
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) ν = 8 moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the
thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse
lies at (V

0
, p

0
) = (0.25m3, 1.0 bar). The semimajor and semiminor axes of the ellipse are

∆V = 0.10m3 and ∆p = 0.20 bar.

(a) What is the temperature at (V, p) = (V0 +∆V, p0)?

(b) Compute the net work per cycle done by the gas.

(c) Compute the internal energy difference E(V
0
−∆V, p

0
)− E(V

0
, p

0
−∆p).

(d) Compute the heat Q absorbed by the gas along the upper half of the cycle.

Solution :

(a) The temperature is T = pV/νR. With V = V0 +∆V = 0.35m3 and p = p0 = 1.0 bar, we
have

T =
(105 Pa)(0.35m3)

(8mol)(8.31 J/mol K)
= 530K .

(b) The area of an ellipse is π times the product of the semimajor axis lengths.

∮

p dV = π (∆p)(∆V ) = π (0.20 × 106 bar) (0.10m3) = 6.3 kJ .

(c) For a diatomic ideal gas, E = 5

2
pV . Thus,

∆E = 5

2

(

V0 ∆p− p0∆V ) = 5

2
(−0.05 × 105 J) = −13 kJ .

(d) We have Q = ∆E +W , with

W = 2 p0 ∆V + π
2
(∆p)(∆V ) = 23 kJ ,

which is the total area under the top half of the ellipse. The difference in energy is given
by ∆E = 5

2
p
0
· 2∆V = 5 p

0
∆V , so

Q = ∆E +W = 7 p0 ∆V + π
2
(∆p)(∆V ) = 73 kJ .

(2) Consider a thermodynamic system for which E(S, V,N) = aS4/NV 2.
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(a) Find the equation of state p = p(T, V,N).

(b) Find the equation of state µ = µ(T, p).

(c) ν moles of this substance are taken through a Joule-Brayton cycle. The upper isobar
lies at p = p

2
and extends from volume VA to VB. The lower isobar lies at p = p

1
. Find

the volumes VC and VD.

(d) Find the work done per cycle Wcyc , the heat QAB , and the cycle efficiency.

Solution :

(a) We can find

p = −

(

∂E

∂V

)

S,N

=
2aS4

NV 3
, T =

(

∂E

∂S

)

V,N

=
4aS3

NV 2
, µ =

(

∂E

∂N

)

S,V

= −
aS4

N2V 2
,

but we need to eliminate the inconvenient variable S from these equations. To do this,
we construct the ratio p3/T 4, in which the S factors manifestly cancel. One then finds
32a p3V = NT 4, i.e.

p(T, V,N) = (32a)−1/3

(

N

V

)1/3

T 4/3 .

This means, for example, that the equation for an isotherm (at fixed N ) is pV 1/3 = const.,
in contrast to the result for the ideal gas isotherm, pV =const. Note also that p, being
intensive, must be expressible as p(T, V/N), which it is.

(b) To obtain µ(T, p), note that 2Nµ = −pV , and from our result for p(T, V/N) we have
V/N = T 4/32ap3. Thus,

µ(T, p) = −
T 4

64a p2
.

(c) The equilibrium adiabatic equation of state for this system is dS = 0. From (a), we see
that at fixed N this means pV 3 = const., so we must have p

2
V 3
B
= p

1
V 3
C

and p
2
V 3
A
= p

1
V 3
D

.
Hence

VC = VB ·

(

p2/p1
)1/3

, VD = VA ·

(

p2/p1
)1/3

.

(a) From part (a), the energy for our system is E = 1

2
pV . Along the upper (p2) isochore,

WAB =

B
∫

A

dV p2 = p2(VB − VA) , ∆EAB = EB − EA = 1

2
p2 (VB − VA) ,

hence
QAB = ∆EAB +WAB = 3

2
p2 (VB − VA) .
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The work along the lower (p
1
) isochore is

WCD = p1(VD − VC) = p2 (VA − VB)

(

p1
p
2

)2/3

.

Along the BC adiabat,

WBC =

C
∫

B

p dV = p2V
3
B

V
C
∫

V
B

dV

V 3
= 1

2
p2VB

(

1−
V 2
B

V 2
C

)

= 1

2
p2VB

[

1−

(

p
1

p
2

)2/3
]

.

Similarly,

WDA =

A
∫

D

p dV = p2V
3
A

V
A
∫

V
D

dV

V 3
= 1

2
p2VA

(

V 2
A

V 2
D

− 1

)

= 1

2
p2VA

[

(

p
1

p
2

)2/3

− 1

]

.

Adding up all the individual works, we get

Wcyc = WAB +WBC +WCD +WDA

= 3

2
p2(VB − VA)

[

1−

(

p1
p
2

)2/3
]

.

Dividing by QAB, we obtain the efficiency,

η =
Wcyc

QAB

= 1−

(

p1
p
2

)2/3

.

(3) A diatomic gas obeys the equation of state

p =
RT

v − b
−

a

v2
+

cRT

v3
,

where a, b, and c are constants.

(a) Find the adiabatic equation of state relating temperature T and molar volume v.

(b) What is the internal energy per mole, ε(T, v)?

(c) What is the Helmholtz free energy per mole, f(T, v)?

Solution :

(a) Let ε be the molar internal energy and v the molar volume. We have already shown

(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

v

− p .
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Thus, for our system,

(

∂ε

∂v

)

T

=
a

v2
⇒ ε(T, v) = 5

2
RT −

a

v
,

where the first term is the result for the rarefied limit v → ∞, where the gas presumably
becomes ideal. Now if s = S/ν is the molar entropy (ν = N/NA is the number of moles),
then

T ds = dε+ p dv = 5

2
RdT +RT

dv

v − b
+ cRT

dv

v3
.

Dividing by T and then integrating, we have

s(T, v) = R ln
[

T 5/2(v − b) e−c/2v2
]

+ const. .

Thus, the equation of the adiabat is

T 5/2(v − b) e−c/2v2 = const.

(b) We have already obtained the result

ε(T, v) = 5

2
RT −

a

v
.

(c) From f = ε− Ts, where f = F/ν is the Helmholtz free energy per mole, we have

f(T, v) = 5

2
RT −

a

v
−

5

2
RT ln

(

bRT

a

)

−RT ln

(

v − b

b

)

+
cRT

2v2
− Ts0 .

Here we have inserted constants with the proper dimensions in order to render our ex-
pression for f with the appropriate dimensions. Thus, the constant s

0
has dimensions of

J/mol · K, the same as the gas constant R. Since c/b2 is dimensionless, there is more than
one way to do this. Any resulting differences will show up in a different expression for s

0
.

(4) Consider the thermodynamics of a solid in equilibrium with a vapor at temperature
T and pressure p , but separated by a quasi-liquid layer of thickness d. Let the number
density of the liquid be nℓ. The Gibbs free energy per unit area of the quasi-liquid layer is
taken as

gqll(T, p) = nℓ µℓ(T, p) d+ γ(d) ,

where γ(d) is an effective surface tension which interpolates between γ(0) = γsv and
γ(∞) = γsℓ + γℓv. The phenomenon of premelting requires γ(0) > γ(∞).

(a) Show that µqll(T, p) = µℓ(T, p) + n−1

ℓ γ′(d) = µs(T, p).
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(b) Expand T relative to some point (Tm, p) along the melting curve to lowest order in
T −Tm. Show ∆µ(T, p) ≡ µs(T, p)−µℓ(T, p) = ℓm(T −Tm)/Tm , where ℓm is the latent
heat of melting.

(c) Assume

γ(d) = γsv + (γsℓ + γℓv − γsv) ·
d2

d2 + σ2
,

where σ is a molecular length scale. Assuming d ≫ σ, find the dependence of the
thickness d of the quasi-liquid layer on the reduced temperature t ≡ (Tm − T )/Tm.

Solution :

(a) The chemical potentials of a particle in the solid and the quasi-liquid layers must be
the same. Since we use d for thickness, I will here use δ for differential. The Gibbs free
energy of the quasi-liquid layer is Gqll(d) = Agqll(d), where A is the total surface area. The
number of particles in the quasi-liquid layer is Nqll = Anqll d. Thus, the chemical potential
is potential is then

µqll =
δGqll

δNqll

= µℓ + n−1

ℓ γ′(d) .

(b) Expanding to first order, with ∆µ = µs − µℓ, we have

∆µ(T, p) =

(

∂∆µ

∂T

)

p

(T − Tm) =
ℓm
Tm

(T − Tm) ,

where ℓm is the latent heat of melting per molecule. This results in the desired expression
∆µ(T, p) = ℓm(T − Tm)/Tm.

For a more rigorous derivation, expand to first order in both ∆T and ∆p:

∆µ(T, p) =

(

∂∆µ

∂T

)

p

(T − Tm) +

(

∂∆µ

∂p

)

T

(p− pm) + . . .

=
ℓm
Tm

(T − Tm)−

(

1

nℓ

−
1

ns

)

(p− pm) + . . . .

The pressure shift can now be expressed in terms of the temperature shift by examining
the slopes of the sublimation and melting lines, via the Clapeyron equation. This results
in ∆µ(T, p) = κv ℓm(T − Tm)/Tm , with

κv = 1−
(dp/dT )

subl

(dp/dT )
melt

.

For water, κv ≈ 1 and the correction is negligible.

(c) We now set

∆µ =
1

nℓ

∂γ

∂d
=

γsℓ + γℓv − γsv
nℓ

·
2σ2d

(σ2 + d2)2
=

κvℓm∆T

Tm

.
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For d ≫ σ, we have

d(t) =

(

−
2σ2(γsℓ + γℓv − γsv)

ℓm nℓ

)1/3

t−1/3 ,

where t ≡ (T − Tm)/Tm.
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