
PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #3

(1) Create your own pixelated image to iterate under the cat map. You can also find
many interesting images over the web. (Nothing pornographic, please!1) Iterate the pixel
coordinates under the cat map. Show how your image gets scrambled after a few iterations
of the map, but is nevertheless recurrent. You’ll need to write a computer code to do this
problem.

Solution: Here is the matlab code I wrote:

function cat_map(filename,num_iter)

orig_fig=importdata(filename);

%import the figure, which ideally should be square (n by n)

len=length(orig_fig);

[p,q]=meshgrid(1:len); %generate the meshgrid

q_prime=q+p;

p_prime=q+2*p;

q_prime=mod(q_prime-1,len)+1;p_prime=mod(p_prime-1,len)+1; %the cat map

%q_prime is the new x coordinate; p_prime is the new y coordinate

linear_indx=sub2ind([len,len],p_prime,q_prime);

linear_indx=linear_indx(:);

old_fig=orig_fig;

old_fig=reshape(old_fig,[len*len,3]);

for i_iter=1:num_iter

new_fig=old_fig(linear_indx,:);

old_fig=new_fig;

end

%figure;

new_fig=reshape(new_fig,[len,len,3]);

imagesc(new_fig);

axis equal

axis off

xlim([1,len]);

ylim([1,len]);

1Well, I suppose animal sex is OK, if you must.
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Figure 1: The cat map on a piglet.

The argument ’num iter’ is the number of the cat map you would like to perform on your
cool figure. Here is mine.

(2) Numerically integrate the system

ṙ = r(1− r2) + λr cos θ

θ̇ = 1

with 0 < λ < 1, and show that any initial condition lying between the concentric circles of
radii

√
1± λ approaches a closed limit cycle in the long time limit. Choose whatever value

of λ suits your taste.

Solution: One can use the function ode45 to integrate the differential equation above with
certain initial condition. Without loss of generality, θ(0) is set to be zero. The time evolution
of r with various initial condition is shown in Fig. 2
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Figure 2:

(3) Consider the equation
ẍ+ x = ε x5

with ε� 1.

(a) Develop a two term straightforward expansion for the solution and discuss its unifor-
mity.

(b) Using the Poincaré-Lindstedt method, find a uniformly valid expansion to first order.

(c) Using the multiple time scale method, find a uniformly valid expansion to first order.

Solution: We can formally expand the solution as:

x(t) = x0(t) + εx1(t) + ε2x2(t) + ... (1)

Plugging the expression into differentiate equation above, we obtain the equation for each
order by matching the power of ε. The zeroth order simply describes harmonic oscillators:

ẍ0 + x0 = 0 (2)

The solution is x0(t) = A cos(t+ φ). The second order equation is:

ẍ1 + x1 = x50 (3)
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The time dependence of right hand side (R.H.S) is known from the zeroth order solution:

x50 = A5

16 (10 cos(t+ φ) + 5 cos(3t+ 3φ) + cos(5t+ 5φ)) (4)

The first term causes resonance in this order, and invalids the simple expansion.

Now we apply the Poincaré-Lindstedt method. We define s = Ωt, then the Hamiltonian
becomes:

Ω2 ∂2x
∂s2

+ x = εx5 (5)

Besides the expansion of x, we also need expand Ω2 as 1+εa1+ε2a2+ .... Again we separate
the equations by matching different orders of ε. The zeroth order is unchanged. The first
order becomes:

∂2x1
∂s2

+ x1 = x50 − a1 ∂
2x0
∂s2

(6)

Plugging in the zeroth order solution, the R.H.S reads:

x50 = (58A
5 + a1A) cos(s+ φ) + 5

16A
5 cos(3s+ 3φ) + 1

16A
5 cos(5s+ 5φ) (7)

The resonant term can be removed by setting a1 = −5
8A

4. Then the first order solution is:

x1(s) = − A5

384(15 cos(3s+ 3φ) + cos(5s+ 5φ)) (8)

Therefore, up to first order, we have

x(s) = A cos(s+ φ)− ε A5

384(15 cos(3s+ 3φ) + cos(5s+ 5φ)) (9)

where s =
√

1− 5
8A

4εt.

Next, we apply the multiple time scale method to this problem. We define ∂
∂t = ∂

∂T0
+ε ∂

∂T1
...,

along with the usual expansion of x(t). The zeroth order equation is:

∂2x0
∂T 2

0
+ x0 = 0 (10)

The solution is x0 = A cos(T0 + φ). For simplicity, we set θ to be T0 + φ. Then we plug it
into the first order equation:

∂2x1
∂θ2

+ x1 = A5 cos5 θ + 2 ∂
∂T1

A sin θ (11)

The R.H.S reads:

5
8A

5 cos θ + 5
16A

5 cos 3θ + 1
16A

5 cos 5θ + 2 ∂
∂T1

A sin θ (12)

In order to remove the resonant term, we demand:

∂
∂T1

A = 0

∂
∂T1

θ = − 5
16A

4
(13)
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Therefore θ = T0 − 5
16A

4T1 + θ0 = (1− 5
16εA

4)t+ θ0. The solution of Eq. 17 is :

x1(θ) = − A5

384(15 cos 3θ + cos 5θ) (14)

and the full solution is:

x(θ) = A cos θ − ε A5

384(15 cos 3θ + cos 5θ) (15)

with θ = (1− 5
16εA

4)t+θ0. This is consistent with what we got using he Poincaré-Lindstedt
method.

(4) Consider the equation
ẍ+ ε ẋ3 + x = 0

with ε� 1. Using the multiple time scale method, find a uniformly valid expansion to first
order.

We apply the multiple time scale method to this problem. We define ∂
∂t = ∂

∂T0
+ ε ∂

∂T1
...,

along with the usual expansion of x(t). The zeroth order equation is:

∂2x0
∂T 2

0
+ x0 = 0 (16)

The solution is x0 = A cos(T0 + φ). For simplicity, we set θ to be T0 + φ. Then we plug it
into the first order equation:

∂2x1
∂θ2

+ x1 = A3 sin3 θ + 2 ∂
∂T1

A sin θ (17)

The R.H.S reads:
3
4A

3 sin θ − 1
4A

3 sin 3θ + 2 ∂
∂T1

A sin θ (18)

In order to remove the resonant term, we demand:

∂
∂T1

A = −3
8A

3

∂
∂T1

θ = 0
(19)

Therefore 1
A2 = 3

4T1+A0 = 3
4εt+A0, where A0 is an integrating constant, and θ = T0+θ0 =

t+ θ0. The solution of the first order equation is :

x1(θ) = 1
32A

3 sin 3θ (20)

and the full solution is:
x(θ) = A cos θ − εA3

32 sin 3θ (21)

with A = (34εt+A0)
−1/2 and θ = t+ θ0.

(5) Analyze the forced oscillator

ẍ+ x = ε
(
ẋ− 1

3 ẋ
3
)

+ ε f0 cos(t+ ενt)
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using the discussion in §3.3.1 and §3.3.2 of the notes as a template.

Solution: We still apply the multiple time scale method. The zeroth order solution again is
x0 = A cos(T0 + φ). The first order equation is:

∂2x1
∂T 2

0
+x1 = (A

3

4 −A) sin(T0+φ)−A3

12 sin(3T0+3φ)+f0 cos(T0+νT1)+2 ∂
∂T1

A sin(T0+φ) (22)

In order to eliminate all the terms with frequency 1, we demand:

(A
3

4 −A) cosφ− f0 sin(νT1) + 2 ∂A
∂T1

cosφ− 2A ∂φ
∂T1

sinφ = 0

(A
3

4 −A) sinφ+ f0 cos(νT1) + 2 ∂A
∂T1

sinφ+ 2A ∂φ
∂T1

cosφ = 0
(23)

Now we seek the fixed point solution (A(T1) = A, φ(T1) = νT1 +φ0) (Here I’ve used a more
symmetric convention compared with the one in the lecture notes). The above equation
can be organized as:

(A
3

4 −A+ 2iAν)eiφ0 + if0 = 0 (24)

Therefore, A is given by the real solutions of the following equation:

(A
3

4 −A)2 + 4A2ν2 = f20 (25)

Once A is obtained, one can find φ0 easily.

The root structure is determined by the following polynomial:

y3 − 8y2 + 16(1 + 4ν2)y − 16f20 = 0 (26)

The two extrema are y = 4
3(2∓

√
1− 12ν2) with the corresponding values:

g± = −16f20 + 128
27 (1±

√
1− 12ν2 + 12ν2(3∓

√
1− 12ν2)) (27)

If g+ > 0 and g− < 0, then there are three real solutions. The number of real solutions of
A depends on f0 and ν and is illustrated in Fig. 3(a).

Next, we analyze the stability of these solutions. Adding the second equation to the first
equation in Eq. 23 with an factor of i, we obtain:

(43A
3 −A)eiφ0 + if0 + 2 ∂A

∂T1
eiφ0 + i2Aνeiφ0 + iA∂φ0

∂T1
eiφ0 = 0 (28)

After linearization around the fixed points, the equation can be simplified to

∂
∂T1

(
δA
δφ0

)
=

(1
2 −

3
8A

2 Aν

− ν
A ,

1
2 −

A2

8

)(
δA
δφ0

)
(29)

The matrix has two eigenvalues:

E = 1
8(4− 2A2 ±

√
A4 − 64ν2) (30)

from which the property of the attractors can be determined straightforward: the curve
A4 − 64ν2 = 0 separates spiral region and node region. Within the spiral region, the curve
4 − 2A2 separates stable spiral region and unstable spiral region. Within the node region,
if both of the eigenvalues are larger than zero, the attractor is a unstable node; if both of
the eigenvalues are less than zero, the attractor is a stable node; otherwise the attractor is
a saddle point. The phase diagram is plotted in Fig. 3(b).
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Figure 3: (a) The number of solutions that A can take. (b) The phase diagram of the
attractors.
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