PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #3 SOLUTIONS

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is
e(p) = pe.

(a) Find T, p, and p within the microcanonical ensemble (variables S, V, N).

(b) Find F, S, p, and p within the ordinary canonical ensemble (variables 7', V/, N).

(c) Find (2, S, p, and N within the grand canonical ensemble (variables 7', V, p).

(d) Find G, S, V, and p within the Gibbs ensemble (variables 7', p, V).

(e) Find H, T, V, and p within the S-p-N ensemble. Here H = E/ + pV is the enthalpy.

Solution :

(a) The density of states D(E, V, N) is the inverse Laplace transform of the ordinary canon-
ical partition function Z(3,V, N). We have
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Taking the logarithm, and using In(K!) = K'In K — K 4+ O(ln K) for large K,
S(E,V,N)=k,InD(E,V,N) = Nk:Bln(%) —|—3Nk:Bln<%> —3NkyIna,

where a = 37%/3¢~%/3hc is a constant. Inverting to find E(S, V, N), we have
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From the differential relation
dE =TdS —pdV + udN

we then derive
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Note that pV' = NE,T.
(b) The Helmholtz free energy is
F(T,V,N)=—k,TInZ
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and from
dF = —-SdT — pdV + udN
we read off
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(c) The grand potential is {2 = F' — uN = —k;T InE, where
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The differential is
df?=-SdI' —pdV — Ndu,

and therefore
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Note thatp = —2/V.
(d) The Gibbs free energy is

G(T,p,N) =F +pV
= Nk,T'lnp — ANk, T'In(k,T) + Nk,T (4 + 3In(3a))



The differential of G is
dG = —-SdT +V dP + pdN ,

and therefore
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Note that u = G/N.

(e) The enthalpy is
H(S,p,N) = E+pV
AN (Lo e [ 2
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From
dH=TdS + Vdp+ pdN ,
we have

/4 1/4
LA s
risn =+ (55) =0 oo (o)
OH a V4 S
ViSe N) =+ (a—p>N -%(5) e ()

OH S S
(S, p,N) = (8—]\,)5 = (%@3/4171/4(4— NkB> eXp<4NkB> :
7p

(2) Consider a system composed of spin tetramers, each of which is described by the
Hamiltonian

}AI = _J(UlUZ +UlO'3 +UlO'4 +U203 +O’2O'4 +O'30'4) — ,LtoH(O'l +O’2 +O’3 +O'4) .

The individual tetramers are otherwise noninteracting.

(a) Find the single tetramer partition function (.
(b) Find the magnetization per tetramer m = p(oy + 0y + 05 + 7).

(c) Suppose the tetramer number density is n,. The magnetization density is M = n,m.
Find the zero field susceptibility X(7') = (OM/OH ) ;_,-



Solution :
(a) Note that we can write
H=2J - tJ(oy + oy +05+0,)° — poH (o) + 0y + 05+ 0y) .

Thus, for each of the 2' = 16 configurations of the spins of any given tetramer, only the
sum Y.}, 0; is necessary in computing the energy. We list the degeneracies of these states
in the table below. Thus, according to the table, we have

0+ 09+ 03+ 04 | degeneracy g | energy E
+4 1 —6J — duoH
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(b) The magnetization per tetramer is
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(c) The zero field susceptibility is
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Note that for 3J — oo we have X(T') = (4414)*n,/ksT, which is the Curie value for a single
Ising spin with moment 4/,. In this limit, all the individual spins are locked together, and
there are only two allowed configurations for each tetramer: |[1T11) and ||JJ)). When
J = 0, we have X = 4u2n,/k, T, which is to say four times the single spin susceptibility.
Le. all the spins in each tetramer are independent when J = 0. When 3J — —oo, the only

allowed configurations are the six ones with _7_; 0; = 0. In order to exhibit a moment,

an energy gap of 2|J| must be overcome, hence X o exp(—203|.J|), which is exponentially

suppressed.

(3) For an ideal gas, find the difference C,, — C, for the following functions . You are to
assume N is fixed in each case.

@) ¢(p,V)=p*V?



) @(p,T) =pe"/T

© ¢(T,V)=VvT"!

Solution :
In general,
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Note that

dQ =dE +pdV .
We will also appeal to the ideal gas law, pV' = Nk, T. Below, we shall abbreviate ¢, = g—‘f,
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(a) We have
dQ = %kaBdT—i—pdV ,

and therefore

Now for a general function ¢(p, V'), we have
do = ¢, dp + ¢y dV
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after writing dp = d(Nk,T/V') in terms of dT" and dV'. Setting dy = 0, we then have
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This is the general result. For p(p, V) = p?V?2, we find
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(b) We have
dQ = (3f + 1)NkydT — Vdp,

and therefore
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For a general function ¢(p,T), we have
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Therefore,
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This is the general result. For p(p,T) = p el/To, we find
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(c) We have
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as in part (a). For a general function ¢(7', V'), we have
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This is the general result. For o(T,V) = V/T, we find
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(4) Find an expression for the energy density ¢ = E/V for a system obeying the Dieterici
equation of state,
p(V — Nb) = Nk T e Ne/VEsT

where a and b are constants. Your expression for (v, T') should involve an integral which
can be expressed in terms of the exponential integral,
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Solution :

We have 5 o 5
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where we have invoked a Maxwell relation. For the Dieterici equation of state, then,
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Letn = N/V be the density and ¢ = E/N be the energy per particle. Then the above result
is equivalent to
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We integrate this between n = 0 and n, with bn < 1. Define the dimensionless quantity
A =a/bk,T and t = A(1 — bn). Then
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In the zero density limit, the gas must be ideal, in which case £(0,7") = % fk;T. Thus,

e(n,T) = Lk, T — {E.(%) —Ei<bk‘;T>}-¢.

In terms of the volume per particle, write v = V/N = 1/n.




