
PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #1

[1] Evaluate all cases of
{

Ai, Aj

}

, where

A1 =
1
4

(

x2 + p2x − y2 − p2y
)

A3 =
1
2

(

x py − y px
)

A2 =
1
2

(

x y + px py
)

A4 = x2 + y2 + p2x + p2y .

Solution : Recall
{

A,B
}

=

n
∑

σ=1

(

∂A

∂qσ

∂B

∂pσ
− ∂B

∂qσ

∂A

∂pσ

)

.

Using

∂A1

∂x
= 1

2x
∂A1

∂y
= −1

2y
∂A1

∂px
= 1

2px
∂A1

∂py
= −1

2py

∂A2

∂x
= 1

2y
∂A2

∂y
= 1

2x
∂A2

∂px
= 1

2py
∂A2

∂py
= 1

2px

∂A3

∂x
= 1

2py
∂A3

∂y
= −1

2px
∂A3

∂px
= −1

2y
∂A3

∂py
= 1

2x

∂A4

∂x
= 2x

∂A4

∂y
= 2y

∂A4

∂px
= 2px

∂A4

∂py
= 2py ,

we obtain

{

Ai, Aj

}

= εijk Ak
{

Ai, A4} = 0 ,

where i, j, and k are elements of {1, 2, 3}, and εijk is the completely antisymmetric tensor

of rank 3, with ε123 = +1.

[2] Determine the generating function F3(p,Q) which produces the same canonical trans-
formation as the generating function F2(q, P ) = q2 exp(P ).

Solution : We have

F2(q, P ) = q2 exp(P ) ⇒

p =
∂F2

∂q
= 2q exp(P ) , Q =

∂F2

∂P
= q2 exp(P ) .

The generator F3(p,Q) is given by

F3(p,Q) = F2(q, P )− qp−QP .
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To represent F3 in terms of its proper arguments p and Q, we must find q = q(p,Q) and
P = P (p,Q), which are easily obtained. We first eliminate exp(P ) to obtain q = 2Q/p.
Then we eliminate q, yielding p2 = 4Q exp(P ), or P = ln(p2/4Q). Thus,

F3(p,Q) = q2 exp(P )− qp−QP

=
4Q2

p2
· p2

4Q
− 2Q

p
· p−Q · ln(p2/4Q)

= −Q−Q ln(p2/4Q) .

One can now check explicitly that F3(p,Q) generates the same transformation:

q = −∂F3

∂p
=

2Q

p
, P = −∂F3

∂Q
= ln(p2/4Q) .

[3] Show explicitly that the canonical transformation generated by an arbitrary F1(q,Q, t)
preserves the symplectic structure of Hamilton’s equations. That is, show that

Maj ≡
∂Ξa

∂ξj

is symplectic. Hint : Start by writing pσ =
∂F

1

∂q
σ

and Pσ = − ∂F
1

∂Q
σ

, and then evaluate the

differentials dpσ and dPσ.

Solution :

From

pσ =
∂F1

∂qσ
, Pσ = − ∂F1

∂Qσ

,

we take the differential of pσ and Pσ to arrive at

dpσ =
∂2F1

∂qσ∂qσ′

dqσ′ +
∂2F1

∂qσ∂Qσ′

dQσ′ +
∂2F1

∂qσ∂t
dt

≡ Aσσ′ dqσ′ + Cσσ′ dQσ′ + uσ dt

and

dPσ = − ∂2F1

∂qσ′∂Qσ′

dqσ′ − ∂2F1

∂Qσ∂Qσ′

dQσ′ +
∂2F1

∂Qσ∂t
dt

≡ −Ct
σσ′ dqσ′ −Bσσ′ dQσ′ − vσ dt ,

with

Aσσ′ =
∂2F1

∂qσ∂qσ′

, Bσσ′ =
∂2F1

∂Qσ∂Qσ′

, Cσσ′ =
∂2F1

∂qσ∂Qσ′

and

uσ =
∂2F1

∂qσ∂t
, vσ =

∂2F1

∂Qσ∂t
.
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Putting the dQ and dP terms on the LHS of the equations, and suppressing indices, we
have

(

B 1
C 0

)(

dQ
dP

)

=

(

−Ct 0
−A 1

)(

dq
dp

)

−
(

u
v

)

dt .

Thus, assuming C is invertible,

Maj =
∂Ξa

∂ξj
=

(

B 1
C 0

)−1(−Ct 0
−A 1

)

,

from which we obtain

det(M) =
[

(−1)n det(C)
]−1 · (−1)n det(Ct) = 1 .

We must however show more than det(M) = 1. We must show that M is symplectic, i.e.

M tJM = 1, where J =

(

0 I

−I 0

)

. To this end, we write

M =

(

−C−1A C−1

BC−1A− Ct −BC−1

)

,

which follows from writing dQ = −C−1Adq +C−1dp and then substituting this into dP =
−Ct dq − B dQ. We have here set dt = 0 since we are interested only in how changes in
(q, p) affect (Q,P ). Now A = At and B = Bt are explicitly symmetric, hence

M t =

(

−ACt−1
ACt−1

B − C

Ct−1 −Ct−1
B

)

.

Clearly

JM =

(

BC−1A−Ct −BC−1

C−1A −C−1

)

It is then a simple matter to verify

M tJM = J .

[4] Consider the small oscillations of an anharmonic oscillator with Hamiltonian

H =
p2

2m
+ 1

2mω2 q2 + α q3 + β q p2

under the assumptions α q ≪ mω2 and β q ≪ 1
m
.

(a) Working with the generating function

F2(q, P ) = qP + a q2 P + b P 3 ,
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find the parameters a and b such that the new Hamiltonian H̃(Q,P ) does not contain any
anharmonic terms up to third order (i.e. no terms of order Q3 nor of order QP 2).

(b) Determine q(t).

(a) We have

p =
∂F2

∂q
= P + 2aqP

Q =
∂F2

∂P
= q + aq2 + 3bP 2 .

We invert the latter equation to obtain q(Q,P ), then substitute into the former equation
to get p(Q,P ):

q = Q− aQ2 − 3bP 2 + . . .

p = P + 2aQP + . . . .

We now write the Hamiltonian in terms of Q and P :

H̃(Q,P ) =
P 2

2m
+ 1

2mω2Q2 + (α−mω2a)Q3 +
(

β +
2a

m
− 3mω2b

)

QP 2 + . . . .

Setting the coefficients of the cubic terms to zero, and solving for a and b,

a =
α

mω2
, b =

2α

3m3ω4
+

β

3mω2
.

With these choices for a and b, the transformed Hamiltonian becomes

H̃(Q,P ) =
P 2

2m
+ 1

2mω2Q2 +O(Q4, Q3P,Q2P 2, QP 3, P 4)

(b) The solution to Hamilton’s equations for Q and P is now

Q(t) = A cos(ωt+ δ) , P = −mωA sin(ωt+ δ) .

We substitute these expressions into the earlier result,

q = Q− aQ2 − 3bP 2 + . . . (1)

to obtain

q(t) = A cos θ +

(

3α

mω2
+mβ

)

· 1
2A

2 cos(2θ)−
(

α

mω2
+mβ

)

· 1
2A

2 + . . . ,

with θ = ωt+ δ. Note that the center of the oscillation has shifted to the left by an amount
proportional to A2. This is because the original Hamiltonian H(q, p) is no longer symmetric
under the parity operation q → −q.
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[5] A particle of mass m moves in one dimension subject to the potential

U(x) =
k

sin2(x/a)
.

(a) Obtain an integral expression for Hamilton’s characteristic function.

(b) Under what conditions may action-angle variables be used?

(c) Assuming that action-angle variables are permissible, determine the frequency of oscil-
lation by the action-angle method.

(d) Check your result for the oscillation frequency in the limit of small oscillations.

Solution :

(a) We must solve

1

2m

(

dW

dx

)2

+
k

sin2(x/a)
= Q .

Note that Q = E, the total energy, which is conserved. The motion is therefore between
the turning points

x−(E) = nπa+ a sin−1
√

k/E , x+(E) = (n+ 1)πa− a sin−1
√

k/E ,

where n is any integer. We may then write

W (x,E) =
√
2m

x
∫

x−(E)

dx′

√

E − k

sin2(x′/a)
.

The lower limit may be left as unspecified; this only changes the result by a constant.

(b) We need that the motion is bounded. In our case, x−(E) ≤ x ≤ x+(E).

(c) We have

J =
1

2π

√
2m

∮

dx

√

E − k

sin2(x′/a)

=
a

2π

√
2mE

2π
∫

0

du
1− cos u

E+k
E−k

− cos u
,

where we have substituted

cos(x/a) =

√

1− k

E
cos(12u) .
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Mathematical Interlude : We are interested in evaluating

2π
∫

0

du
1− cos u

b− cosu
= 2π + (1− b)

2π
∫

0

du

b− cos u
,

where b > 1. We do this by the method of contour integration. Consider the integral

I =

2π
∫

0

du

2π

1

b− cos u
=

∮

|z|=1

dz

2πiz

2

2b− z − z−1

= −
∮

|z|=1

dz

2πi

2

z2 − 2bz + 1
= −

∮

|z|=1

dz

2πi

2

(z − z+)(z − z−)
,

where
z± = b±

√

b2 − 1 .

Note above we have used z = eiu, du = dz/iz in obtaining the contour integral. The root

z− lies within the circle |z| = 1 ; z+ lies outside; note that z+z− = 1. We therefore have

I = − 2

z− − z+
=

1√
b2 − 1

.

Using the results from our pleasant interlude, with b = (E + k)/(E − k), we find

J =
√
2ma

(
√
E −

√
k
)

, E =

(

J√
2ma

+
√
k

)2

.

Note that the minimum energy is Emin = k. The oscillation frequency is given by

ν(J) =
∂E

∂J
=

J

ma2
+

√

2k

ma2
=

√

2E

ma2
.

(d) With U(x) = k/ sin2(x/a) we have

U ′(x) = −2k

a
· cos(x/a)

sin3(x/a)

U ′′(x) =
2k

a2
· sin

4(x/a) + 3 sin2(x/a) cos2(x/a)

sin6(x/a)
.

Setting U ′(x∗) = 0 we obtain x∗ = (n + 1
2 )πa, where n ∈ Z. At any of these equilibria,

U ′′(x∗) = 2k/a2. Therefore, the frequency of small oscillations is

ωs.o. =

√

U ′′(x∗)

m
=

√

2k

ma2
,

which agrees with the result from part (c).
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