PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #1

[1] Evaluate all cases of {A;, A;}, where

Av=1(2* +pi -y’ — 1)) As =5 (rp, —yp,)
Ay=1L(zy+p,p,) Ay=2"+y>+p2 +p, .
Solution : Recall
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Using
941 _ 1 941 _ 041 _ 941 _
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=2 T4 =2, 92 o
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we obtain

{Ai7Aj} = &k Ay
{AivA4} =0,

where i, j, and k are elements of {1,2,3}, and €ijk is the completely antisymmetric tensor

of rank 3, with €55 = +1.

[2] Determine the generating function F3(p, Q) which produces the same canonical trans-
formation as the generating function Fy(q, P) = ¢° exp(P).

Solution : We have
Fy(q,P) = ¢*exp(P) =

_on _ _0n _
P=3, =2qexp(P) , Q= 5p = ¢ exp(P) .

The generator Fy(p, Q) is given by

Fy(p,Q) = Fy(q,P) —qp— QP .



To represent Fy in terms of its proper arguments p and @, we must find ¢ = ¢(p, Q) and
P = P(p,Q), which are easily obtained. We first eliminate exp(P) to obtain ¢ = 2Q/p.
Then we eliminate ¢, yielding p? = 4Q exp(P), or P = In(p?/4Q). Thus,

Fy(p,Q) = ¢*exp(P) — qp — QP

2 2
-2 Qe )

= —Q - QIn(p*/4Q) .
One can now check explicitly that F;(p, Q) generates the same transformation:

_ 9B 2@ _ B
(=G =SF . P=—go = G/AQ)

[3] Show explicitly that the canonical transformation generated by an arbitrary F (¢, Q,t)
preserves the symplectic structure of Hamilton’s equations. That is, show that

0=
M =2
is symplectic. Hint : Start by writing p, = ng and P, = —371, and then evaluate the
differentials dp, and dP,.
Solution :
From
- = — s PO' = — s
94, 0Q,
we take the differential of p_, and P, to arrive at
OF, OF O°F,
d —L dg, L d L dt
Pe = G000, ' T o001 T a0t
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with
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Putting the d@ and dP terms on the LHS of the equations, and suppressing indices, we

(&) (5 (- ()

Thus, assuming C' is invertible,
v 02 _ (B 1Y (=C 0
v og;  \C 0 ~A 1)

det(M) = [(—1)"det(C)] " - (—=1)" det(C*) =1 .

from which we obtain

We must however show more than det(M) = 1. We must show that M is symplectic, i.e.

M'JM =1, where J = (—O]I g

-1 -1
M:( C A C >7

). To this end, we write

BC™tA-ct —BCT!

which follows from writing dQ = —C~'Adg + C~'dp and then substituting this into dP =
—(C%dq — BdQ. We have here set dt = 0 since we are interested only in how changes in
(q,p) affect (Q,P). Now A = A' and B = B' are explicitly symmetric, hence

At — —ACt™! ACtT'B-C
ot —cv7'B |
Clearly

BC~'A-Ct —BC-!
JM = < Cc-lA —c-1 >

It is then a simple matter to verify

M'JM = J .

[4] Consider the small oscillations of an anharmonic oscillator with Hamiltonian

2
p
H:—2m+%mw2q2+aq3+ﬁqp2

under the assumptions a ¢ < mw? and 8¢ < %

(a) Working with the generating function

Fy(q,P)=qP+aq*P+bP?,



find the parameters a and b such that the new Hamiltonian H (Q, P) does not contain any
anharmonic terms up to third order (i.e. no terms of order Q3 nor of order QP?).

(b) Determine ¢(t).

(a) We have
_ 95 = P+ 2aqP
0q
OF.
Q_—z_q+aq2+3bP2.

We invert the latter equation to obtain ¢(Q, P), then substitute into the former equation
to get p(Q, P):

g=Q —aQ?—3bP% +
p=P+2aQP+ ... .

We now write the Hamiltonian in terms of () and P:
p? 202 4 2\ 3 2a 9 9
H(Q.P) = 5+ 3me’Q® + (o — mw’a) Q +(6+E—3mwb)QP+

Setting the coefficients of the cubic terms to zero, and solving for a and b,

« 2a I3
a:—2 s b:
mw

3m3w + 3mw?

With these choices for a and b, the transformed Hamiltonian becomes

H(Q,P) = P— L Ime?Q? + 0(Q, QPP,Q2 P2, QP PY)

(b) The solution to Hamilton’s equations for @ and P is now
Q(t) = Acos(wt +0) , P =—mwAsin(wt+79) .

We substitute these expressions into the earlier result,

g=Q —aQ?—3bP? + ... (1)
to obtain

q(t) = Acos@+<3—+m5> A? cos(26) — <L2+mﬁ>-%142+... ,
mw

with 6 = wt+§. Note that the center of the oscillation has shifted to the left by an amount

proportional to A2. This is because the original Hamiltonian H (g, p) is no longer symmetric
under the parity operation ¢ — —q.



[5] A particle of mass m moves in one dimension subject to the potential

k

Vo) = S aja)

(a) Obtain an integral expression for Hamilton’s characteristic function.
(b) Under what conditions may action-angle variables be used?

(c) Assuming that action-angle variables are permissible, determine the frequency of oscil-
lation by the action-angle method.

(@) Check your result for the oscillation frequency in the limit of small oscillations.
Solution :
(a) We must solve ,

1 k

(@) + o @

Note that Q = F, the total energy, which is conserved. The motion is therefore between
the turning points

z_(E) =nma+asin ' \k/E |, 2,.(E)=(n+1)ra—asin"'\k/E,

where n is any integer. We may then write

W(x,E):\/%/dx’,/E—m.
z_(E)

The lower limit may be left as unspecified; this only changes the result by a constant.

(b) We need that the motion is bounded. In our case, z_(E) <z <z (E).

1 / k
J=—v2 dey | B — —5——
27 qu{ v sin?(z'/a)
2

a —— 1 —cosu
2m o —cosu

(¢) We have

0

cos(z/a) =1/1— % cos(3u) .

where we have substituted



Mathematical Interlude : We are interested in evaluating

2m 2
1 —cosu du
dy ——— =2 1-b) [ ——
/ubcosu ™+ )/bcosu’
0 0
where b > 1. We do this by the method of contour integration. Consider the integral
2m
I du 1 B j{ dz 2
~J2mb—cosu 2miz 2b — 2z — 271
0 |z|=1
B ]{ dz 2 B ]{ dz 2
B 2mi 22 —2bz +1 21 (z — 24 )(z —2-)
|z|=1 |z|=1

where
Note above we have used z = €', du = dz/iz in obtaining the contour integral. The root
z_ lies within the circle |z| = 1; 2z lies outside; note that z, z_ = 1. We therefore have

2 1
T—— _ .
Z_ — 2z, b2 —1

Using the results from our pleasant interlude, with b = (E' + k)/(E — k), we find

J=VaIma(VE - V) . E:<¢%a+¢%>2.

Note that the minimum energy is £, = k. The oscillation frequency is given by
oF J | 2k | 2E
J = — = = .
v(J) oJ  ma? * ma? ma?

(d) With U(z) = k/sin?(x/a) we have
2k cos(z/a)
a sin®(xz/a)
_ 2k sin(z/a) + 3sin?(z/a) cos?(z/a)
a? sinf(z/a)

Ul'(z) =

Ul/ (x)

Setting U’(z*) = 0 we obtain z* = (n + 3) ma, where n € Z. At any of these equilibria,
U"(x*) = 2k/a®. Therefore, the frequency of small oscillations is

3 :\/U”(az*): 2k

80 m ma? ’

which agrees with the result from part (c).



