”'/?) is parametrically large. The resulting structure in
the phase plane is depicted in Fig. 1.10 for ' = 6. The amplitude of the Z, oscillations is
proportional to

J. (2L (Z)/2R)"/?) ~

r'/2

1 (1/2)]

The frequency of the island oscillations is of the same order of magnitude. Successive
higher order resonances result in an increasingly tiny island chain amplitude.



52 CHAPTER 1. HAMILTONIAN MECHANICS

1.10 Whither Integrability?

We are left with the question: what happens when we perturb an integrable Hamiltonian,
H(J,¢) = Hy(J) + e H,(J, $)? Two extreme conjectures, and their refutations:

(i) H(J,¢) is always integrable, even though we may not always be able to obtain the
corresponding action-angle variables. Tori are deformed but not destroyed. If this
were the case, there would be n conserved quantities, i.e. the first integrals of mo-
tion J;. This would violate the fundamental tenets of equilibrium statistical physics,
as the canonical Gibbs distribution ¢ = exp(—fH)/Z would be replaced with the
pseudo-Gibbs distribution, o = exp(—A\;1;)/Z, where {),} are a set of Lagrange multi-
pliers!®.

(ii) Integrability is destroyed for any ¢ > 0, in which case £ = H(J, ¢) is the only
conserved quantity!”. If this were the case, the solar system would be unstable, and
we wouldn’t be here to study Hamiltonian mechanics.

So the truth lies somewhere in between, and is the focus of the celebrated KAM theorem!8.

We have already encountered the problem of resonances, which arise for tori which satisfy
£-wy(J) = 0 for some integers £ = {/,,...,¢,}. Such tori are destroyed by arbitrarily small
perturbations, as we have seen. This observation dates back to Poincaré. For a given torus
with an (n — 1)-dimensional family of periodic orbits, J,, = J,,(J;, ..., J,_,), it is generally
the case that only a finite number of periodic orbits survive the perturbation. Since, in
a nondegenerate system, the set of resonant tori is dense, it seems like the situation is
hopeless and that arbitrarily small € will induce ergodicity on each energy surface. Until
the early 1950s, it was generally believed that this was the case, and the stability of the

solar system was regarded as a deep mystery.

Enter Andrey Nikolaevich Kolmogorov, who in 1954 turned conventional wisdom on its
head, showing that, in fact, the majority of tori survive. Specifically, Kolmogorov proved
that strongly nonresonant tori survive small perturbations. A strongly nonresonant torus is
one for which there exist constants & > 0 and 7 > 0 such that |£ “wo(J )‘ > «|[€|77, where
|€| = |61| + ...+ |¢,|. From a measure theoretic point of view, almost all tori are strongly
nonresonant for any 7 > n — 1, but in order to survive the perturbation, it is necessary that
€ < o?. For these tori, perturbation theory converges, although not quite in the naive form
we have derived, i.e. from the generator S(J, @) = Sy + €S, + €25, + ..., but rather using
the ‘superconvergent’ method pioneered by Kolmogorov.

Since the arithmetic of the strongly nonresonant tori is a bit unusual, let’s first convince
ourselves that such tori actually exist!?. Let A7, denote the set of all w € R satisfying, for

!%The corresponding microcanonical distribution would be [Tj=, 0(; — (I;)), as opposed to 6(H — E).

7Without loss of generality, we may assume ¢ > 0.

8 KAM = Kolmogorov-Arnol’d-Moser, who developed the theory in a series of papers during the 1950s and
1960s.

YGee J. Poschel, A Lesson on the Classical KAM Theorem, Proc. Symp. Pure Math. 69, 707 (2001), in §1.d.
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fixed o and 7, the infinitely many conditions £ - w > «|€|~7, for all nonzero £ € Z". Clearly
A], is the complement of the open and dense set R}, = |, seezn R4 0 Where

= {w ER" : |- w| < a|£|‘T} . (1.308)

For any bounded region w € R", we can estimate the Lebesgue measure of the set R}, N Q2
from the calculation
p(R,NQ) <Y u(RL,NQ) =0(a) (1.309)
££0
The sum converges provided 7 > n — 1 since pu(R], , N Q) = O(a/|f|*!). Taking the
intersection over all a > 0, we conclude R” = [,.o R7, is a set of measure zero, and
therefore its complement, A™ = |J,.,A7}, is a set of full measure in R". This means

that almost every w € R" belongs to the set A", which is the set of all w satisfying the
Diophantine condition |£ - w| > « |€|~7 for some value of «, again provided 7 > n — 1.

We say that a torus survives the perturbation if for e > 0 there exists a deformed torus in
phase space homotopic to that for e = 0, and for which the frequencies satisfy w, = f(¢) w,,
with lim,_,o f(e) = 1. Note this says w;/w;, = wy ;/w ;. Only tori with frequencies in A],
with @ > /e survive. The KAM theorem says that the measure of the space of surviving
tori approaches unity as € — 0.

1.11 Appendices

1.11.1 Hamilton-Jacobi theory for point charge plus electric field

Consider a potential of the form

U(r) = é — Fz, (1.310)

which corresponds to a charge in the presence of an external point charge plus an external
electric field. This problem is amenable to separation in parabolic coordinates, (£, 7, ¢):

r=v/E&ncosy , y=+/Ensiny |, z:%(g—n). (1.311)
Note that
PENVT Y = Ve (1.312)
r= VAT = e+
The kinetic energy is
T — %m(p2—|—p2gb2—|—z2)
£2 7> (1.313)
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and hence the Lagrangian is
S 2k
L= + + ~—+1F
m (¢ n)<£ n) m&n @ o (€=mn).

Thus, the conjugate momenta are

oL _ ¢
oL 7
Py = =Am(E+n);

and the Hamiltonian is

H=p+p,0+p,¢

2 [ EpE+np? 2 2%
:E< : 1)+ Y + —3F(E-n).

§+mn 2mén £+

(1.314)

(1.315)

(1.316)

Notice that 0H /0t = 0, which means dH/dt = 0, i.e. H = E = A, is a constant of the
motion. Also, ¢ is cyclic in H, so its conjugate momentum p,, is a constant of the motion.

We write

= Wf(é,/l) + Wn(nv A) + Wgo((pv A) — Et.

with ' = A,. Clearly we may take

Wy(p,A) =P,

where P, = A,. Multiplying the Hamilton-Jacobi equation by 2m

P2
£<dd_mg§> + 4—5 +mk — F¢ — tmE¢

dW 2 P2
= -7 ————F77 + mEn T,
dn 4n

where 1" = A, is the third constant: A = (F, P,,7). Thus,

q
mk
(6777(107EP T /df\/ E—|— % Fé‘/_ 4

(1.317)

(1.318)

(€ + n) then gives

(1.319)

(1.320)
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1.11.2 Hamilton-Jacobi theory for charged particle in a magnetic field

The Hamiltonian is

H= ﬁ (p . §A>2 . (1.321)

We choose the gauge A = Bzy, and we write
S(x,y, P, Py) = Wy(x, P, Py) + W, (y, P, Py) — Py t. (1.322)
Note that here we will consider S to be a function of {¢,} and {P,}.

The Hamilton-Jacobi equation is then

oW\ oW, eBzx\?
——— | =2mP,. 1.323
(o)~ (G- 2) =2m 13
We solve by writing
2 2
- B
W,=Py = <dZ > + <P2 - %) —2mP, . (1.324)

This equation suggests the substitution

B chPy c .
xr = e—B + E_B 2’1’)’LP1 sm@ . (1325)
in which case 5
T c
% = E 2mP1 cos 6 (1326)

and
ow, oW, 00  eB 1 oW,

dr 00 dxr  c/2mP; cosf 00
Substitution into eqn. 1.324, we have OW,. /00 = (2mcP; /eB) cos?0 which integrates to

(1.327)

~ meP; mcP; .
W, = B 0+ 50 sin(20) . (1.328)
We then have o ——
€T €T €
= = —— = \/2mP, 1.32
Dy D 25/ 50 mPy cosf (1.329)

and p, = W, /0y = P,. The type-II generator we seek is then

B meP; meP; .
S(q, P,t) = B 0+ 505 sin(20) + P,y — Py t, (1.330)
where B »
e . crs
0= —— HWe-—=2). 1.331
c/2mPy S <ac eB) ( )



56 CHAPTER 1. HAMILTONIAN MECHANICS

Note that, from eqn. 1.325, we may write

C mc

1
dr = — .
eB 2 eB \V2mP,

sinf dP; + iB V2mP; cosdf (1.332)
e

from which we derive

06 tan 6 00 1
= =— : 1.333
oOP, 2P, ’ 0P 2mP; cos 6 ( )
These results are useful in the calculation of @, and Q,:
08  me meP; 00 me . melPy 00
“=op BT em o T2 T P Tt
me
=gt
and
oS mcP; 00
=—=y+ 14 cos(20)| =

=y — £\/2mP1 cosf .

Now since H (P,Q) = 0, we have that Qo = 0, which means that each Q, is a constant. We
therefore have the following solution:

x(t) = x5+ A sin(w.t + 9)

(1.336)
y(t) =y, + A cos(w.t +6) ,
where w. = eB/mc is the ‘cyclotron frequency’, and
P
Zz =22 s Y=Qy , =w.Q Azi\/QmP;[. (1.337)

07 ¢B eB
1.11.3 Action-angle variables for the Kepler problem

This is discussed in detail in standard texts, such as Goldstein. The potential is V(r) =
—k/r, and the problem is separable. We write?”

W (r,0,0) = W,(r) + Wy(0) + W, (¢) . (1.338)
hence
L oW, 2 N 1 OWpy 2 n 1 anp ’ + V(T) —E=A (1.339)
2m \ or 2mr2 \ 00 2mr?sin \ Oy T '

2We denote the azimuthal angle by ¢ to distinguish it from the AA variable ¢.



1.11. APPENDICES 57

Separating, we have

2m \ dp

2
LMY g e . s

©

Next we deal with the 6 coordinate. We have

2
i<%> gy e (1.341)

2m \ df sin?6

and therefore

0o

Jy = 4\/2m A, /d@ V1= (Ap/ ) esc26
0

(1.342)
- 27T\/2m<\//1 _ ,/Asp) ,
where ) = sin™!(A,/Ap). Finally, we have for the radial coordinate
1 (dw,\? ko A
— (=) = —— 1.343
2m< dr ) B roor2 ( )
and so?!
A
Jp = j{dr \/2m<E+ k_ —;")
roor
Cr (1.344)
2
- —(J9+J¢)+wk,/% ,
where we’ve assumed E < 0, i.e. bound motion.
Thus, we find
2,7.2
Hep—__ 20mk - (1.345)
(JT + Jp + Jgo)
Note that the frequencies are completely degenerate:
1/2
oOH 4r2mk? m2mk? / (1.346)
V=V — = = _— .
70,0 8Jr79,¢ (Jr Tyt Jgo)g 2 ’E‘3

This threefold degeneracy may be removed by a transformation to new AA variables,

{(¢T7Jr)7 (99 Jp); ((b@,Jw)} — {(X17j1)7 (Xo» ), (Xgajs)} ) (1.347)

'The details of performing the integral around C, are discussed in e.g. Goldstein.
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using the type-II generator

F2(¢r7¢97¢<p;\717\727j3) = ((bgp - ¢9) jl + ((b@ - (br) j2 + (br j?, ) (1348)

which results in

8F‘2 8F2
X1 =57 = b, — Pp J, 96, N (1.349)
_ 0B 0B,
X2 =57, = Py — &r Jo=73 role To— T3 (1.350)
_ 0B _ OB _
Xs= 57, = o8 J, = 9o, I - (1.351)
The new Hamiltonian is -
2m2mk
H(J, J2, J3) = —% , (1.352)
3

whence v, = v, = 0and v; = v.

1.11.4 Action-angle variables for charged particle in a magnetic field

For the case of the charged particle in a magnetic field, studied above in section 1.11.2, we

found P
_PC pp g
T = B + B 2mP; sind (1.353)

with p, = v/2mP; cosf and p, = P, . The action variable J is then

2m
B _ 2mcPy 9, mch
J—j{pzdw— B /d@cos 0= 5 (1.354)
0
We then have
W = J6 + 4Jsin(20) + Py, (1.355)
where P = P,. Thus,
0
¢ = ow =0+ 3sin(20) + J[1 + cos(26)] P
0J oJ
tan 6 (1.356)
=0 + $sin(20) + 2.J cos®0 - <— 57 ) =0.

The other canonical pair is (@), P), where

_ow e cos ¢ . (1.357)

@=23p "V "\ 2B



1.11. APPENDICES 59
Therefore, we have
cP 2cJ . 2cJ
=5 e—Bsmgb , y—Q—I—\/e—Bcosqb (1.358)
and
2eB
p, = ec I osp p, =P (1.359)
The Hamiltonian is
2 2
o 1 eBx
H="*+— -
2m  2m <py c )
B B (1.360)
= —= cos’p + el sin?¢p = we
me
where w. = eB/mc. The equations of motion are
. OH . 0OH
_ g - = 1.361
and oH oH
)=— =0 P=—"2=0. 1.362

Thus, @, P, and J are constants, and ¢(t) =

1.11.5 Canonical perturbation theory

Consider the Hamiltonian

2
p
H=-—
2m

where € is a small dimensionless parameter.

1,221
+omwyq” + 3emw

¢+ wet.

for the cubic oscillator

3
29
0;7

(a) Show that the oscillation frequency satisfies v/(J) = w, + O(e?). That is, show that the

tirst order (in ¢€) frequency shift vanishes.

Solution: It is good to recall the basic formulae

0= 1|22 sing,
mwo
as well as the results
oS
Jy=5—=J+c¢
07 O¢o
oS

¢:$:¢0+6

P =/ 2muwgJo cos g (1.363)
— te€ — + ...
dp0 " Do
(1.364)
051 405
W + € W + ... s
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and

Ey(J) = Hy(J)

~ OH, 08
El(']) = H1(¢0’ J) 8J0 8(}5(1] (1.365)

B,y = 0o 052 | 1 0y (0S1Y' | OH, 0,
20T By 2 92 \ Doy aJ ¢y

Expressed in action-angle variables,

Hy(¢g, J) = wy J

» 2 2w _ (1.366)
H1(¢0,J) = g\/ a2 J3/2 Sln3¢0 :

Averaging the equation for £, (J) yields

0_
Thus,yo— 57 =W -

E\(J) = (H, (¢, ) = ;/ j;’o J32 (sin®¢y) = 0. (1.367)

(b) Compute the frequency shift v(.J) to second order in e.
Solution : From the equation for F,, we also obtain

95 1 ~
T = o () ). (1.368)

Inserting this into the equation for F,(.J) and averaging then yields
1 /OH, (= = — OH,
ByJ) = <aJ (<H1>_H1>> V0<H1 aJ>

B 41/0J 6
 3ma? < ¢0>

(1.369)

In computing the average of sin®@,, it is good to recall the binomial theorem, or the Fi-
bonacci tree. The sixth order coefficents are easily found to be {1, 6, 15, 20, 15,6, 1}, whence

1 ( iy _ e_id)o)ﬁ
2i)° (1.370)
— 25in 6¢ + 12sin 4¢, — 30sin 2¢, + 20) .

Sin6<;50 =

—~

1
64

Thus (sin®¢,) = 2 ,whence

(1.371)
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and
e

_W:

5.2 J
ma

v(J)

(¢) Find ¢(t) to order €. Your result should be finite for all times.

Solution : From the equation for F, (J), we have

051 2 2.J3

- = - i3
Odo 3\ mwoa? Sin7e, -
Integrating, we obtain
2 2.J3
Si(¢g,J) = 3 7mw0a2 (COS o — %cosggbo)
J3/2
= W (COSQSO — %COS3¢0) .
Thus, with
we have
oS 3 eJV2
¢ = ﬁ = (250 + §7W (COS¢O — %COS?)(Zﬁo)
3/2
Jy 05 J <J (sin b — %sin 3450) .

- o 0 vV 2mwoa?

Inverting, we may write ¢, and .J; in terms of ¢ and J:

) _¢—|—§76J1/2 (% cos 3¢ — cos ¢)
0 2 \/2mwoa? \°
€ J3/? . .
JO—J—FW(%SIH?)QS—SIHQS).
Thus,
2Jy .
t) =
alt) =/ -2 sin o,
2J 0J .
= mwoSID(JS'<1—|—§+...><Sln¢—|—5¢COS¢+...)
o l2d €J 1 2
=\ sin —mwa(1+§cos2¢)+(9(e),
with

o(t) = ¢(0) +v(J)t.

61

(1.372)

(1.373)

(1.374)

(1.375)

(1.376)

(1.377)

(1.378)

(1.379)



