PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #3

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is $\varepsilon(\mathbf{p}) = pc$.

- (a) Find *T*, *p*, and μ within the microcanonical ensemble (variables *S*, *V*, *N*).
- (b) Find *F*, *S*, *p*, and μ within the ordinary canonical ensemble (variables *T*, *V*, *N*).
- (c) Find Ω , *S*, *p*, and *N* within the grand canonical ensemble (variables *T*, *V*, μ).
- (d) Find G, S, V, and μ within the Gibbs ensemble (variables T, p, N).
- (e) Find H, T, V, and μ within the S-p-N ensemble. Here H = E + pV is the enthalpy.

(2) Consider a system composed of spin tetramers, each of which is described by the Hamiltonian

$$\ddot{H} = -J(\sigma_1\sigma_2 + \sigma_1\sigma_3 + \sigma_1\sigma_4 + \sigma_2\sigma_3 + \sigma_2\sigma_4 + \sigma_3\sigma_4) - \mu_0H(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4).$$

The individual tetramers are otherwise noninteracting.

- (a) Find the single tetramer partition function ζ .
- (b) Find the magnetization per tetramer $m = \mu_0 \langle \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 \rangle$.
- (c) Suppose the tetramer number density is n_t . The magnetization density is $M = n_t m$. Find the zero field susceptibility $\chi(T) = (\partial M / \partial H)_{H=0}$.

(3) For an ideal gas, find the difference $C_{\varphi} - C_V$ for the following functions φ . You are to assume *N* is fixed in each case.

- (a) $\varphi(p, V) = p^3 V^2$
- (b) $\varphi(p,T) = p e^{T/T_0}$
- (c) $\varphi(T, V) = VT^{-1}$

(4) Find an expression for the energy density $\varepsilon = E/V$ for a system obeying the Dieterici equation of state,

$$p(V - Nb) = Nk_{\rm B}T \, e^{-Na/Vk_{\rm B}T}$$

where *a* and *b* are constants. Your expression for $\varepsilon(v, T)$ should involve an integral which can be expressed in terms of the exponential integral,

$$\mathsf{Ei}(x) = \int_{-\infty}^{x} dt \; \frac{e^t}{t} \; .$$