PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #4 SOLUTIONS

(1) v = 8 moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the
thermodynamic path for which is an ellipse in the (V,p) plane. The center of the ellipse
lies at (Vy,p,) = (0.25m?, 1.0 bar). The semimajor and semiminor axes of the ellipse are
AV =0.10m? and Ap = 0.20 bar.

(a) What is the temperature at (V,p) = (V, + AV, p;)?

(b) Compute the net work per cycle done by the gas.

(c) Compute the internal energy difference E(V;, — AV, p,) — E(V,,py — Ap).
(d) Compute the heat  absorbed by the gas along the upper half of the cycle.

Solution :

a e temperature1s I’ = pV /v R. Wit =V, + = 0.35m* and p = p, = 1.0 bar, we
(a) Th p isT =pV/vR. With V =V + AV = 0.35m? and o= 10b

have (10° Pa)( 3
10° Pa)(0.35m
T= =5H30K.
(8 mol)(8.31 J/mol K)

(b) The area of an ellipse is 7 times the product of the semimajor axis lengths.

}{p dV = (Ap)(AV) = 7 (0.20 x 10% bar) (0.10m*) = 6.3kJ .

(c) For a diatomic ideal gas, E = %pV. Thus,

AE = 2(VyAp—py AV) = 5 (—0.05 x 10°J) = —13kJ .

(d) We have Q = AE + W, with
W =2py AV + Z(Ap)(AV) = 23kJ ,

which is the total area under the top half of the ellipse. The difference in energy is given
by AE = 3 p, - 2AV = 5p, AV, s0

Q=AE+W =Tp, AV + Z(Ap)(AV) = 73LJ .

(2) Consider a thermodynamic system for which E(S,V, N) = aS*/NV?2.



(a) Find the equation of state p = p(T',V, N).
(b) Find the equation of state u = p(7', p).

(c) v moles of this substance are taken through a Joule-Brayton cycle. The upper isobar
lies at p = p, and extends from volume V, to V. The lower isobar lies at p = p;. Find
the volumes V- and V.

(d) Find the work done per cycle W, ., the heat Q55 , and the cycle efficiency.

Solution :

(a) We can find

(9B _ 2a8" r_ (9F _ 4aS? _(9E\ a8
P=m\ov )y V3 0 T T \05 )y N2 0 FT\ON )y, T NEE
but we need to eliminate the inconvenient variable S from these equations. To do this,

we construct the ratio p? / T*, in which the S factors manifestly cancel. One then finds
32ap°V = NT*, i.e.

_ (N 8 4/3
p(T,V,N) = (32a) v T .

This means, for example, that the equation for an isotherm (at fixed V) is pV/3 = const.,
in contrast to the result for the ideal gas isotherm, pV' =const. Note also that p, being
intensive, must be expressible as p(T', V/N), which it is.

(b) To obtain u(T),p), note that 2Nu = —pV, and from our result for p(7,V/N) we have
V/N = T%/32ap3. Thus,
T4

Tp)=——.
lu’( 7p) 64&]92

(c) The equilibrium adiabatic equation of state for this system is dS = 0. From (a), we see
that at fixed IV this means pV® = const., so we must have p,V;3 = p, V& and p, V3 = p, V3.
Hence

1/3 1/3
Ve =Vg - (p2/P1) A Va+ (p2/p1) o
(a) From part (a), the energy for our system is E' = 1pV. Along the upper (p,) isochore,

B
Wag = /dez =p2(Ve — Va) ) AEpg = Eg — Ep = %pz (Ve =Va)
A

hence
Qag = AEpg + Wag = 3py (Vg — Va) -



The work along the lower (p,) isochore is

2/3
p
Wep = p1(VD - Vc) = P2 (VA - VB) <—1> .

Along the BC adiabat,

7 Fav V2 p 3
Wge = /pdV :szg’/W = %pzvs (1 - V_|32> = %p2VB 1- <—1> ] .
C Dy
B Ve
Similarly,
A Vy
dv V2 p \V*
v%A:/WWEWﬂf/ngaMﬁG%—{)Zﬁﬂk<4> ~1].
D v, b P2
D

Adding up all the individual works, we get

Weye = Wag + Wac + Wep + Wpa

1 - (ﬁf/g .
D
Dividing by @ g, we obtain the efficiency,
= Doe <ﬁ>2/3.
Qas )

(3) A diatomic gas obeys the equation of state

RT a cRT
v—>b v? 3

= %p2(VB - VA)

)

where a, b, and ¢ are constants.

(a) Find the adiabatic equation of state relating temperature 7" and molar volume v.
(b) What is the internal energy per mole, £(T',v)?

(c) What is the Helmholtz free energy per mole, f(7',v)?

Solution :

(a) Let € be the molar internal energy and v the molar volume. We have already shown

O\ dp



Thus, for our system,

Oe a 5 a
<%>T = 1)_2 = E(T,’U) = ERT — ; s

where the first term is the result for the rarefied limit v — oo, where the gas presumably
becomes ideal. Now if s = S/v is the molar entropy (v = N/N, is the number of moles),
then

dv dv
RT — .
v—b+c v3

Tds=de+pdv=3RdT + RT
Dividing by 7" and then integrating, we have
s(T,v) = Rln |:T5/2(’U —b) e~/ | 4 const. .
Thus, the equation of the adiabat is

T (v — b) e~¢/2"" = const.

(b) We have already obtained the result

e(T,v) = 3RT — % .

(c) From f = e — T's, where f = F/v is the Helmholtz free energy per mole, we have

a bRT v—2> cRT
f(T,v):gRT—;—gRT1n< - >—RTln< 2 >+W—Tso.

Here we have inserted constants with the proper dimensions in order to render our ex-
pression for f with the appropriate dimensions. Thus, the constant s, has dimensions of
J/mol - K, the same as the gas constant R. Since ¢/ b2 is dimensionless, there is more than
one way to do this. Any resulting differences will show up in a different expression for s,,.

(4) Consider the thermodynamics of a solid in equilibrium with a vapor at temperature
T and pressure p, but separated by a quasi-liquid layer of thickness d. Let the number
density of the liquid be n,. The Gibbs free energy per unit area of the quasi-liquid layer is
taken as

I (T, p) = 1y (T, p) d +~(d) ,

where 7(d) is an effective surface tension which interpolates between ~(0) = ~,, and
7(00) = Y4y + V- The phenomenon of premelting requires (0) > y(o0).

(a) ShOW that /qul(T> p) = /LZ(T> p) + nz_l/yl(d) = Hs (T> p)'



(b) Expand T relative to some point (7},,,p) along the melting curve to lowest order in

T —T,,. Show Au(T,p) = p(T,p)—p,(T,p) =, (T —T,,)/T,, , where ¢, is the latent
heat of melting.

(c) Assume
d2
V(d) = Yo T (75( + Yew — st) ’ m )
where o is a molecular length scale. Assuming d >> o, find the dependence of the
thickness d of the quasi-liquid layer on the reduced temperature t = (7, — T')/T,,.

Solution :

(a) The chemical potentials of a particle in the solid and the quasi-liquid layers must be
the same. Since we use d for thickness, I will here use § for differential. The Gibbs free
energy of the quasi-liquid layer is G, (d) = Ag,,(d), where A is the total surface area. The
number of particles in the quasi-liquid layer is N, = An,, d. Thus, the chemical potential
is potential is then

oG

Hqu = SN Nq”

= pe+ng'Y(d) .

(b) Expanding to first order, with Ay = p, — 1, we have

Aur) = (G ) (=T = 2T -T)

m

where ¢, is the latent heat of melting per molecule. This results in the desired expression
A/L(Typ) = Em(T - Tm)/Tm

For a more rigorous derivation, expand to first order in both AT and Ap:

Ap(T,p) = (%)p (T -T,) + (%)T (P —Pw) + -

14 1 1

= (rT_T)—(——-=)(p—

2 =1, = (=)o) +

The pressure shift can now be expressed in terms of the temperature shift by examining
the slopes of the sublimation and melting lines, via the Clapeyron equation. This results
in Au(T,p) = kb, (T — T,))/T,, , with

oy /ATy
! (dp/dT)

melt

For water, k,, = 1 and the correction is negligible.

(c) We now set

Alu: i@_w — Vse T Yoo — Vsv ) 202d _ IivfmAT
n, od n, (02 + d2)2 T .



For d > o, we have

_ 20 (’YSZ + Voo — ’st) 1/8 75—1/3
m "%/

wheret = (T - T,)/T,,.



