
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider a d-dimensional ideal gas with dispersion ε(p) = A|p|α, with α > 0. Find the
density of statesD(E), the statistical entropy S(E), the equation of state p = p(N,V, T ), the
heat capacity at constant volume CV (N,V, T ), and the heat capacity at constant pressure
Cp(N,V, T ).

Solution:

The density of states is

D(E,V,N) =
V N

N !

∫
ddp1
hd

· · ·
∫
ddpN
hd

δ
(
E −Apα1 − . . .−ApαN

)
.

The Laplace transform is

D̂(β, V,N) =
V N

N !

(∫
ddp

hd
e−βAp

α

)N

=
V N

N !

(
Ωd
hd

∞∫

0

dp pd−1 e−βAp
α

)N

=
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N
β−Nd/α .

Now we inverse transform, recalling

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

We then conclude

D(E,V,N) =
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N E
Nd
α

−1

Γ(Nd/α)

and

S(E,V,N) = kB lnD(E,V,N)

= NkB ln

(
V

N

)
+
d

α
NkB ln

(
E

N

)
+Na0 ,

where a0 is a constant, and we take the thermodynamic limit N → ∞ with V/N and E/N
fixed. From this we obtain the differential relation

dS =
NkB

V
dV +

d

α

NkB

E
dE + s0 dN

=
p

T
dV +

1

T
dE − µ

T
dN ,
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where s0 is a constant. From the coefficients of dV and dE, we conclude

pV = NkBT

E =
d

α
NkBT .

Setting dN = 0, we have

d̄Q = dE + p dV

=
d

α
NkB dT + p dV

=
d

α
NkB dT + p d

(
NkBT

p

)
.

Thus,

CV =
d̄Q

dT

∣∣∣∣
V

=
d

α
NkB , Cp =

d̄Q

dT

∣∣∣∣
p

=

(
1 +

d

α

)
NkB .

(2) Find the velocity distribution f(v) for the particles in problem (1). Compute the most
probable speed, mean speed, and root-mean-square velocity.

Solution:

The momentum distribution is
g(p) = C e−βAp

α
,

where C is a normalization constant, defined so that
∫
ddp g(p) = 1. Changing variables to

t ≡ βApα, we find

C =
α (βA)

d
α

Ωd Γ
(
d
α

) .

The velocity v is given by

v =
∂ε

∂p
= αApα−1 p̂ .

Thus, the speed distribution is given by

f(v) = C

∫
ddp e−βAp

α
δ
(
v − αApα−1

)
.

Thus,

〈vr〉 = C

∫
ddp e−βAp

α(
αApα−1

)r
,

and

‖v‖r = 〈vr〉1/r = αAα
−1

(kBT )
1−α−1

(
Γ
(
d−r
α + r

)

Γ
(
d
α

)
)1/α

.
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To find the most probable speed, we extremize f(v). We write

δ
(
v − αApα−1

)
=
δ
(
p− (v/αA)1/(α−1)

)

α(α− 1)Apα−2
.

We then find

f(v) =
C

α(α − 1)A
pd−α+1 e−βAp

α

∣∣∣∣
p=(v/αA)1/(α−1)

.

Extremizing, we obtain

βApα =
d− α+ 1

α
,

which means

v = αA

(
d− α+ 1

αβA

)1−α−1

= (αA)α
−1
(d− α+ 1)1−α

−1
(kBT )

1−α−1
.

(3) A spin-1 Ising magnet is described by the noninteracting Hamiltonian

H = −µ0H
N∑

i=1

σi ,

where σi = −1, 0,+1.

(a) Find the entropy S(H, T,N).

(b) Suppose the system starts off at a temperature T = 10mK and a field H = 20T. The
field is then lowered adiabatically to H = 1T. What is the final temperature of the system?

Solution:

The partition function for a single spin is

ζ = 1 + 2 cosh(βµ0H) .

The free energy is therefore

F = −NkBT ln
(
1 + 2 cosh

(
µ0H/kBT

))
.

The entropy is

S = −
(
∂F

∂T

)

V N

= NkB ln
(
1 + 2 cosh

(
µ0H/kBT

))
− N

µ0H

T

2 sinh
(
µ0H/kBT

)

1 + 2 cosh
(
µ0H/kBT

)

Note that S = Ns(H/T ). Thus, an adiabatic process is one which takes place at constant
H/T . If H is lowered by a factor of 20, then T is lowered by a factor of 20. For this problem,
then, the final temperature is 0.5mK.
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(4) Consider an adsorption model where each of N sites on a surface can accommodate ei-
ther one or two adsorbate molecules. For a single molecule the energy is ε = −∆, but when
two are present the energy is ε = −2∆ + U , where U models the local interaction of two
adsorbate molecules at the same site. You should think of there being two possible binding
locations within each adsorption site, so there are four possible states per site: unoccupied
(1 possibility), singly occupied (2 possibilities), and doubly occupied (1 possibility). The
surface is in equilibrium with a gas at temperature T and number density n.

(a) Find the surface partition function.

(b) Find the fraction fj which contain j adsorbate molecules, where j = 0, 1, 2.

Solution:

The surface partition function is

Ξ =
(
1 + 2 eβ(µ+∆) + e2β(µ+∆) e−βU

)N
,

hence
Ω = −NkBT ln

(
1 + 2 e(µ+∆)/kBT + e2(µ+∆)/kBT e−U/kBT

)
.

In the gas, we have eµ/kBT = nλ3T . Therefore

f0 =
1

1 + 2nλ3T e
∆/kBT + n2λ6T e

2∆/kBT e−U/kBT

f1 =
2nλ3T e

∆/kBT

1 + 2nλ3T e
∆/kBT + n2λ6T e

2∆/kBT e−U/kBT

f2 =
(nλ3T )

2 e2∆/kBT e−U/kBT

1 + 2nλ3T e
∆/kBT + n2λ6T e

2∆/kBT e−U/kBT
.

(5) Consider a system of dipoles with the Hamiltonian

H =
∑

i<j

Jαβij nαi n
β
j − µ0

∑

i

H
α
i n

α
i ,

where

Jαβij =
J

R3
ij

(
δαβ − 3 R̂αij R̂

β
ij

)
.

Here Ri is the spatial position of the dipole mi, and Rij = Ri−Rj with R̂αij ≡ Rαij/Rij the
unit direction vector from j to i. The dipole vectorsmα

i are three-dimensional unit vectors.
H
α
i is the local magnetic field.

(a) Find an expression for the free energy F
(
T, {~Hi}

)
valid to order β2, where β = 1/kBT .

(b) Obtain an expression for the uniform field magnetic susceptibility tensor χαβ .
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(c) An experimentalist plots the quantity Tχαβ versus T−1 for large temperatures. What
should the data resemble if the dipoles are arranged in a cubic lattice structure? How
about if they are arranged in a square lattice in the (x, y) plane? (You’ll need to separately
consider the various cases for the indices α and β. You will also need to numerically
evaluate certain lattice sums.)

Solution:

Since Z = e−βF , we will need to expand Z to order β3 in order to obtain F to order β2. We
have

Z = Tr e−βH

= Tr 1− β TrH + 1
2β

2
TrH2 − 1

6β
3
TrH3 +O(β4) .

Taking the logarithm, and recalling ln(1 + ε) =
∑∞

k=1(−1)k−1εk/k, we have

F = TrH − 1
2β
[
Tr
(
H2
)
− (TrH)2

]
+ 1

6β
2
[
Tr
(
H3
)
− 3Tr

(
H2
)
(TrH)+2 (TrH)3

]
+O(β3) .

We define the trace as

TrF (n̂1, . . . , n̂N ) =

∫ N∏

j=1

dn̂j
4π

F (n̂1, . . . , n̂N ) ,

so that Tr 1 = 1. Thus,
Tr
(
nµi n

ν
j

)
= 1

3 δij δ
µν .

Clearly the trace of any product of an odd number of terms mµ
i with the same i, no matter

what the choices of the O(3) indices (e.g. µ), must vanish, since the trace itself is invariant
under n̂i → −n̂i. It isn’t so easy to compute traces of higher order even products, since the
unit vector constraint on n̂i invalidates the application of Wick’s theorem, which can be
invoked when computing the averages of Gaussianly distributed variables. For example,
one finds Tr

(
nxnxnyny

)
= 2

3 while Tr
(
nxnxnxnx

)
= 1

5 . No matter; we shall only need
Tr
(
nµi n

ν
j

)
, computed above.

We now write H = H0 +H1, where H0 =
∑

i<j J
αβ
ij nαi n

β
j and H1 = −µ0

∑
iH

α
i n

α
i . Elimi-

nating the odd terms whose traces vanish, we have

TrH = Tr(H0 +H1) = 0

Tr
(
H2
)
= Tr

(
H2

0 + 2H0H1 +H2
1

)
= Tr

(
H2

0

)
+ Tr

(
H2

1

)

Tr
(
H3
)
= Tr

(
H3

0 + 3H2
0 H1 + 3H0H

2
1 +H3

1

)
= Tr

(
H3

0

)
+ 3Tr

(
H0H

2
1

)
,

so the free energy is

F = −1
2β Tr

(
H2

0

)
− 1

2β Tr
(
H2

1

)
+ 1

6β
2
Tr
(
H3

0

)
+ 1

2β
2
Tr
(
H0H

2
1

)
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Note that TrH0 = 0 since i and j are distinct in the sum. We may now compute

Tr
(
H2

0

)
=
∑

i<j

∑

k<l

Jµνij J
αβ
ij Tr

(
nµi n

ν
j n

α
k n

β
l

)
= 1

9

∑

i<j

Jµνij J
µν
ij

Tr
(
H2

1

)
= µ20

∑

i

∑

j

H
α
i H

β
j Tr

(
nαi n

β
j

)
= 1

3µ
2
0

∑

i

H
α
i H

α
i

Tr
(
H3

0

)
=
∑

i<j

∑

k<l

∑

m<n

Jµνij J
αβ
kl J

στ
rs Tr

(
nµi n

ν
j n

α
k n

β
l n

σ
r n

τ
s

)
= 2

9

∑

l<m<n

JµνlmJ
µσ
ln J

νσ
mn

Tr
(
H0H

2
1

)
= µ20

∑

i<j

∑

k

∑

l

Jµνij H
α
k H

β
l Tr

(
nµi n

ν
j n

α
k n

β
l

)
= 2

9 µ
2
0

∑

i<j

Jµνij H
µ
i H

ν
j .

Note that Jµνij is separately symmetric under interchange of the (ij) and/or (µν) indices.
Next we must contract the O(3) indices. We find

Jµνij J
µν
ij =

6J2

R6
ij

Jµνij J
νλ
jk J

λµ
ki =

[
− 6 + 9 (R̂ij · R̂jk)2 + 9 (R̂jk · R̂ki)2 + 9 (R̂ki · R̂ij)2

− 27 (R̂ij · R̂jk)(R̂jk · R̂ki)(R̂ki · R̂ij)
]
· J3

R3
ijR

3
jkR

3
ki

.

(a) Thus, the free energy is

F = − J2

3kBT

∑

i<j

1

R6
ij

− µ20
6 kBT

∑

i

H
µ
i H

µ
i +

µ20J

9 (kBT )
2

∑

i<j

(
δµν − 3R̂µijR̂

ν
ij

R3
ij

)
H
µ
i H

ν
j

+
2J3

9(kBT )
2

∑

i<j<k

−2 + 3 R̂ij · R̂jk + 3 R̂jk · R̂ki + 3 R̂ki · R̂ij − 9 (R̂ij · R̂jk)(R̂jk · R̂ki)(R̂ki · R̂ij)
R3
ijR

3
jkR

3
ki

to order β2.

(b) We have

χµν
ij =

∂ 〈µ0 nµi 〉
∂Hνj

= − ∂2F

∂Hµi ∂H
ν
j

=
µ20

3kBT
δµν δij −

2µ20 J

9 (kBT )
2

(
δµν − 3R̂µijR̂

ν
ij

R3
ij

)
(1− δij) +O(T−3) .

The second term is here multiplied by (1 − δij) since i and j must be distinct in the cor-
responding term from the free energy. χµνij tells us how the moment at site i changes in
response to a change in the magnetic field at site j. To get the uniform magnetic suscepti-
bility, we differentiate the total moment Mµ = µ0

∑
i〈n

µ
i 〉 with respect to a uniform field

Hν , and we then divide by the system volume. Thus,

χµν =
1

V

∑

i,j

χµν
ij =

N

V
· µ20
3kBT

δµν − 2µ20 J

9 (kBT )
2
· 1

V

∑

i 6=j

(
δµν − 3R̂µijR̂

ν
ij

R3
ij

)
+O(T−3) .
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The above expression is valid for any spatial arrangement of the dipoles. They don’t have
to be in a regular lattice, for example.

(c) If the dipoles are located at the sites of a Bravais lattice, then we may write

χµν =
1

V

∑

i,j

χµν
ij =

N

V
· µ20
3kBT

δµν − N

V
· 2µ20 J

9 (kBT )
2

∑

R 6=0

(
δµν − 3R̂µR̂ν

R3

)
+O(T−3) ,

where the sum is over all Bravais lattice vectors (i.e. all lattice points) other than R = 0.
Now let’s do the lattice sum in the second term for the case of a cubic lattice. We write
R = (l x̂ +m ŷ + n ẑ)a, where a is the lattice constant and (l,m, n) are integers. We sum
over all triples of integers (l,m, n) other than (0, 0, 0). We then have

R =
(
l2 + n2 + n2)1/2 a , R̂ =

R

R
=

l x̂+m ŷ + n ẑ

(l2 +m2 + n2)1/2
.

It is clear that the off-diagonal terms in χµν must vanish due to the cubic symmetry. For
example, when µ = x and ν = y we have to compute

∑

l,m,n

′ lm

(l2 +m2 + n2)5/2
= 0 ,

since the summand is odd separately in both l and m. The prime on the sum indicates that
the term (0, 0, 0) is to be excluded.

Next, consider the diagonal elements. For a cubic lattice, we must have χxx = χyy = χzz,
so we need only compute the xx term:

∑

R 6=0

(
1− 3R̂xR̂x

R3

)
=

1

a3

∑

l,m,n

′ m2 + n2 − 2l2

(l2 +m2 + n2)5/2
= 0 .

To see why this term vanishes, note that any permutation of the triple (l,m, n) is also
a Bravais lattice site. Summing over all permutations, we see that the above sum must
vanish. We therefore conclude that all components of the O(T−2) term in the susceptibility
vanish for a cubic lattice. In fact, it is clear from the outset that

Tr
(
δµν − 3R̂µR̂ν

)
= 0 ,

so this result coupled with the cubic symmetry immediately tells us that the O(T−2) must
vanish for all components.

For a square lattice, we set n = 0. The off-diagonal component χxy still vanishes due to the
square symmetry, but now we have χxx = χyy = −1

2
χzz . The lattice sum for the xx term is

−
∑

l,m

′ m2 − 2l2

(l2 +m2)5/2
=
∑

l,m

′ l2

(l2 +m2)5/2
= 1

2

∑

l,m

′ 1

(l2 +m2)3/2
= 1.7302 ,
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where the numerical value is obtained by numerical summation. Thus,

χµν(SC) =
N

V
· µ20
3kBT

δµν +O(T−3)

χµν(SQ) =
N

V
· µ20
3kBT

δµν +
N

V
· 2µ20 J

9 (kBT )
2
· 1.7302

a3



1 0 0
0 1 0
0 0 −2


+O(T−3)

for simple cubic and square lattices, respectively. Thus, if we plot Tχµν versus T−1 at high
temperatures, we should observe a straight line with intercept nµ20/3kB, with n = N/V .
The slope of the line is zero for the case of a cubic lattice, but for a square lattice, we should
observe a positive slope of 0.3845nµ20J/k

2
B for χxx and χyy and a negative slope of twice

this magnitude for χzz.

(6) The general form of the kinetic energy for a rotating body is

T = 1
2I1
(
φ̇ sin θ sinψ + θ̇ cosψ

)2
+ 1

2I2
(
φ̇ sin θ cosψ − θ̇ sinψ

)2
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
,

where (φ, θ, ψ) are the Euler angles.

(a) Find the Hamiltonian H(pφ, pθ, pψ) for a free asymmetric rigid body.

(b) Compute the rotational partition function,

ξrot(T ) =
1

h3

∞∫

−∞

dpφ

∞∫

−∞

dpθ

∞∫

−∞

dpψ

2π∫

0

dφ

π∫

0

dθ

2π∫

0

dψ e−H(pφ,pθ,pψ)/kBT

and show that you recover the result in §4.10.4 of the notes.

Solution:

We define generalized coordinates (φ, θ, ψ), in which case we may write T = 1
2Tij q̇i q̇j ,

with

Tij =



(I1 sin

2ψ + I2 cos
2ψ) sin2θ + I3 cos

2θ (I1 − I2) sin θ sinψ cosψ I3 cos θ
(I1 − I2) sin θ sinψ cosψ I1 cos

2ψ + I2 sin
2ψ 0

I3 cos θ 0 I3




The generalized momenta are pi = ∂T/∂q̇i = Tij q̇j , and the Hamiltonian is

H = 1
2T

−1
ij pi pj .

Recall the general formula for a matrix inverse: M−1
ij = (−1)i+j∆ji/ detM , where the minor

∆ij is the determinant of the square matrix formed from M by eliminating the ith row and

the jth column. The matrix T is of the form

T =



a d e
d b 0
e 0 c


 ,
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hence the determinant is detT = abc− cd2 − be2 and the inverse is

T
−1 =

1

abc− cd2 − be2




bc −cd −be
−cd ac− e2 de
−be de ab− d2


 .

Taking the determinant of T is straightforward, and one finds detT = I1I2I3 sin
2θ. The

rotational partition function is then given by the multidimensional integral

ξrot(T ) =
1

h3

2π∫

0

dφ

π∫

0

dθ

2π∫

0

dψ

∞∫

−∞

dpφ

∞∫

−∞

dpθ

∞∫

−∞

dpψ e
−T

−1
ij pipj/2kBT

=
1

h3

2π∫

0

dφ

π∫

0

dθ

2π∫

0

dψ (2πkBT )
3/2

√
detT

=

(
2kBT

~2

)3/2√
πI1I2I3 ,

as in §4.10.4 of the notes.
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