
PHYSICS 200B : CLASSICAL MECHANICS

FINAL EXAMINATION

(1) Consider the nonlinear oscillator described by the Hamiltonian

H(q, p) =
p2

2m
+ 1

2kq
2 + 1

4ǫaq
4 + 1

4ǫbp
4 ,

where ε is small.

(a) Find the perturbed frequencies ν(J) to lowest nontrivial order in ǫ.

(b) Find the perturbed frequencies ν(A) to lowest nontrivial order in ǫ, where A is the
amplitude of the q motion.

(c) Find the relationships φ = φ(φ0, J0) and J = J(φ0, J0) to lowest nontrivial order in ǫ.

Solution:

With k ≡ mν20 , recall the AA variables

φ0 = tan−1

(
mν0q

p

)
, J0 =

p2

2mν0
+ 1

2mν0q
2 .

Thus, q = (2J0/mν0)
1/2 sinφ0 and p = (2mν0J0)

1/2 cosφ0 , so the Hamiltonian is

H̃(φ0, J0) = ν0J0 + ǫH̃1(φ0, J0) ,

where

H̃1(φ0, J0) =
aJ2

0

m2ν20
sin4φ0 + bm2ν20J

2
0 cos

4φ0 .

(a) Averaging over φ0, we have 〈sin4φ0〉 = 〈cos4φ0〉 = 3
8 , so

E1(J) =
〈
H̃1(φ0, J)

〉
=

(
a

mk
+ bmk

)
× 3

8J
2 .

The perturbed frequencies are ν(J) = ν0 + ǫν1 where ν1 =
∂E

1

∂J . Thus,

ν(J) =

√
k

m
+

(
a

mk
+ bmk

)
× 3

4ǫJ .

(b) We only need J to zeroth order in ǫ. Setting p = 0 and q = A gives J = 1
2mν0A

2+O(ǫ),
in which case

ν(A) =

√
k

m
+

(
a

mk
+ bmk

)
× 3

8ǫmν0A
2 .
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(c) Recall the desired type-II CT is generated by S(φ0, J) = φ0J + ǫS1(φ0, J) + . . . , with

∂S1
∂φ0

=

〈
H̃1

〉
− H̃1

ν0(J)
.

Thus,
∂S1
∂φ0

=
aJ2

m2ν30

(
3
8 − sin4φ0

)
+ bm2ν0J

(
3
8 − cos4φ0

)
.

Integrating, we have

S1(φ0, J) =
aJ2

m2ν30

(
1
4 sin(2φ0)− 1

32 sin(4φ0)
)
− bm2ν0J

2
(
1
4 sin(2φ0) +

1
32 sin(4φ0)

)
.

The constant may be set to zero as it leads to a constant shift of the angle variable φ. Thus,
we have

J0 = J + ǫ
∂S1
∂φ0

+O(ǫ2)

= J +

(
a− bm4ν40
2m2ν30

)
ǫJ2 cos(2φ0)−

(
a+ bm2ν40
8m2ν30

)
ǫJ2 cos(4φ0) +O(ǫ2) .

Thus,

J = J0 −
(
a− bm4ν40
2m2ν30

)
ǫJ2

0 cos(2φ0) +

(
a+ bm2ν40
8m2ν30

)
ǫJ2

0 cos(4φ0) +O(ǫ2) .

We then have

φ = φ0 + ǫ
∂S1
∂J

+O(ǫ2)

= φ0 +

(
a− bm4ν40
2m2ν30

)
ǫJ0 sin(2φ0)−

(
a+ bm2ν40
16m2ν30

)
ǫJ0 sin(4φ0) +O(ǫ2) .

(2) Consider the forced modified van der Pol equation,

ẍ+ ǫ(x4 − 1) ẋ+ x = ǫf0 cos(t+ ǫνt) ,

where ǫ is small. Carry out the multiple scale analysis to order ǫ. Following §3.3.2 in
the Lecture Notes, find and analyze the equation which relates the amplitude A, detuning
ν, and force amplitude f0 for entrained oscillations. Perform the requisite linear stability
analysis and make a plot similar to that in Fig. 3.4 of the Lecture Notes. Is there a region
of entrained oscillations which exhibits hysteresis as the detuning parameter is varied? If
so, find the corresponding range of f0 over which this occurs.

Bonus: Use Mathematica or Matlab to integrate the equation, showing examples of en-
trained and heterodyne behavior, as in Fig. 3.6 (1000 Quatloos extra credit).
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Solution:

In the multiple scale analysis (MSA), we define a hierarchy of time scales Tn = ǫnt, and we
expand x(t) =

∑∞
n=0 ǫ

n xn(T0, T1, . . .). The general forced nonlinear oscillator equation is
written

ẍ+ x = ǫ h(x, ẋ) + ǫ f0 cos(t+ ǫνt) ,

where ǫν is the detuning. We write d
dt =

∑∞
k=0 ǫ

k ∂
∂T

k

and derive a hierarchy order by order

in ǫ. As shown in §3.3 of the Lecture Notes, to lowest order we have

(
∂2

∂T 2
0

+ 1

)
x0 = 0 ⇒ x0 = A cos(T0 + φ) ,

where the amplitude A = A(T1, T2, . . .) and phase φ = φ(T1, T2, . . .) are independent of T0.
At the next level of the hierarchy, we define θ = T0+φ(T1) and ψ(T1) ≡ φ(T1)−νT1, where
dependences on the scales {T1, T3, . . .} are implicit. At order ǫ1, we have

(
∂2

∂θ2
+ 1

)
x1 = 2

∂A

∂T1
sin θ + 2A

∂φ

∂T1
cos θ + h(A cos θ,−A sin θ) + f0 cos(θ − ψ) .

We Fourier transform the function h(A cos θ,−A sin θ), writing

h(A cos θ,−A sin θ) =

∞∑

k=0

[
αk(A) sin(kθ) + βk(A) cos(kθ)

]
.

We then have
(
∂2

∂θ2
+ 1

)
x1 =

∑

k 6=1

[
αk(A) sin(kθ) + βk(A) cos(kθ)

]
,

where the secular forcing k = 1 terms are eliminated by the requirements

dA

dT1
= −1

2α1(A)− 1
2f0 sinψ

dψ

dT1
= −ν − β1(A)

2A
− f0

2A
cosψ ,

which may be written as coupled ODEs since the time scales {T2, T3, . . .} do not appear.
At any fixed point, then, one must have

[
α1(A)

]2
+

[
2νA+ β1(A)

]2
= f20 .

The linearized map in the vicinity of the fixed point (A∗, ψ∗) is given by

d

dT1



δA

δψ


 =

M︷ ︸︸ ︷


−1
2α

′
1(A) νA+ 1

2β1(A)

−β′

1
(A)
2A − ν

A −α
1
(A)
2A






δA

δψ


 .
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In our case, h(x, ẋ) = (1− x4) ẋ, and therefore

h(A cos θ,−A sin θ) =
(
1−A4 cos4θ

)(
−A sin θ

)

=

(
A5

8
−A

)
sin θ + 3

16A
5 sin(3θ) + 1

16A
5 sin(5θ) .

Thus,
α1(A) =

1
8A

5 −A , α3(A) =
3
16A

5 , α5(A) =
1
16A

5 ,

where all other αk(A) = 0 and all βk(A) = 0. In particular, β1(A) = 0, hence

G(y) ≡ 1
64y

5 − 1
4y

3 +
(
1 + 4ν2

)
y = f20 ,

where y = A2; note that G(0) = 0. We must analyze the behavior of G(y) for y ≥ 0. Taking
the derivative,

G′(y) = 5
64y

4 − 3
4y

2 +
(
1 + 4ν2

)
.

The roots G′(y) = 0 lie at y = y±, where

y2± = 8
5

(
3± 2

√
1− 5ν2

)
.

Thus, when the argument of the square root is negative, there are no real solutions, which
means G(y) is monotonically increasing and G(y) = f20 has a unique solution. This occurs
for ν2 > 1

5 .

For ν2 < 1
5 , there are two solutions G′(y±) = 0 with y± > 0 and another two solutions at

y = −y±, since G(y) is an odd function of y. Note that G(y−) > G(y+). Thus, G(y) = f20
has three solutions provided f20 ∈

[
G(y+) , G(y−)

]
∩
[
0,∞

)
. One then finds this is equivalent

to the condition

(3 + 2u)3/2 (1− u) <
√

3125
512 f

2
0 < (3− 2u)3/2 (1 + u) ,

where u =
√
1− 5ν2 ∈ [0, 1]. Note that for ν2 = 1

5 ther root at f20 =
(
29 ·33/55

)1/2
= 2.10325

is a double root. However, we still must check whether these solutions are stable. To do
this, we compute the eigenvalues of the matrix M , with

M =
1

16

(
8− 5A4 16νA
−16 νA−1 8−A4

)
.

The eigenvalues are λ± = 1
2T ±

√
1
4T

2 −D , where

T = Tr(M) = 1− 3
8 y

2 , D = detM = 5
256 y

4 − 3
16 y

2 + ν2 + 1
4 = 1

4 G
′(y) .

The fixed point will be unstable if either of the eigenvalues has a positive real part. One
possibility is a saddle point, which occurs for D < 0. This means G′(y) < 0, which means
y ∈

[
y− , y+

]
. Thus, when we have three solutions, the middle one is always unstable.
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Figure 1: Fixed point solutions corresponding to entrained phases of the forced modified
van der Pol oscillator. Thin dashed curves correspond to different values of f0.

The other possibility is T > 0, leading to an unstable spiral or unstable node. This is
equivalent to y2 < 8

3 . Since a global analysis for large A shows the flow is inward, we
conclude that the coupled ODEs for A and ψ must have a stable limit cycle in the portion

of the (ν, y) plane corresponding to an unstable node or unstable spiral, i.e. where y <
√

8
3

and G′(y) > 0. The line y =
√

8
3 intersects the curve D = 0 at ν = 1

3 . Thus, the phase

diagram resembles that of Fig. 3.4 in the Lecture Notes. To find the range of f20 over which
there is hysteretic jumping between stable branches over some interval ν ∈

[
ν− , ν+

]
, we

set G(y) = G′(y) = 0 and eliminate y to obtain f20 =
√

256
3125 (3 + 2u)3/2(1 − u). We then

evaluate G(y) = f20 , for the same value of ν, at the point where Tr(M) = 0, i.e. y =
√

8
3 ,

which yields f20 = 4
45

√
8
3 (14 − 9u2). Eliminating f20 , we arrive at the quintic equation

125 (14 − 9u2)2 = 972 (3 + 2u)3 (1− u)2 .

The solution over the interval u ∈ [0, 1] is u = 0.350851 , which gives us f20,min = 1.87136.

Thus, hysteresis occurs for f20 ∈
[
1.87136 , 2.10325

]
, i.e. f0 ∈

[
1.3680 , 1.4503

]
. Note one

can also have hysteresis between a stable entrained solution and a stable limit cycle as
parameters are varied.
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Figure 2: Entrained and heterodyne behavior of the forced modified van der Pol oscillator,
with ǫ = 0.1 and ν = 0.4.

(3) Consider shock formation in the inviscid Burgers’ equation, ct + c cx = 0. Let the
function c(ζ) = c(x = ζ, t = 0) be given by the triangular profile,

c(ζ) = c0

(
a− |ζ|
a

)
Θ
(
a− |ζ|

)
.

(a) Find the break time t
B
.

(b) Implement the shock fitting protocol and find ζ−(t), ζ+(t), and xs(t).

(c) Find the shock discontinuity ∆c(t) for t > t
B
.

(d) Sketch c(x, t) vs. x for t/t
B
= 0, 1

2 , 1, 2, and 4. Show that for t ≥ t
B
, c(x, t) vs. x has
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the form of a right triangle whose area is given by
a∫

−a
dζ c(ζ).

(e) Without shock fitting, sketch the characteristics in the (x, t) plane and highlight the
region where they cross. Then sketch the characteristics after shock fitting. Hint:
Your sketches should roughly resemble those in Fig. 4.13 of the Lecture Notes.

Solution:

(a) The break time is

t
B
= min

c′(ζ)<0

(
− 1

c′(ζ)

)
≡ − 1

c′(ζ
B
)
.

Thus, t
B
= a/c0.

(b) We have two shock fitting equations:

xs = ζ− + c−t = ζ+ + c+t ,

where c± ≡ c(ζ±), and

1
2(ζ+ − ζ−)(c+ + c−) =

ζ+∫

ζ
−

dζ c(ζ) .

Clearly ζ+ > a and therefore c+ = 0. We also have ζ− < 0. The second of our shock fitting
equations then gives

ζ+ = ζ− +
a

a+ ζ−

(
a− 2ζ− − ζ2−

a

)
.

Figure 3: Left: Shock fitting requires the burgundy and green hatched areas to be equal.
Right: Evolution of the initial profile at times τ = t/tB = 0 (black), τ = 1

2 (blue), τ = 1
(red), τ = 2 (magenta), and τ = 4 (green). The dashed line shows the shock discontinuity.

7



The first shock fitting equation gives ζ+ − ζ− = c−t , and eliminating ζ+ yields

c0t =

(
a

a+ ζ−

)2(
a− 2ζ− − ζ2−

a

)
.

At this point it is convenient to define the dimensionless time τ ≡ c0t/a = t/t
B
as well as

q± ≡ ζ±/a. Note qs = xs/a = q+ because c+ = 0. Solving, we obtain

q−(τ) = −1 +

√
2

1 + τ
, q+(τ) = −1 +

√
2(1 + τ) .

(c) The dimensionless velocity is c̄ = c/c0. Note c̄± = 1− |q±|. The shock discontinuity is
then

∆c̄(τ) =

√
2

1 + τ
,

where τ ≥ 1. Note ∆c̄(τ = 1) = 1, which is nongeneric, since the discontinuity usually grows
from zero starting at the break time. The nongeneric nature here is due to the piecewise
linear initial profile. Note also ∆c̄(τ) ∝ τ−1/2 as τ → ∞. See Fig. 3.

Figure 4: Top: Characteristics prior to shock fitting, showing intersection in the hatched
region. Bottom: Characteristics with shock fitting. The shock trajectory is shown in red.
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(d) For t > t
B
, the curve c̄(q, τ) is a right triangle whose base is 1 + q+(τ) and height is

∆c̄(τ). Thus, the dimensionless area is

A(τ > 1) = 1
2

(
1 + q+(τ)

)
∆c̄(τ) = 1 =

1∫

−1

dq
(
1− |q|

)
,

and so the area is preserved. For τ < 1, we have c̄(q, τ) is a triangle connecting the points
(−1, 0) to (τ, 1) to (1, 0), since the peak value moves with c̄max = 1. The area is again

A(τ < 1) = 1
2 (1 + τ) + 1

2(1− τ) = 1 .

(e) See Fig. 4.
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