
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) Consider the one-dimensional Ising model with next-nearest neighbor interactions,

Ĥ = −J
∑

n

σnσn+1 −K
∑

n

σnσn+2 ,

on a ring with N sites, where N is even. By considering consecutive pairs of sites, show
that the partition function may be written in the form Z = Tr(RN/2), where R is a 4 × 4
transfer matrix. Find R. Hint: It may be useful to think of the system as a railroad trestle,
depicted in Fig. 2, with Hamiltonian

Ĥ = −
∑

j

[
Jσjµj + Jµjσj+1 +Kσjσj+1 +Kµjµj+1

]
.

Then R = R(σjµj),(σj+1
µj+1

), with (σµ) a composite index which takes one of four possible

values (++), (+−), (−+), or (−−).

Figure 1: Railroad trestle representation of next-nearest neighbor chain.

Solution :

The transfer matrix can be read off from the Hamiltonian:

R(σµ),(σ′µ′) = eβJµ(σ+σ′) eβK(σσ′+µµ′) .

Expressed as a matrix of rank four, with rows and columns corresponding to {++,+−,−−,−+},
we have

R =




e2βJe2βK e2βJ e−2βK 1
e−2βJ e−2βJe2βK 1 e−2βK

e−2βK 1 e2βJe2βK e−2βJ

1 e−2βK e2βJ e−2βJe2βK


 .

Querying WolframAlpha for the eigenvalues, we find

λ1 =
1
2

[
uv + (1 + u−1)

√
u2v2 − 2uv2 + 4u+ v2 + 2v−1 + u−1v

]

λ2 =
1
2

[
uv + (1− u−1)

√
u2v2 + 2uv2 − 4u+ v2 − 2v−1 + u−1v

]

λ3 =
1
2

[
uv − (1 + u−1)

√
u2v2 − 2uv2 + 4u+ v2 + 2v−1 + u−1v

]

λ4 =
1
2

[
uv − (1− u−1)

√
u2v2 + 2uv2 − 4u+ v2 − 2v−1 + u−1v

]
,
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where u = e2βJ and v = e2βK . The partition function on a ring of N sites, with N even, is

Z = Tr
(
RN/2

)
= λ

N/2
1 + λ

N/2
2 + λ

N/2
3 + λ

N/2
4 .

It may seem a happy accident that the nonsymmetric matrix R has all real eigenvalues.
However, note that

R̃ ≡ ΣRΣ = WX

for

Σ =
1

2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 , W =




cosh(2βJ) sinh(2βJ) e−2βK 0
sinh(2βJ) cosh(2βJ) 0 −e−2βK

e−2βK 0 cosh(2βJ) sinh(2βJ)
0 −e−2βK sinh(2βJ) cosh(2βJ)




and

X =




e2βK + 1 0 0 0
0 e2βK − 1 0 0
0 0 e2βK + 1 0
0 0 0 e2βK − 1


 .

Note that Σ2 = 1 , hence Σ−1 = Σ . Thus,

R = ΣWXΣ = ΣX−1/2
(
X1/2WX1/2

)
X1/2Σ

and we find R is related by similarity transformation to the symmetric matrix X1/2WX1/2.
Here we assume K > 0 so e2βK ± 1 > 0 and we may take the square root of X. If K < 0
one readily obtains a similar construction.

C. Aganze notes that we may define1 νn ≡ σnσn+1 , in which case νnνn+1 = σnσn+2 , and
our Hamiltonian becomes

Ĥ = −K
∑

n

νnνn+1 − J
∑

n

νn ,

i.e. a nearest neighbor Ising model with ferromagnetic exchange K and a field h = J . From
the lecture notes, we know that the eigenvalues of the transfer matrix are given by

Λ± = eβK cosh(βJ)±

√
e2βK sinh2(βJ) + e−2βK

= 1
2(uv)

−1/2
{
(1 + u)v ±

√
(u− 1)2 v2 + 4u

}
.

It is now easy to show that Λ2
+ = λ1 , whence the equality of the partition functions in the

thermodynamic limit N → ∞ is manifest.: ΛN
+ = λ

N/2
1 . Note that on a ring, there is a

constraint
∏N

n=1 νn = 1 which must be satisfied.

1See also §6.2.4 of the Lecture Notes.
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(2) For each of the cluster diagrams in Fig. 2, find the symmetry factor sγ and write an
expression for the cluster integral bγ .

(a) (b) (c) (d)

Figure 2: Cluster diagrams for problem 2.

Solution :

Choose labels as in Fig. 3, and set xnγ
≡ 0 to cancel out the volume factor in the definition

of bγ .

(a) (b) (c) (d)
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Figure 3: Labeled cluster diagrams.

(a) The symmetry factor is sγ = 2, so

bγ = 1
2

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4 f(r12) f(r13) f(r24) f(r34) f(r4) .

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is sγ = 6. We
then have

bγ = 1
6

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4 f(r12) f(r13) f(r24) f(r34) f(r14) f(r23) f(r4) .

(c) The diagram is symmetric under reflections in two axes, hence sγ = 4. We then have

bγ = 1
4

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4

∫
ddx5 f(r12) f(r13) f(r24) f(r34) f(r35) f(r4) f(r5) .

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26).
Thus, sγ = 24 = 16. We then have

bγ = 1
16

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4

∫
ddx5 f(r12) f(r13) f(r14) f(r23) f(r24) f(r34) f(r35) f(r45) f(r3) f(r4) f(r5) .
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(3) Compute the partition function for the one-dimensional Tonks gas of hard rods of
length a on a ring of circumference L. This is slightly tricky, so here are some hints. Once
again, assume a particular ordering so that x1 < x2 < · · · < xN . Due to translational
invariance, we can define the positions of particles {2, . . . , N} relative to that of particle 1,
which we initially place at x1 = 0. Then periodicity means that xN ≤ L− a, and in general
one then has

xj−1 + a ≤ xj ≤ L− (N − j + 1)a .

Now integrate over {x2, . . . , xN} subject to these constraints. Finally, one does the x1 inte-
gral, which is over the entire ring, but which must be corrected to eliminate overcounting
from cyclic permutations. How many cyclic permutations are there?

Solution :

There are N cyclic permutations, hence the last x1 integral yields L/N , and

Z(T,L,N) = λ−N
T

L

N

Y2∫

a

dx2

Y3∫

x
2
+a

dx3 · · ·

YN∫

x
N−1

+a

dxN =
L(L−Na)N−1λ−N

T

N !
.
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