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Chapter 4

Magnetism

4.1 Introduction

Magnetism arises from two sources. One is the classical magnetic moment due to a current density j:

m =
1

2c

∫
d3r r × j . (4.1)

The other is the intrinsic spin S of a quantum-mechanical particle (typically the electron):

m = gµ◦S/~ ; µ◦ =
q~

2mc
= magneton, (4.2)

where g is the g-factor (duh!). For the electron, q = −e and µ◦ = −µB, where µB = e~/2mc is the Bohr
magneton.

The Hamiltonian for a single electron is

Ĥ =
π2

2m
+ V (r) +

e~

2mc
σ ·H +

~

4m2c2
σ ·∇V × π +

~2

8m2c2
∇

2V +
(π2)2

8m3c2
+ . . . , (4.3)

where π = p+ e
cA. Where did this come from? From the Dirac equation,

i~
∂Ψ

∂t
=

(
mc2 + V cσ · π
cσ · π −mc2 + V

)
Ψ = EΨ . (4.4)

The wavefunction Ψ is a four-component Dirac spinor. Sincemc2 is the largest term for our applications,
the upper two components of Ψ are essentially the positive energy components. However, the Dirac
Hamiltonian mixes the upper two and lower two components of Ψ. One can ‘unmix’ them by making a
canonical transformation,

Ĥ −→ Ĥ ′ ≡ eiS Ĥ e−iS , (4.5)

where S is Hermitian, to render Ĥ ′ block diagonal. WithE = mc2+ε, the effective Hamiltonian is given
by (4.3). This is known as the Foldy-Wouthuysen transformation, the details of which may be found

1



2 CHAPTER 4. MAGNETISM

in many standard books on relativistic quantum mechanics and quantum field theory (e.g. Bjorken and
Drell, Itzykson and Zuber, etc.) and are recited in §4.11 below. Note that the Dirac equation leads
to g = 2. If we go beyond “tree level” and allow for radiative corrections within QED, we obtain a
perturbative expansion,

g = 2

{
1 +

α

2π
+O(α2)

}
, (4.6)

where α = e2/~c ≈ 1/137 is the fine structure constant.1

There are two terms in (4.3) which involve the electron’s spin:

Zeeman interaction : ĤZ =
e~

2mc
σ ·H

Spin-orbit interaction : Ĥso =
~

4m2c2
σ ·∇V ×

(
p+ e

cA
)

.
(4.7)

The numerical value for µB is

µB =
e~

2mc
= 5.788 × 10−9 eV/G

µB/kB = 6.717 × 10−5 K/G .

(4.8)

So on the scale of electron volts, laboratory scale fields (H <∼ 106 G) are rather small. (And ∼ 2000 times
smaller for nucleons!).

The thermodynamic magnetization density is defined through

M = − 1

V

∂F

∂H
, (4.9)

where F (T, V,H, N) is the Helmholtz free energy. The susceptibility is then

χ
αβ(r | r′) = − 1

V

∂2F

∂Hα(r) ∂Hβ(r′)
. (4.10)

When the field H(r, t) is time-dependent, we must use time-dependent perturbation theory to compute
the time-dependent susceptibility function,

χ
αβ(r, t | r′, t′) =

δ
〈
Mα(r, t)

〉

δHβ(r′, t′)
, (4.11)

where F is replaced by a suitable generating function in the nonequilibrium case. Note that M has the
dimensions of H.

1Note that with µn = e~/2mpc for the nuclear magneton, gp = 2.793 and gn = −1.913. These results immediately suggest
that there is composite structure to the nucleons, i.e. quarks.
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4.1.1 Absence of orbital magnetism within classical physics

It is amusing to note that classical statistical mechanics cannot account for orbital magnetism. This is
because the partition function is independent of the vector potential, which may be seen by simply
shifting the origin of integration for the momentum p:

Z(A) = Tr e−βĤ =

∫
dNr dNp

(2π~)dN
e−βĤ({pi− q

c
A(ri),ri})

=

∫
dNr dNp

(2π~)dN
e−βĤ({pi,ri}) = Z(A = 0) .

(4.12)

Thus, the free energy must be independent of A and hence independent of H = ∇ × A, and M =
−∂F/∂H = 0. This inescapable result is known as the Bohr-von Leeuwen theorem. Of course, classical
statistical mechanics can describe magnetism due to intrinsic spin, e.g.

ZHeisenberg(H) =
∏

i

∫
dΩ̂i

4π
eβJ

∑
〈ij〉 Ω̂i·Ω̂j eβgµ◦H·∑i Ω̂i

ZIsing(H) =
∑

{σi}
eβJ

∑
〈ij〉 σi σj eβgµ◦H

∑
i σi .

(4.13)

Theories of magnetism generally fall into two broad classes: localized and itinerant. In the localized
picture, we imagine a set of individual local moments mi localized at different points in space (typically,
though not exclusively, on lattice sites). In the itinerant picture, we focus on delocalized Bloch states
which also carry electron spin.

4.2 Basic Atomic Physics

4.2.1 Single electron Hamiltonian

We start with the single-electron Hamiltonian,

Ĥ =
1

2m

(
p+

e

c
A
)2

+ V (r) + gµBH · s/~+
1

2m2c2
s ·∇V ×

(
p+ e

cA
)

. (4.14)

For a single atom or ion in a crystal, let us initially neglect effects due to its neighbors. In that case the
potential V (r) may be taken to be spherically symmetric, so with l = r×p, the first term in the spin-orbit
part of the Hamiltonian becomes

Ĥso =
1

2m2c2
s ·∇V × p =

1

2m2c2
1

r

∂V

∂r
s · l , (4.15)

with ∇V = r̂(∂V/∂r). We adopt the gauge A = 1
2H × r so that

1

2m

(
p+

e

c
A
)2

=
p2

2m
+

e

2mc
H · l+ e2

8mc2
(H × r)2 . (4.16)
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Finally, restoring the full SO term, we have

Ĥ =
p2

2m
+ V (r) +

1

~
µB(l + 2s) ·H +

1

2m2c2
1

r

∂V

∂r
l · s

+
e2

8mc2
(H × r)2 +

µB

~

rV ′(r)
4mc2

2s ·
[
H − r̂(H · r̂)

]
.

(4.17)

The last term is usually negligible because rV ′(r) is on the scale of electron volts, while mc2 = 511 keV
is the electron mass2. The (H × r)2 breaks the rotational symmetry of an isolated ion, so in principal we
cannot describe states by total angular momentum J . However, this effect is of order H2, so if we only
desire energies to order H2, we needn’t perturb the wavefunctions themselves with this term, i.e. we can

simply treat it within first order perturbation theory, leading to an energy shift e2

8mc2

〈
Ψ
∣∣ (H × r)2

∣∣Ψ
〉

in state
∣∣n
〉
.

4.2.2 The Darwin term

If V (r) = −Ze2/r, then from ∇
2(1/r) = −4πδ(r) we have

~
2

8m2c2
∇

2V =
Zπe2~2

2m2c2
δ(r) , (4.18)

which is centered at the nucleus. This leads to an energy shift for s-wave states,

∆Es−wave =
Zπe2~2

2m2c2

∣∣ψ(0)
∣∣2 = π

2
Z α2a3B

∣∣ψ(0)
∣∣2 · e

2

aB

, (4.19)

where α = e2

~c ≈ 1
137 is the fine structure constant and aB = ~2

me2
≈ 0.529 Å is the Bohr radius. For large Z

atoms and ions, the Darwin term contributes a significant contribution to the total energy.

4.2.3 Many electron Hamiltonian

The full N -electron atomic Hamiltonian, for nuclear charge Ze, is then

Ĥ =

N∑

i=1

[
p2
i

2m
− Ze2

ri

]
+

N∑

i<j

e2

|ri − rj |
+

N∑

i=1

ζ(ri) li · si

+
N∑

i=1

{
µB

~
(li + 2si) ·H +

e2

8mc2
(H × ri)

2

}
,

(4.20)

where li = ri × pi and

ζ(r) =
Ze2

2m2c2
1

r3
=
Z

~2

(
e2

~c

)2 e2

2aB

(aB

r

)3
. (4.21)

2Exercise: what happens in the case of high Z atoms?
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The total orbital and spin angular momentum are L =
∑

i li and S =
∑

i si, respectively.

The full many-electron atom is too difficult a problem to solve exactly. Generally progress is made by
using the Hartree-Fock method to reduce the many-body problem to an effective one-body problem.
One starts with the interacting Hamiltonian

Ĥ =

N∑

i=1

[
p2
i

2m
− Ze2

ri

]
+

N∑

i<j

e2

|ri − rj|
, (4.22)

and treats Ĥso as a perturbation, and writes the best possible single Slater determinant state:

Ψ
σ1···σN

(r1, . . . , rN ) = A
[
ϕ
1σ1

(r1) · · ·ϕNσ
N

(rN )
]
, (4.23)

where A is the antisymmetrizer, and ϕiσ(r) is a single particle wavefunction. In second-quantized nota-
tion, the Hamiltonian is

Ĥ =
∑

ijσ

T σ
ij ψ

†
iσ ψjσ +

∑

ijkl

σσ′

V σσ′

ijkl ψ
†
iσ ψ

†
jσ′ ψkσ′ ψlσ , (4.24)

where

T σ
ij =

∫
d3r ϕ∗

iσ(r)

{
− ~

2

2m
∇2 − Ze2

|r|

}
ϕjσ(r)

V σσ′

ijkl =
1
2

∫
d3r

∫
d3r′ ϕ∗

iσ(r)ϕ
∗
jσ′(r′)

e2

|r − r′| ϕkσ′(r′)ϕlσ(r) .

(4.25)

The Hartree-Fock energy is given by a sum over occupied orbitals:

EHF =
∑

iσ

T σ
ii +

∑

ijσσ′

(
V σσ′

ijji − V σσ′

ijij δσσ′

)
. (4.26)

The term V σσ′

ijji is called the direct Coulomb, or “Hartree” term, and V σσ′

ijij δσσ′ is the exchange term.
Introducing Lagrange multipliers εiσ to enforce normalization of the {ϕiσ(r)} and subsequently varying
with respect to the wavefunctions yields the Hartree-Fock equations:

0 =
δEHF

δϕiσ(r)

∣∣∣∣∣
〈Ψ |Ψ〉=1

=⇒ (4.27)

εiσ ϕiσ(r) =

{
− ~

2

2m
∇2 − Ze2

r

}
ϕiσ(r) +

OCC∑

j 6=i,σ′

∫
d3r′

∣∣ϕjσ′(r′)
∣∣2

|r − r′| ϕiσ(r)−
OCC∑

j 6=i

∫
d3r′

ϕ∗
jσ(r

′)ϕiσ(r
′)

|r − r′| ϕjσ(r) ,

which is a set of N coupled integro-differential equations. Multiplying by ϕ∗
i (r) and integrating, we

find

εiσ = T σ
ii + 2

OCC∑

jσ′

(
V σσ′

ijji − V σσ′

ijij δσσ′

)
. (4.28)
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It is a good approximation to assume that the Hartree-Fock wavefunctions ϕi(r) are spherically sym-
metric, i.e.

ϕiσ(r) = Rnl(r)Ylm(θ, φ) , (4.29)

independent of σ. We can then classify the single particle states by the quantum numbers n ∈ {1, 2, . . .},
l ∈ {0, 1, . . . , n − 1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2 . The essential physics introduced by the Hartree-
Fock method is that of screening. Close to the origin, a given electron senses a potential −Ze2/r due
to the unscreened nucleus. Farther away, though, the nuclear charge is screened by the core electrons,
and the potential decays faster than 1/r. (Within the Thomas-Fermi approximation, the potential at
long distances decays as −Ce2a3B/r4, where C ≃ 100 is a numerical factor, independent of Z .) Whereas
states of different l and identical n are degenerate for the noninteracting hydrogenic atom, when the
nuclear potential is screened, states of different l are no longer degenerate. Smaller l means smaller
energy, since these states are localized closer to the nucleus, where the potential is large and negative
and relatively unscreened. Hence, for a given n, the smaller l states fill up first. For a given l and n there
are (2s+1)× (2l+1) = 4l+2 states, labeled by the angular momentum and spin polarization quantum
numbers ml and ms; this group of orbitals is called a shell.

4.3 The Periodic Table

An excellent discussion is to be found in chapter 20 of G. Baym’s Lectures on Quantum Mechanics. The
eigenspectrum of single electron hydrogenic atoms is specified by quantum numbers n ∈ {1, 2, . . .},
l ∈ {0, 1, . . . , n − 1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2 . The bound state energy eigenvalues Enl =
−e2/2naB, where aB = ~

2/me2 = 0.529 Å is the Bohr radius, depend only on the principal quantum
number n. Accounting for electron-electron interactions using the Hartree-Fock method3, the essential
physics of screening is introduced, a result of which is that states of different l for a given n are no longer
degenerate. Smaller l means lower energy since those states are localized closer to the nucleus, where
the potential is less screened. Thus, for a given n, the smaller l states fill up first. For a given n and l,
there are (2s+ 1)× (2l + 1) = 4l+ 2 states, labeled by ml and ms. This group of orbitals is called a shell.

4.3.1 Aufbau principle

Based on the HF energy levels, the order in which the electron shells are filled throughout the periodic
table is roughly given by that in Fig. 4.1. This is known as the Aufbau principle from the German Aufbau
= ”building up”. The order in which the orbitals are filled follows the diagonal rule, which says that
orbitals with lower values of n+ l are filled before those with higher values, and that in the case of equal
n+ l values, the orbital with the lower n is filled first. There are hiccups here and there. For example, in
filling the 3d shell of the transition metal series (row four of the PT) , 21Sc, 22Ti, and 23V, are configured
as [Ar] 4s2 3d1, [Ar] 4s2 3d2, and [Ar] 4s2 3d3, respectively, but chromium’s (dominant) configuration is
[Ar] 4s1 3d5. Similarly, copper is [Ar] 4s1 3d10 rather than the expected [Ar] 4s2 3d9. For palladium, the
diagonal rule predicts an electronic configuration [Kr] 5s2 4d8 whereas experiments say it is [Kr] 5s0 4d10

3Hartree-Fock theory tends to overestimate ground state atomic energies by on the order of 1 eV per pair of electrons. The
reason is that electron-electron correlations are not adequately represented in the Hartree-Fock many-body wavefunctions,
which are single Slater determinants.
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Figure 4.1: The Aufbau principle and the diagonal rule. Image credit: Wikipedia.

Go figure. Again, don’t take this shell configuration stuff too seriously, because the atomic ground states
are really linear combinations of different shell configurations, so we should really think of these various
configurations as being the dominant ones among a more general linear combination of states. Row five
pretty much repeats row four, with the filling of the 5s, 4d, and 5p shells. In row six, the lanthanide
(4f) series interpolates between the 6s and 5d shells, as the 5f actinide series interpolates in row seven
between 7s and 6d.

As we see from table 4.2, there are two anomalies in the otherwise orderly filling of the 3d shell.
Chromium’s configuration is [Ar] 4s1 3d5 rather than the expected [Ar] 4s2 3d4, and copper’s is [Ar] 4s1 3d10

and not [Ar] 4s2 3d9. In reality, the ground state is not a single Slater determinant and involves linear
combinations of different configurations. But the largest weights are for Cr and Cu configurations with
only one 4s electron. Zinc terminates the 3d series, after which we get orderly filling of the 4p orbitals.

4.3.2 Splitting of configurations: Hund’s rules

The electronic configuration does not uniquely specify a ground state. Consider, for example, carbon,
whose configuration is 1s2 2s2 2p2. The filled 1s and 2s shells are inert. However, there are

(6
2

)
= 15

possible ways to put two electrons in the 2p shell. It is convenient to label these states by total L, S,
and J quantum numbers, where J = L+S is the total angular momentum. It is standard to abbreviate
each such multiplet with the label 2S+1LJ , where L = S, P, D, F, H, etc.. For carbon, the largest L value

Shell: 1s 2s 2p 3s 3p 4s 3d 4p 5s

Termination: 2He 4Be 10Ne 12Mg 18Ar 20Ca 30Zn 36Kr 38Sr

Shell: 4d 5p 6s 4f 5d 6p 7s 5f/6d

Termination: 48Cd 54Xe 56Ba 71Lu 80Hg 86Rn 88Ra 102No

Table 4.1: Rough order in which shells of the Periodic Table are filled.
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The 3d transition metal series ([Ar] core additions)

Element (AZ) Sc21 Ti22 V23 Cr24 Mn25

Configuration 4s2 3d1 4s2 3d2 4s2 3d3 4s1 3d5 4s2 3d5

Element (AZ) Fe26 Co27 Ni28 Cu29 Zn30

Configuration 4s2 3d6 4s2 3d7 4s2 3d8 4s1 3d10 4s2 3d10

Table 4.2: Electronic configuration of 3d-series metals.

we can get is L = 2, which requires S = 0 and hence J = L = 2. This 5-fold degenerate multiplet is

then abbreviated 1D2. But we can also add together two l = 1 states to get total angular momentum
L = 1 as well. The corresponding spatial wavefunction is antisymmetric, hence S = 1 in order to
achieve a symmetric spin wavefunction. Since |L − S| ≤ J ≤ |L + S| we have J = 0, J = 1, or J = 2

corresponding to multiplets 3P0, 3P1, and 3P2, with degeneracy 1, 3, and 5, respectively. The final state

has J = L = S = 0: 1S0. The Hilbert space is then spanned by two J = 0 singlets, one J = 1 triplet, and
two J = 2 quintuplets: 0⊕ 0⊕ 1⊕ 2⊕ 2. That makes 15 states. Which of these is the ground state?

The ordering of the multiplets is determined by the famous Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L− S|. If
the shell is more than half-filled, then J = L+ S.

Hund’s rules are largely empirical, but are supported by detailed atomic quantum many-body calcula-
tions. Basically, rule #1 prefers large S because this makes the spin part of the wavefunction maximally
symmetric, which means that the spatial part is maximally antisymmetric. Electrons, which repel each
other, prefer to exist in a spatially antisymmetric state. As for rule #2, large L expands the electron cloud
somewhat, which also keeps the electrons away from each other. For neutral carbon, the ground state
has S = 1, L = 1, and J = |L− S| = 0, hence the ground state term is 3P0.

Let’s practice Hund’s rules on a couple of ions:

• P: The electronic configuration for elemental phosphorus is [Ne] 3s2 3p3. The unfilled 3d shell has
three electrons. First maximize S by polarizing all spins parallel (up, say), yielding S = 3

2 . Next
maximize L consistent with Pauli exclusion, which says L = −1+0+1 = 0. Finally, since the shell
is exactly half-filled, and not more, J = |L− S| = 3

2 , and the ground state term is 4S3/2.

• Mn4+: The electronic configuration [Ar] 4s0 3d3 has an unfilled 3d shell with three electrons. First
maximize S by polarizing all spins parallel, yielding S = 3

2 . Next maximize L consistent with
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Figure 4.2: Variation of L, S, and J among the 3d and 4f series.

Pauli exclusion, which says L = 2 + 1 + 0 = 3. Finally, since the shell is less than half-filled,
J = |L− S| = 3

2 . The ground state term is 4F3/2.

• Fe2+: The electronic configuration [Ar] 4s0 3d6 has an unfilled 3d shell with six electrons, or four
holes. First maximize S by making the spins of the holes parallel, yielding S = 2. Next, maximize
L consistent with Pauli exclusion, which says L = 2 + 1 + 0 + (−1) = 2 (adding Lz for the four
holes). Finally, the shell is more than half-filled, which means J = L + S = 4. The ground state
term is 5D4.

• Nd3+: The electronic configuration [Xe] 6s0 4f3 has an unfilled 4f shell with three electrons. First
maximize S by making the electron spins parallel, yielding S = 3

2 . Next, maximize L consistent
with Pauli exclusion: L = 3 + 2 + 1 = 6. Finally, the shell is less than half-filled, we have J =
|L− S| = 9

2 . The ground state term is 4I9/2.

4.3.3 Spin-orbit interaction

Hund’s third rule derives from an analysis of the spin-orbit Hamiltonian,

Ĥso =

N∑

i=1

ζ(ri) li · si . (4.30)

This commutes with J2, L2, and S2, so we can still classify eigenstates according to total J , L, and S.
The Wigner-Eckart theorem then guarantees that within a given J multiplet, we can replace any tensor
operator transforming as

RTJM R† =
∑

M ′

DJ
MM ′(α, β, γ)TJM ′ , (4.31)

where R corresponds to a rotation through Euler angles α, β, and γ, by a product of a reduced matrix
element and a Clebsch-Gordon coefficient:

〈
JM

∣∣TJ ′′M ′′

∣∣ J ′M ′ 〉 = C

(
J

M

J ′

M ′
J ′′

M ′′

)〈
J
∣∣∣∣TJ ′′

∣∣∣∣J ′〉 . (4.32)
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np 0 1 2 3 4 5 6

L 0 1 1 0 1 1 0

S 0 1
2 1 3

2 1 1
2 0

J 0 1
2 0 3

2 2 3
2 0

nd 0 1 2 3 4 5 6 7 8 9 10

L 0 2 3 3 2 0 2 3 3 2 0

S 0 1
2 1 3

2 2 5
2 2 3

2 1 1
2 0

J 0 3
2 2 3

2 0 5
2 4 9

2 4 5
2 0

nf 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L 0 3 5 6 6 5 3 0 3 5 6 6 5 3 0

S 0 1
2 1 3

2 2 5
2 3 7

2 3 5
2 2 3

2 1 1
2 0

J 0 5
2 4 9

2 4 5
2 0 7

2 6 15
2 8 15

2 6 7
2 0

Table 4.3: Hund’s rules applied to p, d, and f shells.

In other words, if two tensor operators have the same rank, their matrix elements are proportional. Both
Ĥso and L · S are products of rank L = 1, S = 1 tensor operators, hence we may replace

Ĥso −→ ˜̂
Hso = ΛL · S , (4.33)

where Λ = Λ(N,L, S) must be computed from, say, the expectation value of Ĥso in the state
∣∣JLSJ

〉
.

This requires detailed knowledge of the atomic many-body wavefunctions. However, once Λ is known,
the multiplet splittings are easily obtained:

˜̂
Hso =

1
2Λ
(
J2 −L2 − S2)

= 1
2~

2Λ
(
J(J + 1)− L(L+ 1)− S(S + 1)

)
.

Thus,
E(N,L, S, J) − E(N,L, S, J − 1) = ΛJ ~

2 . (4.34)

If we replace ζ(ri) by its average, then we can find Λ by the following argument. If the last shell is not
more than half filled, then by Hund’s first rule, the spins are all parallel. Thus S = 1

2N and si = S/N ,
whence Λ = 〈ζ〉/2S. Finding 〈ζ〉 is somewhat tricky. For Z−1 ≪ r/aB ≪ 1, one can use the WKB method
to obtain ψ(r = aB/Z) ∼

√
Z, whence

〈ζ〉 ∼
(
Ze2

~c

)2 me4

~4
(4.35)

and Λ ∼ Z2 α2
~
−2 Ry , where α = e2/~c ≃ 1/137. For heavy atoms, Zα ∼ 1 and the energy is on the

order of that for the outer electrons in the atom.
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For shells which are more than half filled, we treat the problem in terms of the holes relative to the filled
shell case. Since filled shells are inert,

Ĥso = −
Nh∑

j=1

ζ(ri) l̃j · s̃j , (4.36)

where Nh = 4l + 2 − N . l̃j and s̃j are the orbital and spin angular momenta of the holes; L = −∑j l̃j

and S = −∑j s̃j . We then conclude Λ = −〈ζ〉/2S. Thus, we arrive at Hund’s third rule, which says

N ≤ 2L+ 1 (≤ half-filled) ⇒ Λ > 0 ⇒ J = |L− S|
N > 2L+ 1 (> half-filled) ⇒ Λ < 0 ⇒ J = |L+ S| . (4.37)

4.3.4 Crystal field splittings

Consider an ion with a single d electron (e.g. Cr3+) or a single d hole (e.g. Cu2+) in a cubic or octahedral
environment. The 5-fold degeneracy of the d levels is lifted by the crystal electric field. Suppose the
atomic environment is octahedral, with anions at the vertices of the octahedron (typically O2− ions).
In order to minimize the Coulomb repulsion between the d electron and the neighboring anions, the

d
x2−y2

and d
3x2−r2

orbitals are energetically disfavored, and this doublet lies at higher energy than the

{dxy, dxz, dyz} triplet.

The crystal field potential is crudely estimated as

VCF =

(nbrs)∑

R

V (r −R) , (4.38)

where the sum is over neighboring ions, and V is the atomic potential.

The angular dependence of the cubic crystal field states may be written as follows:

dx2−y2(r̂) =
1√
2
Y2,2(r̂) +

1√
2
Y2,−2(r̂)

d3z2−r2(r̂) = Y2,0(r̂)

dxy(r̂) =
i√
2
Y2,−2(r̂)− i√

2
Y2,2(r̂)

dxz(r̂) =
1√
2
Y2,1(r̂) +

1√
2
Y2,−1(r̂)

dyz(r̂) =
i√
2
Y2,−1(r̂)− i√

2
Y2,1(r̂) .

(4.39)

Note that all of these wavefunctions are real. This means that the expectation value of Lz , and hence of
general Lα, must vanish in any of these states. This is related to the phenomenon of orbital quenching,
discussed below.

If the internal Hund’s rule exchange energy JH which enforces maximizing S is large compared with the
ground state crystal field splitting ∆, then Hund’s first rule is unaffected. However, there are examples
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Figure 4.3: Effect on s, p, and d levels of a cubic crystal field.

of ions such as Co4+ for which JH < VCF. In such cases, the crystal field splitting wins and the ionic
ground state is a low spin state. For Co4+ in an octahedral crystal field, the five 3d electrons all pile into
the lower 3-fold degenerate t2g manifold, and the spin is S = 1

2 . When the Hund’s rule energy wins, the
electrons all have parallel spin and S = 5

2 , which is the usual high spin state.

4.4 Magnetic Susceptibility of Atomic and Ionic Systems

To compute the susceptibility, we will need to know magnetic energies to order H2. This can be com-
puted via perturbation theory. Treating the H = 0 Hamiltonian as Ĥ0, we have

En(H) = En(0) +
1

~
µBH ·

〈
n
∣∣L+ 2S

∣∣n
〉
+

e2

8mc2
〈
n
∣∣

Zion∑

i=1

(H × ri)
2
∣∣n
〉

+
1

~2
µ2BH

αHβ
∑

n′ 6=n

〈
n
∣∣Lα + 2Sα

∣∣n′
〉 〈
n′
∣∣Lβ + 2Sβ

∣∣n
〉

En − En′
+O(H3) ,

(4.40)

where Zion is the number of electrons on the ion or atom in question. Since the (H × ri)
2 Larmor term

is already second order in the field, its contribution can be evaluated in first order perturbation theory,
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Figure 4.4: The splitting of one-electron states in different crystal field environments.

i.e. by taking its expectation value in the state
∣∣n
〉
. The (L+2S) ·H term, which is linear in the field, is

treated in second order perturbation theory.

Molar Susceptibilities of Noble Gas Atoms and Alkali and Halide Ions

Atom or Molar Atom or Molar Atom or Molar

Ion Susceptibility Atom or Ion Susceptibility Atom or Ion Susceptibility

He -1.9 Li+ -0.7

F− -9.4 Ne -7.2 Na+ -6.1

Cl− -24.2 Ar -19.4 K+ -14.6

Br− -34.5 Kr -28 Rb+ -22.0

I− -50.6 Xe -43 Cs+ -35.1

Table 4.4: Molar susceptibilities, in units of 10−6 cm3/mol, of noble gas atoms and alkali and halide ions.
(See R. Kubo and R. Nagamiya, eds., Solid State Physics, McGrow-Hill, 1969, p. 439.)
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4.4.1 Filled shells: Larmor diamagnetism

If the ground state
∣∣G
〉

is a singlet with J
∣∣G
〉
= L

∣∣G
〉
= S

∣∣G
〉
= 0, corresponding to a filled shell

configuration, then the only contribution to the ground state energy shift is from the Larmor term,

∆E0(H) =
e2H2

12mc2
〈
G
∣∣

Zion∑

i=1

r2i
∣∣G
〉
, (4.41)

and the susceptibility is

χ = −N
V

∂2∆E0

∂H2
= − ne2

6mc2
〈
G
∣∣

Zion∑

i=1

r2i
∣∣G
〉
, (4.42)

where n = N/V is the density of ions or atoms in question. The sum is over all the electrons in the ion
or atom. Defining the mean square ionic radius as

〈r2〉 ≡ 1

Zion

〈
G
∣∣

Zion∑

i=1

r2i
∣∣G
〉
, (4.43)

we obtain

χ = − ne2

6mc2
Zion〈r2〉 = −1

6Zion na
3
B

(
e2

~c

)2 〈r2〉
a2B

. (4.44)

Note that χ is dimensionless. One defines the molar susceptibility as

χmolar ≡ NA
χ/n = −1

6ZionNAa
3
B

(
e2

~c

)2 〈
(r/aB)

2
〉

= −7.91× 10−7 Zion

〈
(r/aB)

2
〉
cm3/mol .

(4.45)

Typically, 〈(r/aB)
2〉 ∼ 1. Note that with na3B ≃ 0.1, we have |χ|<∼ 10−5 and M = χH is much smaller

than H itself.

4.4.2 Partially filled shells: van Vleck paramagnetism

There are two cases to consider here. The first is when J = 0, which occurs whenever the last shell is
one electron short of being half-fille. Examples include Eu3+ (4f6), Cr2+ (3d4), Mn3+ (3d4), etc. In this
case, the first order term vanishes in ∆E0, and we have

χ = − ne2

6mc2
〈
G
∣∣

Zion∑

i=1

r2i
∣∣G
〉
+ 2nµ2B

∑

n 6=0

∣∣∣
〈
n
∣∣Lz + 2Sz

∣∣G
〉∣∣∣

2

En − E0

. (4.46)

The second term is positive, favoring alignment of M with H. This is called van Vleck paramagnetism,
and competes with the Larmor diamagnetism.
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The second possibility is J > 0, which occurs in all cases except filled shells and shells which are one
electron short of being half-filled. In this case, the first order term is usually dominant. We label the states
by the eigenvalues of the commuting observables {J2, Jz,L2,S2}. From the Wigner-Eckart theorem, we
know that 〈

JLSJz
∣∣L+ 2S

∣∣ JLSJ ′
z

〉
= gL(J,L, S)

〈
JLSJz

∣∣J
∣∣ JLSJ ′

z

〉
, (4.47)

where

gL(J,L, S) =
3
2 +

S(S + 1)− L(L+ 1)

2J(J + 1)
(4.48)

is known as the Landé g-factor. Thus, the effective Hamiltonian is

Ĥeff = gL µB J ·H/~ . (4.49)

The eigenvalues of Ĥeff are Ej = j γ H , where j ∈ {−J, . . . ,+J} and γ = gL µB. The problem is reduced
to an elementary one in statistical mechanics. The partition function is

Z = e−F/kBT =

J∑

j=−J

e−jγH/kBT =
sinh

(
(J + 1

2)γH/kBT
)

sinh
(
γH/2kBT

) . (4.50)

The magnetization density is

M = −N
V

∂F

∂H
= nγJ BJ(JγH/kBT ) , (4.51)

where BJ(x) is the Brillouin function,

BJ(x) =
(
1 + 1

2J

)
ctnh

[(
1 + 1

2J

)
x
]
− 1

2J ctnh (x/2J) . (4.52)

The magnetic susceptibility is thus

χ(H,T ) =
∂M

∂H
=
nJ2γ2

kBT
B′

J(JγH/kBT )

= (JgL)
2 (na3B) (e

2/~c)2
(
e2/aB

kBT

)
B′

J(gµBJH/kBT ) .

(4.53)

Figure 4.5: Reduced magnetization curves for three paramagnetic salts and comparison with Brillouin
theory predictions. L(x) = BJ→∞(x) = ctnh (x)− x−1 is the Langevin function.
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Calculated and Measured Magneton Numbers of Rare Earth Ions

Electronic Ground State magneton magneton

Ion Configuration Term (2S+1)LJ ptheory pexpt

La3+ [Xe] 4f0 1S0 0.00 < 0

Ce3+ [Xe] 4f1 2F5/2 2.54 2.4

Pr3+ [Xe] 4f2 3H4 3.58 3.5

Nd3+ [Xe] 4f3 4I9/2 3.62 3.5

Pm3+ [Xe] 4f4 5I4 2.68 –

Sm3+ [Xe] 4f5 6H5/2 0.84 1.5

Eu3+ [Xe] 4f6 7F0 0.00 3.4

Gd3+ [Xe] 4f7 8S7/2 7.94 8.0

Tb3+ [Xe] 4f8 7F6 9.72 9.5

Dy3+ [Xe] 4f9 6H15/2 10.63 10.6

Ho3+ [Xe] 4f10 5I8 10.60 10.4

Er3+ [Xe] 4f11 4I15/2 9.59 9.5

Tm3+ [Xe] 4f12 3H6 7.57 7.3

Yb3+ [Xe] 4f13 2F7/2 4.54 4.5

Lu3+ [Xe] 4f14 1S0 0.00 < 0

Table 4.5: Calculated and measured effective magneton numbers p for rare earth ions. (From N. W.
Ashcroft and N. D. Mermin, Solid State Physics.) The discrepancy in the cases of Sm and Eu is due to
the existence of low-lying multiplets above the ground state.

At H = 0,

χ(H = 0, T ) = 1
3(gLµB)

2 n
J(J + 1)

kBT
. (4.54)

The inverse temperature dependence is known as Curie’s law.

Does Curie’s law work in solids? The 1/T dependence is very accurately reflected in insulating crystals
containing transition metal and rare earth ions. We can fit the coefficient of the 1/T behavior by defining
the ‘magneton number’ p according to

χ(T ) = nµ2B
p2

3kBT
. (4.55)
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Calculated and Measured Magneton Numbers of Transition Metal Ions

Electronic Ground State magneton magneton magneton

Ion Configuration Term (2S+1)LJ p
J=|L±S|
theory p

J=S
theory pexpt

Ti3+ [Ar] 3d1 2D3/2 1.55 1.73 –

V4+ [Ar] 3d1 2D3/2 1.55 1.73 1.8

V3+ [Ar] 3d2 3F2 1.63 2.83 2.8

V2+ [Ar] 3d3 4F3/2 0.77 3.87 3.8

Cr3+ [Ar] 3d3 4F3/2 0.77 3.87 3.7

Mn4+ [Ar] 3d3 4F3/2 0.77 3.87 4.0

Cr2+ [Ar] 3d4 5D0 0.00 4.90 4.8

Mn3+ [Ar] 3d4 5D0 0.00 4.90 5.0

Mn2+ [Ar] 3d5 6S5/2 5.92 5.92 5.9

Fe3+ [Ar] 3d5 6S5/2 5.92 5.92 5.9

Fe2+ [Ar] 3d6 5D4 6.70 4.90 5.4

Co2+ [Ar] 3d7 4F9/2 6.54 3.87 4.8

Ni2+ [Ar] 3d8 3F4 5.59 2.83 3.2

Cu2+ [Ar] 3d9 2D5/2 3.55 1.73 1.9

Table 4.6: Calculated and measured effective magneton numbers p for transition metal ions. (From N. W.
Ashcroft and N. D. Mermin, Solid State Physics.) Due to the orbital quenching, the angular momentum
is effectively L = 0.

The theory above predicts

p = gL
√
J(J + 1) . (4.56)

One finds that the theory works well in the case of rare earth ions in solids. There, the 4f electrons of the
rare earths are localized in the vicinity of the nucleus, and do not hybridize significantly with orbitals
from neighboring ions.

In transition metal compounds, however, one finds poor agreement except in the case of S states (L = 0).
This is because crystal field effects quench the orbital angular momentum, effectively rendering L = 0.
Indeed, as shown in Table 4.6, the theory can be rescued if one ignores the ground state terms obtained
by Hund’s rules, and instead takes L = 0 and J = S, yielding gL = 2.
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4.5 Moment Formation in Interacting Itinerant Systems

4.5.1 The Hubbard model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the sign of χ,
but never develops a spontaneous magnetic moment: M(H = 0) = 0. What gives rise to magnetism
in solids? Overwhelmingly, the answer is that Coulomb repulsion between electrons is responsible for
magnetism, in those instances in which magnetism arises. At first thought this might seem odd, since
the Coulomb interaction is spin-independent. How then can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model interacting
system, described by the Hamiltonian

Ĥ = −t
∑

〈ij〉,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ ni↓ + µBH ·
∑

i,α,β

c†iα σαβ ciβ . (4.57)

This is none other than the famous Hubbard model, which has served as a kind of Rosetta stone for in-
teracting electron systems. The first term describes hopping of electrons along the links of some regular
lattice (the symbol 〈ij〉 denotes a link between sites i and j). The second term describes the local (on-site)
repulsion of electrons. This is a single orbital model, so the repulsion exists when one tries to put two
electrons in the orbital, with opposite spin polarization. Typically the Hubbard U parameter is on the
order of electron volts. The last term is the Zeeman interaction of the electron spins with an external

magnetic field. Orbital effects can be modeled by associating a phase exp(iAij) to the hopping matrix

element t between sites i and j, where the directed sum of Aij around a plaquette yields the total mag-
netic flux through the plaquette in units of φ0 = hc/e. We will ignore orbital effects here. Note that the
interaction term is short-ranged, whereas the Coulomb interaction falls off as 1/|Ri−Rj |. The Hubbard
model is thus unrealistic, although screening effects in metals do effectively render the interaction to be
short-ranged.

Within the Hubbard model, the interaction term is local and written as Un↑n↓ on any given site. This
term favors a local moment. This is because the chemical potential will fix the mean value of the total

occupancy n↑ + n↓, in which case it always pays to maximize the difference |n↑ − n↓|.

4.5.2 Stoner mean field theory

There are no general methods available to solve for even the ground state of an interacting many-body
Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner. The idea is to write the
occupancy niσ as a sum of average and fluctuating terms:

niσ = 〈niσ〉+ δniσ . (4.58)

Here, 〈niσ〉 is the thermodynamic average; the above equation may then be taken as a definition of the
fluctuating piece, δniσ. We assume that the average is site-independent. This is a significant assump-
tion, for while we understand why each site should favor developing a moment, it is not clear that all
these local moments should want to line up parallel to each other. Indeed, on a bipartite lattice, it is
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possible that the individual local moments on neighboring sites will be antiparallel, corresponding to
an antiferromagnetic order of the pins. Our mean field theory will be one for ferromagnetic states.

We now write the interaction term as

ni↑ni↓ = 〈n↑〉 〈n↓〉+ 〈n↑〉 δni↓ + 〈n↓〉 δni↑+

(flucts)2︷ ︸︸ ︷
δni↑ δni↓

= −〈n↑〉 〈n↓〉+ 〈n↑〉ni↓ + 〈n↓〉ni↑ +O
(
(δn)2

)

= 1
4(m

2 − n2) + 1
2n (ni↑ + ni↓) +

1
2m (ni↑ − ni↓) +O

(
(δn)2

)
,

(4.59)

where n and m are the average occupancy per spin and average spin polarization, each per unit cell:

n = 〈n↓〉+ 〈n↑〉
m = 〈n↓〉 − 〈n↑〉 ,

(4.60)

i.e. 〈nσ〉 = 1
2 (n − σm). The mean field grand canonical Hamiltonian K = Ĥ − µN , may then be written

as

KMF = −1
2

∑

i,j,σ

tij

(
c†iσcjσ + c†jσciσ

)
−
(
µ− 1

2Un
)∑

iσ

c†iσciσ

+
(
µBH + 1

2Um
)∑

iσ

σ c†iσciσ + 1
4Nsites U(m2 − n2) ,

(4.61)

where we’ve quantized spins along the direction of H, defined as ẑ. You should take note of two
things here. First, the chemical potential is shifted downward (or the electron energies shifted upward) by
an amount 1

2Un, corresponding to the average energy of repulsion with the background. Second, the
effective magnetic field has been shifted by an amount 1

2Um/µB, so the effective field is

Heff = H +
Um

2µB

. (4.62)

The bare single particle dispersions are given by εσ(k) = −t̂(k) + σµBH , where

t̂(k) =
∑

R

t(R) e−ik·R , (4.63)

and tij = t(Ri−Rj). For nearest neighbor hopping on a d-dimensional cubic lattice, t̂(k) = −t∑d
µ=1 cos(kµa),

where a is the lattice constant. Including the mean field effects, the effective single particle dispersions
become

ε̃σ(k) = −t̂(k)− 1
2Un+

(
µBH + 1

2Um
)
σ . (4.64)

We now solve the mean field theory, by obtaining the free energy per site, ϕ(n, T,H). First, note that
ϕ = ω + µn, where ω = Ω/Nsites is the Landau, or grand canonical, free energy per site. This follows
from the general relation Ω = F − µN ; note that the total electron number is N = nNsites, since n is the
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electron number per unit cell (including both spin species). If g(ε) is the density of states per unit cell
(rather than per unit volume), then we have4

ϕ = 1
4U(m2 + n2) + µ̄n− 1

2kBT

∞∫

−∞

dε g(ε)

{
ln
(
1 + e(µ̄−ε−∆)/kBT

)
+ ln

(
1 + e(µ̄−ε+∆)/kBT

)}
(4.65)

where µ̄ ≡ µ− 1
2Un and∆ ≡ µBH+ 1

2Um. From this free energy we derive two self-consistent equations
for µ and m. The first comes from demanding that ϕ be a function of n and not of µ, i.e. ∂ϕ/∂µ = 0,
which leads to

n = 1
2

∞∫

−∞

dε g(ε)
{
f(ε−∆− µ̄) + f(ε+∆− µ̄)

}
, (4.66)

where f(y) =
[
exp(y/kBT ) + 1

]−1
is the Fermi function. The second equation comes from minimizing

f with respect to average moment m:

m = 1
2

∞∫

−∞

dε g(ε)
{
f(ε−∆− µ̄)− f(ε+∆− µ̄)

}
. (4.67)

Here, we will solve the first equation, eq. 4.66, and use the results to generate a Landau expansion of
the free energy ϕ in powers of m2. We assume that ∆ is small, in which case we may write

n =

∞∫

−∞

dε g(ε)
{
f(ε− µ̄) + 1

2∆
2 f ′′(ε− µ̄) + 1

24 ∆
4 f ′′′′(ε− µ̄) + . . .

}
. (4.68)

We write µ̄(∆) = µ̄0 + δµ̄ and expand in δµ̄. Since n is fixed in our (canonical) ensemble, we have

n =

∞∫

−∞

dε g(ε) f
(
ε− µ̄0

)
, (4.69)

which defines µ̄0(n, T ).
5 The remaining terms in the δµ̄ expansion of eqn. 4.68 must sum to zero. This

yields

D(µ̄0) δµ̄ + 1
2∆

2D′(µ̄0) +
1
2(δµ̄)

2D′(µ̄0) +
1
2D

′′(µ̄0)∆
2 δµ̄ + 1

24 D
′′′(µ̄0)∆

4 +O(∆6) = 0 , (4.70)

where

D(µ) = −
∞∫

−∞

dε g(ε) f ′(ε− µ) (4.71)

4Note that we have written µn = µ̄n+
1
2
Un2, which explains the sign of the coefficient of n2.

5The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive thermodynamic
quantities.
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is the thermally averaged bare density of states at energy µ. Note that the kth derivative is

D(k)(µ) = −
∞∫

−∞

dε g(k)(ε) f ′(ε− µ) . (4.72)

Solving for δµ̄, we obtain

δµ̄ = −1
2a1∆

2 − 1
24

(
3a31 − 6a1a2 + a3

)
∆4 +O(∆6) , (4.73)

where

ak ≡ D(k)(µ̄0)

D(µ̄0)
. (4.74)

After integrating by parts and inserting this result for δµ̄ into our expression for the free energy f , we
obtain the expansion

ϕ(n, T,m) = ϕ0(n, T ) +
1
4Um

2 − 1
2D(µ̄0)∆

2 + 1
8

([
D′(µ̄0)

]2

D(µ̄0)
− 1

3 D
′′(µ̄0)

)
∆4 + . . . , (4.75)

where prime denotes differentiation with respect to argument, at m = 0, and

ϕ0(n, T ) =
1
4Un

2 + nµ̄0 −
∞∫

−∞

dεN (ε) f
(
ε− µ̄0

)
, (4.76)

where g(ε) = N ′(ε), so N (ε) is the integrated bare density of states per unit cell in the absence of any
magnetic field (including both spin species).

We assume that H and m are small, in which case

ϕ = ϕ0 +
1
2am

2 + 1
4bm

4 − 1
2
χ
0H

2 − Uχ0

2µB

Hm+ . . . , (4.77)

where χ0 = µ2BD(µ̄0) is the Pauli susceptibility, and

a = 1
2U
(
1− 1

2UD) , b = 1
32

(
(D′)2

D
− 1

3 D
′′
)
U4 , (4.78)

where the argument of each D(k) above is µ̄0(n, T ). The magnetization density (per unit cell, rather than
per unit volume) is given by

M = − ∂ϕ

∂H
= χ

0H +
Uχ0

2µB

m . (4.79)

Minimizing with respect to m yields

am+ bm3 − Uχ0

2µB

H = 0 , (4.80)
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Figure 4.6: A graduate student experiences the Stoner enhancement.

which gives, for small m,

m =
χ
0

µB

H

1− 1
2UD

. (4.81)

We therefore obtain M = χH with

χ =
χ
0

1− U
Uc

, (4.82)

where

Uc =
2

D(µ̄0)
. (4.83)

The denominator of χ increases the susceptibility above the bare Pauli value χ0, and is referred to as – I
kid you not – the Stoner enhancement (see Fig. 4.6).

It is worth emphasizing that the magnetization per unit cell is given by

M = − 1

Nsites

δĤ

δH
= µBm . (4.84)

This is an operator identity and is valid for any value of m, and not only small m.

When H = 0 we can still get a magnetic moment, provided U > Uc. This is a consequence of the simple
Landau theory we have derived. Solving for m when H = 0 gives m = 0 when U < Uc and

m(U) = ±
(

U

2bUc

)1/2√
U − Uc , (4.85)

when U > Uc, and assuming b > 0. Thus we have the usual mean field order parameter exponent of
β = 1

2 .
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4.5.3 Antiferromagnetic solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field theory. One
such example is antiferromagnetism. On a bipartite lattice, the antiferromagnetic mean field theory is
obtained from

〈niσ〉 = 1
2n+ 1

2σ e
iQ·Ri m , (4.86)

where Q = (π/a, π/a, . . . , π/a) is the antiferromagnetic ordering wavevector. The grand canonical
Hamiltonian is then

KMF = −1
2

∑

i,j,σ

tij

(
c†iσcjσ + c†jσciσ

)
−
(
µ− 1

2Un
)∑

iσ

c†iσciσ

+ 1
2Um

∑

iσ

eiQ·Ri σ c†iσciσ + 1
4Nsites U(m2 − n2) (4.87)

= 1
2

∑

kσ

(
c†k,σ c†k+Q,σ

)(ε(k)− µ+ 1
2Un

1
2σ Um

1
2σ Um ε(k +Q)− µ+ 1

2Un

)(
ck,σ
ck+Q,σ

)

+ 1
4Nsites U(m2 − n2) , (4.88)

where ε(k) = −t̂(k), as before. On a bipartite lattice, with nearest neighbor hopping only, we have ε(k+
Q) = −ε(k). The above matrix is diagonalized by a unitary transformation, yielding the eigenvalues

λ± = ±
√
ε2(k) +∆2 − µ̄ (4.89)

with ∆ = 1
2Um and µ̄ = µ− 1

2Un as before. The free energy per unit cell is then

ϕ = 1
4U(m2 + n2) + µ̄n (4.90)

− 1
2kBT

∞∫

−∞

dε g(ε)

{
ln
(
1 + e(µ̄−

√
ε2+∆2)/kBT

)
+ ln

(
1 + e(µ̄+

√
ε2+∆2)/kBT

)}
.

The mean field equations are then

n = 1
2

∞∫

−∞

dε g(ε)
{
f
(
−
√
ε2 +∆2 − µ̄

)
+ f

(√
ε2 +∆2 − µ̄

)}
(4.91)

1

U
= 1

2

∞∫

−∞

dε
g(ε)√
ε2 +∆2

{
f
(
−
√
ε2 +∆2 − µ̄

)
− f

(√
ε2 +∆2 − µ̄

)}
. (4.92)

As in the case of the ferromagnet, a paramagnetic solution with m = 0 always exists, in which case the
second of the above equations is no longer valid.

4.5.4 Mean field phase diagram of the Hubbard model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states at T = 0 and
H = 0. Due to particle-hole symmetry, we may assume 0 ≤ n ≤ 1 without loss of generality. (The
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solutions repeat themselves under n→ 2− n.) For the paramagnet, we have

n =

µ̄∫

−∞

dε g(ε) (4.93)

ϕ = 1
4Un

2 +

µ̄∫

−∞

dε g(ε) ε , (4.94)

with µ̄ = µ− 1
2Un is the ‘renormalized’ Fermi energy and g(ε) is the density of states per unit cell in the

absence of any explicit (H) or implicit (m) symmetry breaking, including both spin polarizations.

For the ferromagnet,

n = 1
2

µ̄−∆∫

−∞

dε g(ε) + 1
2

µ̄+∆∫

−∞

dε g(ε) (4.95)

4∆

U
=

µ̄+∆∫

µ̄−∆

dε g(ε) (4.96)

ϕ = 1
4Un

2 − ∆2

U
+

µ̄−∆∫

−∞

dε g(ε) ε +

µ̄+∆∫

−∞

dε g(ε) ε . (4.97)

Here, ∆ = 1
2Um is nonzero in the ordered phase.

Finally, the antiferromagnetic mean field equations are

nµ̄<0 =

∞∫

ε0

dε g(ε) ; nµ̄>0 = 2−
∞∫

ε0

dε g(ε) (4.98)

2

U
=

∞∫

ε0

dε
g(ε)√
ε2 +∆2

(4.99)

ϕ = 1
4Un

2 +
∆2

U
−

∞∫

ε0

dε g(ε)
√
ε2 +∆2 , (4.100)

where ε0 =
√
µ̄2 −∆2 and ∆ = 1

2Um as before. Note that |µ̄| ≥ ∆ for these solutions. Exactly at
half-filling, we have n = 1 and µ̄ = 0. We then set ε0 = 0.

The paramagnet to ferromagnet transition may be first or second order, depending on the details of
g(ε). If second order, it occurs at UF

c = 1
/
g(µ̄P), where µ̄P(n) is the paramagnetic solution for µ̄. The

paramagnet to antiferromagnet transition is always second order in this mean field theory, since the

RHS of eqn. (4.99) is a monotonic function of ∆. This transition occurs at UA
c = 2

/∞∫
µ̄P

dε g(ε) ε−1 . Note

that UA
c → 0 logarithmically for n→ 1, since µ̄P = 0 at half-filling.
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Figure 4.7: Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromagnetic
(F), and antiferromagnetic (A) phases. Left panel: results using a semicircular density of states function
of half-bandwidth W . Right panel: results using a two-dimensional square lattice density of states with
nearest neighbor hopping t, from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The phase boundary between
F and A phases is first order.

For large U , the ferromagnetic solution always has the lowest energy, and therefore if UA
c < UF

c , there
will be a first-order antiferromagnet to ferromagnet transition at some value U∗ > UF

c . In fig. 4.7, I
plot the phase diagram obtained by solving the mean field equations assuming a semicircular density
of states g(ε) = 2

π W
−2

√
W 2 − ε2. Also shown is the phase diagram for the d = 2 square lattice Hubbard

model obtained by J. Hirsch (1985).

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte Carlo cal-
culations by J. Hirsch (1985) found that the actual phase diagram of the d = 2 square lattice Hubbard
Model exhibits no ferromagnetism for any n up to U = 10. Furthermore, he found the antiferromagnetic
phase to be entirely confined to the vertical line n = 1. For n 6= 1 and 0 ≤ U ≤ 10, the system is a para-
magnet6. These results were state-of-the art at the time, but both computing power as well as numerical
algorithms for interacting quantum systems have advanced considerably since 1985. Yet as of 2018, we
still don’t have a clear understanding of the d = 2 Hubbard model’s T = 0 phase diagram! There is
an emerging body of numerical evidence7 that in the underdoped (n < 1) regime, there are portions of
the phase diagram which exhibit a stripe ordering, in which antiferromagnetic order is interrupted by a

6A theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single hole in the U = ∞
system on bipartite lattices.

7See J. P. F. LeBlanc et al., Phys. Rev. X 5, 041041 (2015) and B. Zheng et al., Science 358, 1155 (2017).
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parallel array of line defects containing excess holes (i.e. the absence of an electron)8. This problem has
turned out to be unexpectedly rich, complex, and numerically difficult to resolve due to the presence of
competing ordered states, such as d-wave superconductivity and spiral magnetic phases, which lie nearby
in energy with respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric frustration,
either by including a next-nearest-neighbor hopping amplitude t′ or by defining the model on non-
bipartite lattices. Numerical work by M. Ulmke (1997) showed the existence of a ferromagnetic phase at
T = 0 on the FCC lattice Hubbard model for U = 6 and n ∈ [0.15, 0.87] (approximately).

4.6 Interaction of Local Moments: the Heisenberg Model

While it is true that electrons have magnetic dipole moments, the corresponding dipole-dipole interac-
tions in solids are usually negligible. This is easily seen by estimating the energy scale of the dipole-
dipole interaction:

Ed−d =
m1 ·m2 − 3(m1 · n̂)(m2 · n̂)

|r1 − r2|3
, (4.101)

where n̂ = (r2 − r1)/|r2 − r1| is the direction vector pointing from r1 to r2. Substituting m = −µB σ,
we estimate Ed−d as

|Ed−d| ≃
µ2B
R3

=
e2

2aB

(
e2

~c

)2(aB

R

)3
, (4.102)

and with R ≃ 2.5Å we obtain Ed−d ≃ 1µeV, which is tiny on the scale of electronic energies in solids.
The dominant magnetic coupling comes from the Coulomb interaction.

4.6.1 Ferromagnetic exchange of orthogonal orbitals

In the Wannier basis, we may write the Coulomb interaction as

V̂ = 1
2

∑

R1,R2
R3,R4

∑

σ,σ′

〈
R1 R2

∣∣ e2

|r − r′|
∣∣R4 R3

〉
c†R1σ

c†R2 σ′ cR3 σ′ cR4 σ
, (4.103)

where we have assumed a single energy band. The Coulomb matrix element is

〈
R1 R2

∣∣ e2

|r − r′|
∣∣R4 R3

〉
=

∫
d3r

∫
d3r′ ϕ∗(r −R1)ϕ

∗(r′ −R2)
e2

|r − r′| ϕ(r
′ −R3)ϕ(r −R4) . (4.104)

Due to overlap factors, the matrix element will be small unless R2 = R3 and R1 = R4, in which case
we obtain the direct Coulomb interaction,

V (R −R′) =
〈
RR′ ∣∣ e2

|r − r′|
∣∣RR′ 〉

=

∫
d3r

∫
d3r′

∣∣ϕ(r −R)
∣∣2 e2

|r − r′|
∣∣ϕ(r′ −R′)

∣∣2 .
(4.105)

8The best case for stripe order has been made at T = 0, U/t = 8, and hold doping x =
1
8

(i.e. n =
7
8

).
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The direct interaction decays as |R − R′|−1 at large separations. Were we to include only these matrix
elements, the second quantized form of the Coulomb interaction would be

V̂direct =
1
2

∑

RR′

σσ′

V (R−R′)
(
nRσ nR′σ′ − δRR′ δσσ′ nRσ

)

=
∑

R

V (0)nR↑ nR↓ +
1
2

∑

R 6=R′

V (R−R′)nR nR′ ,
(4.106)

where nR ≡ nR↑ + nR↓. The first term is the on-site Hubbard repulsion; one abbreviates U ≡ V (0).

A second class of matrix elements can be identified: those with R1 = R3 ≡ R and R2 = R4 ≡ R′, with
R 6= R′. These are the so-called exchange integrals:

J(R −R′) =
〈
RR′ ∣∣ e2

|r − r′|
∣∣R′ R

〉

=

∫
d3r

∫
d3r′ ϕ∗(r −R)ϕ∗(r′ −R′)

e2

|r − r′| ϕ(r
′ −R)ϕ(r −R′)

=

∫
d3r

∫
d3r′ ϕ∗(r)ϕ(r +R−R′)

e2

|r − r′| ϕ
∗(r′ +R−R′)ϕ(r′) .

(4.107)

Note that J(R −R′) is real. The exchange part of V̂ is then

V̂exchange = −1
2

∑

R6=R′

σσ′

J(R−R′) c†Rσ cRσ′ c
†
R′σ′ cR′σ

= −1
4

∑

R 6=R′

J(R−R′)
(
nR nR′ + σR · σR′

)
.

(4.108)

The nR nR′ piece can be lumped with the direct density-density interaction. What is new is the Heisen-
berg interaction,

V̂Heis = −
∑

R 6=R′

J(R−R′)SR · SR′ . (4.109)

J(R −R′) is usually positive, and this gives us an explanation of Hund’s first rule, which says to max-
imize S. This raises an interesting point, because we know that the ground state spatial wavefunction
for the general two-body Hamiltonian

Ĥ = − ~
2

2m

(
∇2

1 +∇2
2

)
+ V

(
|r1 − r2|

)
(4.110)

is nodeless. Thus, for fermions, the ground state spin wavefunction is an antisymmetric singlet state,
corresponding to S = 0. Yet the V3+ ion, with electronic configuration [Ar] 3d2, has a triplet S = 1
ground state, according to Hund’s first rule. Why don’t the two 3d electrons have a singlet ground
state, as the ‘no nodes theorem’ would seem to imply? The answer must have to do with the presence
of the core electrons. Two electrons in the 1s shell do have a singlet ground state – indeed that is the
only possibility. But the two 3d electrons in V3+ are not independent, but must be orthogonalized to the
core states. This in effect projects out certain parts of the wavefunction, rendering the no nodes theorem
inapplicable.
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4.6.2 Heitler-London theory of the H2 molecule

The Hamiltonian for the H2 molecule is

Ĥ =
p2
1

2m
− e2

|r1 −Ra|
+

p2
2

2m
− e2

|r2 −Rb|

+
e2

|Ra −Rb|
− e2

|r1 −Rb|
− e2

|r2 −Ra|
+

e2

|r1 − r2|
.

(4.111)

The total wavefunction is antisymmetric: Ψ(r1 σ1 , r2σ 2) = −Ψ(r2σ2 , r1σ1). The N = 2 electron case is
special because the wavefunction factorizes into a product:

Ψ(r1 σ1, r2 σ2) = Φ(r1, r2)χ(σ1, σ2) . (4.112)

The spin wavefunction may either be symmetric (triplet, S = 1), or antisymmetric (singlet, S = 0):

∣∣χ 〉 =





∣∣ ↑↑
〉

S = 1

1√
2

(∣∣ ↑↓
〉
+
∣∣ ↓↑

〉)
S = 1

∣∣ ↓↓
〉

S = 1

1√
2

(∣∣ ↑↓
〉
−
∣∣ ↓↑

〉)
S = 0 .

(4.113)

A symmetric spin wavefunction requires an antisymmetric spatial one, and vice versa.

Despite the fact that Ĥ does not explicitly depend on spin, the effective low-energy Hamiltonian for this
system is

Ĥeff = K + JS1 · S2 . (4.114)

The singlet-triplet splitting is ∆E = ES=0 − ES=1 = −J , so if J > 0 the ground state is the singlet, and
if J < 0 the ground state is the three-fold degenerate triplet.

The one-electron 1s eigenfunction ψ(r) satisfies the following eigenvalue equation:

{
− ~

2

2m
∇2 − e2

r

}
ψ(r) = ε0(r)ψ(r) . (4.115)

In the Heitler-London approach, we write the two-electron wavefunction as a linear combination

Φ(r1, r2) = αΦI(r1, r2) + β ΦII(r1, r2) , (4.116)

with

ΦI(r1, r2) = ψ(r1 −Ra)ψ(r2 −Rb) ≡ ψa(r1)ψb(r2)

ΦII(r1, r2) = ψ(r1 −Rb)ψ(r2 −Ra) ≡ ψb(r1)ψa(r2) .
(4.117)
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Assuming the atomic orbital ψ(r) to be normalized, we define the following integrals:

∆ =

∫
d3r ψ∗

a(r)ψb(r) (4.118)

X =

∫
d3r1

∫
d3r2

∣∣ΦI(r1, r2)
∣∣2
(
e2

Rab

+
e2

r12
− e2

r1b
− e2

r2a

)
(4.119)

=

∫
d3r1

∫
d3r2

∣∣ΦII(r1, r2)
∣∣2
(
e2

Rab

+
e2

r12
− e2

r1a
− e2

r2b

)

Y =

∫
d3r1

∫
d3r2Φ

∗
I (r1, r2)ΦII(r1, r2)

(
e2

Rab

+
e2

r12
− e2

r1b
− e2

r2a

)
, (4.120)

with r1a = r1 −Ra, etc. The expectation value of Ĥ in the state Φ is

〈
Φ
∣∣ Ĥ
∣∣Φ
〉
= (|α|2 + |β|2) (2ε0 +X) + (α∗β + β∗α) (2ε|∆|2 + Y ) , (4.121)

and the self-overlap is 〈
Φ
∣∣Φ
〉
= |α|2 + |β|2 + |∆|2 (α∗β + β∗α) . (4.122)

We now minimize 〈Ĥ〉 subject to the condition that Φ be normalized, using a Lagrange multiplier E to
impose the normalization. Extremizing with respect to α∗ and β∗ yields

(
2ε0 +X 2ε0|∆|2 + Y

2ε0|∆|2 + Y 2ε0 +X

)(
α
β

)
= E

(
1 |∆|2

|∆|2 1

)(
α
β

)
, (4.123)

and extremizing with respect to E yields the normalization condition

|α|2 + |β|2 + |∆|2 (α∗β + β∗α) = 1 . (4.124)

The solutions are symmetric and antisymmetric states, with β/α = ±1, corresponding to the energies

E± = 2ε0 +
X ± Y

1± |∆|2 . (4.125)

Note that E+ is the energy of the spatially symmetric state, which means a spin singlet while E− corre-
sponds to the spatially antisymmetric spin triplet.

The singlet-triplet splitting is

J = E− − E+ = 2
Y −X|∆|2
1− |∆|4 . (4.126)

If J > 0, the triplet lies higher than the singlet, which says the ground state is antiferromagnetic. If
J < 0, the triplet lies lower, and the ground state is ferromagnetic. The energy difference is largely
determined by the Y integral:

Y =

∫
d3r1

∫
d3r2 Υ

∗(r1)Υ(r2)

(
e2

Rab

+
e2

r12

)
− 2∆∗

∫
d3r ψ∗

a(r)
e2

|r −Rb|
ψb(r) , (4.127)
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with Υ(r) = ψ∗
a(r)ψb(r). The first term is positive definite for the Coulomb interaction. The second

term competes with the first if the overlap is considerable. The moral of the story now emerges:

weak overlap =⇒ ferromagnetism (J < 0)

strong overlap =⇒ antiferromagnetism (J > 0) .
(4.128)

One finds that the H2 molecule is indeed bound in the singlet state – the total energy has a minimum as

a function of the separation |Ra −Rb|. In the triplet state, the molecule is unbound.

4.6.3 Failure of Heitler-London theory

At large separationsR ≡ |Ra−Rb| the Heitler-London method describes two H atoms with tiny overlap
of the electronic wavefunctions. But this tiny overlap is what determines whether the ground state is
a total spin singlet or triplet (we ignore coupling to the nuclear spin). Sugiura obtained the following
expression for the singlet-triplet splitting in the R→ ∞ limit:

J(R) ≃
{

56
45 − 4

15γ − 4
15 ln

(
R

aH

)}(
R

aH

)3( e2
aH

)
e−2R/aH , (4.129)

where γ = 0.577 . . . is the Euler constant and where ψ(r) = (πa3H)
−1/2 exp(−r/aH) is the hydrogenic

wavefunction. This is negative for sufficiently large separations (R > 50 aH). But this is a problem, since
the eigenvalue problem is a Sturm-Liouville problem, hence the lowest energy eigenfunction must be
spatially symmetric – the singlet state must always lie at lower energy than the triplet. The problem here is
that Heitler-London theory does a good job on the wavefunction where it is large, i.e. in the vicinity of
the protons, but a lousy job in the overlap region.

4.6.4 Herring’s approach

Conyers Herring was the first to elucidate the failure of Heitler-London theory at large separations. He
also showed how to properly derive a Heisenberg model for a lattice of hydrogenic orbitals. Herring
started with the symmetric spatial wavefunction

Ψ(r1 , . . . , rN ) =
N∏

i=1

ψ(ri −Ri) . (4.130)

This wavefunction would be appropriate were the electrons distinguishable. If we permute the electron
coordinates using a spatial permutation Pr ∈ SN , we obtain another wavefunction of the same energy,
E0. However, there will be an overlap between these states:

JP ≡
〈
Ψ
∣∣ Ĥ − E0

∣∣Pr Ψ
〉
. (4.131)

The effective Hamiltonian is then
Ĥeff = E0 +

∑

P∈S
N

JP Pr . (4.132)
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A complete permutation P is a product of spatial and spin permutations: P = Pr Pσ , and the product
when acting on an electronic wavefunction is (−1)P , which is +1 for an even permutation and (−1) for
an odd one9. Thus,

Ĥeff = E0 +
∑

P∈S
N

(−1)P JP Pσ . (4.133)

The spin permutation operators Pσ may be written in terms of the Pauli spin matrices, once we note that
the two-cycle (ij) may be written

P(ij) =
1
2 +

1
2 σi · σj . (4.134)

Thus, accounting for only two-cycles, we have

Ĥeff = E0 − 1
4

∑

i 6=j

Jij
(
1 + σi · σj

)
. (4.135)

For three-cycles, we have

P(ijk) = P(ik) P(jk)

= 1
4

(
1 + σi · σk

)(
1 + σj · σk

)

= 1
4

[
1 + σi · σj + σj · σk + σi · σk + iσi × σj · σk

]
.

(4.136)

4.7 Mean Field Theory

We begin with the Heisenberg Hamiltonian

Ĥ = −1
2

∑

i,j

Jij Si · Sj − γ
∑

i

Hi · Si , (4.137)

and write

Si = mi + δSi , (4.138)

where mi = 〈Si〉 is the thermodynamic average of Si. We therefore have

Si · Sj = mi ·mj +mi · δSj +mj · δSi + δSi · δSj

= −mi ·mj +mi · Sj +mj · Si + δSi · δSj .
(4.139)

The last term is quadratic in the fluctuations, and as an approximation we ignore it. This results in the
following mean field Hamiltonian,

ĤMF = +1
2

∑

i,j

Jij mi ·mj −
∑

i

(
γHi +

∑

j

Jij mj

)
· Si

= E0 − γ
∑

i

Heff
i · Si ,

(4.140)

9Here, ‘even’ and ‘odd’ refer to the number of 2-cycles into which a given permutation is decomposed.
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where

E0 =
1
2

∑

i,j

Jij mi ·mj

Heff
i = Hi + γ−1

∑

j

Jij mj .
(4.141)

Note how the effective field Heff
i is a sum of the external field Hi and the internal field H int

i = γ−1
∑

j Jij mj .
Self-consistency now requires that

mi =
Tr Si exp

(
γHeff

i · Si/kBT
)

Tr exp
(
γHeff

i · Si/kBT
) , (4.142)

where Tr means to sum or integrate over all local degrees of freedom (for site i). The free energy is then

F
(
{mi}

)
= 1

2

∑

i,j

Jij mi ·mj − kBT
∑

i

lnTr exp
(
γHeff

i · Si/kBT
)
. (4.143)

For classical systems, there are several common models:

• Ising Model with S = ±1:

mi = tanh(γHeff
i /kBT )

= tanh
(
βγHi + β

∑

j

Jij mj

)
. (4.144)

The free energy is

F = 1
2

∑

i,j

Jij mimj − kBT
∑

i

ln 2 cosh
(
βγHi + β

∑

j

Jij mj

)
. (4.145)

• Ising Model with S = −1, 0,+1:

mi =
2 sinh

(
βγHi + β

∑
j Jij mj

)

1 + 2cosh
(
βγHi + β

∑
j Jij mj

) (4.146)

and

F = 1
2

∑

i,j

Jij mimj − kBT
∑

i

ln

{
1 + 2 cosh

(
βγHi + β

∑

j

Jij mj

)}
. (4.147)

• XY model with Si = (cos θi, sin θi), H = H x̂

mi =
〈
cos θi

〉
=

2π∫
0

dθi cos θi exp
(
γHeff

i cos θi/kBT
)

2π∫
0

dθi exp
(
γHeff

i cos θi/kBT
)

=
I1

(
βγHi + β

∑
j Jij mj

)

I0

(
βγHi + β

∑
j Jij mj

) ,

(4.148)
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where In(z) is a modified Bessel function. The free energy is

F = 1
2

∑

i,j

Jij mimj − kBT
∑

i

ln 2πI0

(
βγHi + β

∑

j

Jij mj

)
. (4.149)

• O(3) model with Si = (sin θi cosφi, sin θi sinφi, cos θi). Suppose that mi points in the direction of
Heff

i . Then

mi =
〈
cos θi

〉
=

2π
2π∫
0

dθi sin θi cos θi exp
(
γHeff

i cos θi/kBT
)

2π
2π∫
0

dθi sin θi exp
(
γHeff

i cos θi/kBT
)

= ctnh
(
γHeff

i /kBT
)
− kBT

γHeff
i

= ctnh
(
βγHi + β

∑

j

Jij mj

)
− kBT

γHi +
∑

j Jij mj
.

(4.150)

The free energy is

F = 1
2

∑

i,j

Jij mimj − kBT
∑

i

ln

{
4π sinh

(
βγHi + β

∑
j Jij mj

)

βγHi + β
∑

j Jij mj

}
. (4.151)

EXERCISE: Show that the self-consistency is equivalent to ∂F/∂mi = 0.

4.7.1 Ferromagnets

Ising model – Let us assume that the system orders ferromagnetically, with mi = m on all sites. Then,
defining

Ĵ(q) =
∑

R

J(R) e−iq·R , (4.152)

we have that the free energy per site, f = F/N , is

f(m) = 1
2 Ĵ(0)m

2 − kBT lnTr exp
{(
γH + Ĵ(0)m

)
· S/kBT

}
. (4.153)

For the Z2 (Ising) model, we have

m = tanh
(
βγH + βĴ(0)m

)
, (4.154)

a transcendental equation for m. For H = 0, we find m = tanh(Ĵ(0)m/kBT ), which yields the Curie

temperature TC = Ĵ(0)/kB.

O(3) model – We have m = mĤ lies along H. In the H → 0 limit, there is no preferred direction. The
amplitude, however, satisfies

∂f

∂m
= 0 ⇒ m = ctnh

(
Ĵ(0)m/kBT

)
− kBT

Ĵ(0)m
. (4.155)
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With x ≡ Ĵ(0)m/kBT , then,
kBT

Ĵ(0)
x = ctnhx− 1

x
=
x

3
− x3

45
+ . . . , (4.156)

hence Tc = Ĵ(0)/3kB.

4.7.2 Antiferromagnets

If the lattice is bipartite, then we have two order parameters: mA and mB. Suppose Jij = −J < 0 if i and
j are nearest neighbors, and zero otherwise. The effective fields on the A and B sublattices are given by

Heff
A,B ≡ H − γ−1zJmB,A , (4.157)

Note that the internal field on the A sublattice is −γ−1zJmB, while the internal field on the B sublattice
is −γ−1zJmA. For the spin-S quantum Heisenberg model, where Sz ∈ {−S, . . . ,+S}, we have

Tr exp(ξ · S) = sinh
(
S + 1

2

)
ξ

sinh 1
2ξ

, (4.158)

hence, with ξ = γHeff
A,B/kBT , we have 〈

S
〉
= ξ̂ S BS(Sξ) (4.159)

where BS(x) is the Brillouin function,

BS(x) =
(
1 +

1

2S

)
ctnh

((
1 +

1

2S

)
x
)
− 1

2S
ctnh

( x

2S

)
. (4.160)

In order to best take advantage of the antiferromagnetic interaction and the external magnetic field,

the ordered state is characterized by a spin flop in which mA and mB are, for weak fields, oriented in
opposite directions in a plane perpendicular to H, but each with a small component along H.

When H = 0, the mean field equations take the form

mA = SBS

(
zJSmB/kBT

)

mB = SBS

(
zJSmA/kBT

)
,

(4.161)

where we have assumed mA and mB are antiparallel, with mA = mA n̂ and mB = −mB n̂, where n̂ is a

unit vector. From the expansion of the Brillouin function, we obtain the Néel temperature TN = zJ/kB.

4.7.3 Susceptibility

For T > Tc the system is paramagnetic, and there is a linear response to an external field,

χµν
ij =

∂Mµ
i

∂Hν
j

= γ
∂mµ

i

∂Hν
j

= − ∂2F

∂Hµ
i ∂H

ν
j

=
γ2

kBT

{〈
Sµ
i S

ν
j

〉
−
〈
Sµ
i

〉 〈
Sν
j

〉}
(4.162)
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where {i, j} are site indices and {µ, ν} are internal spin indices. The mean field Hamiltonian is, up to a
constant,

ĤMF = −γ
∑

i

Heff
i · Si , (4.163)

which is a sum of single site terms. Hence, the response within ĤMF must be purely local as well as
isotropic. That is, for weak effective fields, using Mi = γmi,

Mi = χ
0 H

eff
i = χ

0 Hi + γ−2 χ
0 Jij Mj , (4.164)

which is equivalent to (
δij − γ−2χ

0 Jij
)
Mj = χ

0 Hi , (4.165)

and the mean field susceptibility is

χµν
ij =

[
χ−1
0 − γ−2J

]−1

ij
δµν . (4.166)

It is convenient to work in Fourier space, in which case the matrix structure is avoided and one has

χ̂(q) =
χ
0

1− γ−2χ
0 Ĵ(q)

. (4.167)

The local susceptibility χ0 is readily determined:

Mµ = γ
〈
Sµ
〉
= γ

Tr S exp(γH · S/kBT )

Tr exp(γH · S/kBT )

= γSBS(SγH/kBT ) Ĥ
µ ,

(4.168)

where BS(x) is the Brillouin function from eqn. 4.160. As H → 0 we have M = χ
0H, with

χµν
0 =

γ2

kBT
· Tr (S

µSν)

Tr 1
≡ χ

0 δ
µν , (4.169)

where χ0 = 1
N Tr (S2)/Tr 1, where N is the number of components of Sµ. Thus, for the Ising model

(N = 1) we have χIsing
0 = γ2/kBT , while for the spin-S quantum Heisenberg model we have χHeis

0 =

S(S+1)γ2/3kBT . Note that χ0 ∝ T−1; the splitting of the degenerate energy levels by the magnetic field
is of little consequence at high temperatures.

In many cases one deals with ‘single ion anisotropy’ terms. For example, one can add to the Heisenberg
Hamiltonian a term such as

Ĥa = D
∑

i

(
Sz
i

)2
, (4.170)

which for D < 0 results in an easy axis anisotropy (i.e. the spins prefer to align along the ẑ-axis), and for
D > 0 results in an easy plane anisotropy (i.e. the spins prefer to lie in the (x, y) plane). Since this term is
already the sum of single site Hamiltonians, there is no need to subject it to a mean field treatment. One
then obtains the mean field Hamiltonian

ĤMF = D
∑

i

(
Sz
i

)2 − γ
∑

i

Heff
i · Si . (4.171)
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In this case, χ0 is now anisotropic in spin space. The general formula for χ0 is

χµν
0 =

γ2

kBT

〈
SµSν

〉
(4.172)

where the thermodynamic average is taken with respect to the single site Hamiltonian.10 One then has

χ̂µν
0 (q) = χµλ

0

[
I− γ−2Ĵ(q)

↔
χ
0

]−1

λν
, (4.173)

where the matrix inverse is now in internal spin space.

4.7.4 Variational probability distribution

Here’s another way to derive mean field theory. Let Ω represent a configuration and let PΩ be a proba-
bility distribution, normalized such that

∑
Ω PΩ = 1. We define the entropy of the distribution as

S[P ] = −kB

∑

Ω

PΩ lnPΩ . (4.174)

We now ask what distribution PΩ minimizes the free energy F = 〈Ĥ〉 − TS. Working in an eigenbasis

of Ĥ , we have

F =
∑

Ω

PΩ EΩ + kBT
∑

Ω

PΩ lnPΩ . (4.175)

We extremize F subject to the normalization constraint, which is implemented with a Lagrange multi-
plier λ. This means we form the extended function

F ∗({PΩ}, λ
)
=
∑

Ω

PΩ EΩ + kBT
∑

Ω

PΩ lnPΩ − λ
(∑

Ω

PΩ − 1
)
, (4.176)

and demand dF ∗/dPΩ = 0 for all Ω as well as dF ∗/dλ = 0. This results in the Boltzmann distribution,

P eq
Ω =

1

Z
e−E

Ω
/kBT , Z =

∑

l

e−El/kBT . (4.177)

Thus, any distribution other than P eq
Ω results in a larger free energy.

Mean field theory may be formulated in terms of a variational probability distribution. Thus, rather than
working with the Boltzmann distribution P eq

Ω , which is usually intractable, we invoke a trial distribution

PΩ(x1, x2, . . .), parameterized by {x1, x2, . . .}, and minimize the resultant F = 〈Ĥ〉 − TS with respect to
those parameters.

As an example, consider the Ising model with spins σi = ±1. Each configuration is given by the set of

spin polarizations: Ω = {σ1, . . . , σN}. The full equilibrium probability distribution,

P eq
Ω = Z−1 exp

(
βJ
∑

〈ij〉
σiσj

)
, (4.178)

10Note that in (4.169) the single site Hamiltonian is simply Ĥ0 = 0.
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with β = 1/kBT , is too cumbersome to work with. We replace this with a variational single-site distri-
bution,

PΩ =
N∏

j=1

Pi(σi)

Pi(σi) =
1
2(1 +mi) δσi,+1 +

1
2(1−mi) δσi,−1 .

(4.179)

The variational parameters are {m1, . . . ,mN}. Note that PΩ is properly normalized, by construction.

The entropy of our trial distribution is decomposed into a sum over single site terms:

S[P ] =
∑

i

s(mi)

s(m) = −kB

{
1 +m

2
ln
(1 +m

2

)
+

1−m

2
ln
(1−m

2

)} (4.180)

The thermodynamic average 〈σi〉 is simply

〈σi〉 = TrPi(σi)σi = mi , (4.181)

hence from
Ĥ = −1

2

∑

i,j

Jij σi σj − γ
∑

i

Hi σi , (4.182)

we derive the free energy

F
(
{mi}

)
= −1

2

∑

i,j

Jij mimj − γ
∑

i

Himi

+ kBT
∑

i

{
1 +mi

2
ln
(1 +mi

2

)
+

1−mi

2
ln
(1−mi

2

)} (4.183)

Varying with respect to each mi, we obtain the coupled nonlinear mean field equations,

mi = tanh
[(∑

j

Jij mj + γHi

)
/kBT

]
. (4.184)

For uniform magnetization (mi = m ∀ i), the free energy per site is

F

N
= −1

2 Ĵ(0)m
2 − γHm+ kBT

{
1 +m

2
ln
(1 +m

2

)
+

1−m

2
ln
(1−m

2

)}

= 1
2

(
kBT − Ĵ(0)

)
m2 − γHm+ 1

12 kBT m
4 + 1

30kBTm
6 + . . .

(4.185)

To compute the correlations, we may use the expression

χij(T ) =
γ2

kBT

{
〈σi σj〉 − 〈σi〉 〈σj〉

}
(4.186)

=
∂Mi

∂Hj
= γ

∂mi

∂Hj
= − ∂2F

∂Hi ∂Hj
. (4.187)
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Thus, there are two ways to compute the susceptibility. One is to evaluate the spin-spin correlation
function, as in (4.186). The other is to differentiate the magnetization to obtain the response function, as
in (4.187). The equality between the two – called the “fluctuation-dissipation theorem” – is in fact only
valid for the equilibrium Boltzmann distribution P eq

Ω . Which side of the equation should we use in our
variational mean field theory? It is more accurate to use the response function. To roughly see this, let
us write P = P eq + δP , with δP small in some sense. The free energy is given by

F [P ] = F [P eq] + δP · δF
δP

∣∣∣∣
P=P eq

+O
(
(δP )2

)
. (4.188)

Our variational treatment guarantees that the second term vanishes, since we extremize F with respect
to P . Thus, in some sense, the error in F is only of order (δP )2. If we compute the correlation function
using 〈A〉 = Tr (P A), where A is any operator, then the error will be linear in δP . So it is better to use
the response function than the correlation function.

EXERCISE: Articulate the correspondence between this variational version of mean field theory and the
‘neglect of fluctuations’ approach we derived earlier.

4.8 Magnetic Ordering

The q-dependent susceptibility in (4.167) diverges when γ−2χ
0Ĵ(q) = 1. As we know, such a divergence

heralds the onset of a phase transition where there is a spontaneous magnetization in the ordered (i.e. low
temperature) phase. Typically this happens at a particular wavevector Q, or a set of symmetry related
wavevectors {Q1,Q2, . . .}. The ordering wavevector is that value of q which results in a maximum of
Ĵ(q): maxq

{
Ĵ(q)

}
= Ĵ(Q). The susceptibility, for isotropic systems, can be written

χ̂(q) =
χ
0[

1− γ−2χ
0 Ĵ(Q)

]
+ γ−2χ

0

[
Ĵ(Q)− Ĵ(q)

] . (4.189)

The critical temperature Tc is determined by the relation

γ−2χ
0(Tc) Ĵ(Q) = 1. (4.190)

Expanding about T = Tc, and about q = Q, where

Ĵ(q) = Ĵ(Q)
{
1− (q −Q)2R2

∗ + . . .
}
, (4.191)

we have

χ̂(q) ≈
χ
0/R

2
∗

ξ−2(T ) + (q −Q)2
, (4.192)

where

ξ−2(T ) = −
χ′
0(Tc)

χ
0(Tc)

·R−2
∗ · (T − Tc) . (4.193)

Thus, ξ(T ) ∝ (T − Tc)
−1/2. The real space susceptibility χ(Ri −Rj) oscillates with wavevector Q and

decays on the scale of the correlation length ξ(T ).
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• Ferromagnet: Jij = +J > 0 if i and j are nearest neighbors; otherwise Jij = 0. On a hypercubic
lattice (d dimensions, 2d nearest neighbors), we then have

Ĵ(q) = J
∑

δ

e−iq·δ = 2J
{
cos(q1a) + cos(q2a) + . . . + cos(qda)

}
. (4.194)

The ordering wavevector is Q = 0, and Ĵ(Q) = 2dJ . For the spin-S Heisenberg model, then,

TC = 2
3dS(S + 1)J/kB, and the susceptibility is

χ̂(q) =
1
3γ

2S(S + 1)/kB

(T − TC) + TC d
−1
∑d

ν=1

[
1− cos(qνa)

] . (4.195)

The uniform susceptibility χ = χ̂(q = 0) is then

χ(T ) =
γ2S(S + 1)

3kB(T − TC)
. (4.196)

Ferromagnetic insulators: ferrites, EuO, TDAE-C60.

• Antiferromagnet: Jij = −J < 0 if i and j are nearest neighbors; otherwise Jij = 0. On a hypercubic
lattice (d dimensions, 2d nearest neighbors), we then have

Ĵ(q) = −J
∑

δ

e−iq·δ = −2J
{
cos(q1a) + cos(q2a) + . . .+ cos(qda)

}
. (4.197)

The ordering wavevector is Q = (π/a, . . . , π/a), at the zone corner, where Ĵ(Q) = 2dJ . For the

spin-S Heisenberg model, then, TN = 2
3dS(S + 1)J/kB, and the susceptibility is

χ̂(q) =
γ2S(S + 1)/3kB

(T − TN) + TN d
−1
∑d

ν=1

[
1 + cos(qνa)

] . (4.198)

The uniform susceptibility χ = χ̂(q = 0) is then

χ(T ) =
γ2S(S + 1)

3kB(T + TN)
, (4.199)

which does not diverge. Indeed, plotting χ−1(T ) versus T , one obtains an intercept along the T -axis

at T = −TN. This is one crude way of estimating the Néel temperature. What does diverge is the
staggered susceptibility χstag ≡ χ̂(Q, T ), i.e. the susceptibility at the ordering wavevector:

χstag(T ) =
γ2S(S + 1)

3kB(T − TN)
. (4.200)

• Frustrated Antiferromagnet: On the triangular lattice, the antiferromagnetic state is frustrated.

What does mean field theory predict? We begin by writing primitive direct lattice vectors {a1,a2}
and primitive reciprocal lattice vectors {b1, b2}:

a1 = a
(
1, 0
)

b1 =
4π

a
√
3

(√
3
2 ,−1

2

)
(4.201)

a2 = a
(
1
2 ,

√
3
2

)
b2 =

4π

a
√
3

(
0, 1
)

,
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where a is the lattice constant. The six nearest neighbor vectors are then

δ ∈
{
a1,a2,a2 − a1,−a1,−a2,a1 − a2

}
, (4.202)

and writing q ≡ x1b1 + x2b2, we find

Ĵ(q) = −2J
{
cos(2πx1) + cos(2πx2) + cos(2πx1 − 2πx2)

}
. (4.203)

We suspect that this should be maximized somewhere along the perimeter of the Brillouin zone.
The face center lies at (x1, x2) = (12 ,

1
2), where Ĵ(q) = +2J . However, an even greater value is

obtained either of the two inequivalent zone corners, (x1, x2) = (23 ,
1
3) and (x1, x2) = (13 ,

2
3), where

Ĵ(q) = +3J . Each of these corresponds to a tripartite division of the triangular lattice in to three√
3 ×

√
3 triangular sublattices.

Antiferromagnetic insulators: MnO, CoO, FeO, NiO, La2CuO4.

• Helimagnet: Consider a cubic lattice system with mixed ferromagnetic and antiferromagnetic in-
teractions:

Jij =





+J1 > 0 6 nearest neighbors

−J2 < 0 12 next-nearest neighbors

0 otherwise .

(4.204)

Then

Ĵ(q) = 2J1
[
cos(qxa) + cos(qya) + cos(qza)

]

− 4J2
[
cos(qxa) cos(qya) + cos(qxa) cos(qza) + cos(qya) cos(qza)

]
.

(4.205)

The ordering wavevector is then

Q =

{
a−1 cos−1

(
J1
4J2

)
(x̂+ ŷ + ẑ) if J1 < 4J2

0 if J1 ≥ 4J2 .
(4.206)

Thus, for J1 < 4J2 the order is incommensurate with the lattice. The maximum value of Ĵ(q) is

Ĵ(Q) =

{
3J2

1
4J2

if J1 < 4J2

6(J1 − 2J2) if J1 ≥ 4J2 ,
(4.207)

hence incommensurate order sets in at TI = S(S + 1)J2
1 /4kBJ2. The uniform susceptibility is

χ̂(0) =
γ2S(S + 1)/3kB

T − 8TI
J2
J1

(
1− 2J2

J1

) . (4.208)

Thus,

χ(T ) ≃





C
T+T ∗ 0 < J1 < 2J2 (like AFM)

C
T−T ∗ 2J2 < J1 < 4J2 (like FM) .

(4.209)
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4.8.1 Mean field theory of anisotropic magnetic systems

Consider the anisotropic Heisenberg model,

Ĥ = −

intra︷ ︸︸ ︷∑

i<j

J
‖
ij Si · Sj −

inter︷ ︸︸ ︷∑

i<j

J⊥
ij Si · Sj −γ

∑

i

Hi · Si . (4.210)

Here, J
‖
ij only connects sites within the same plane (quasi-2d) or chain (quasi-1d), while J⊥

ij only con-
nects sites in different planes/chains. We assume that we have an adequate theory for isolated plains/chains,
and we effect a mean field decomposition on the interplane/interchain term:

Si · Sj = −〈Si〉 · 〈Sj〉+ 〈Si〉 · Sj + 〈Sj〉 · Si+

(fluct)2︷ ︸︸ ︷
δSi · δSj , (4.211)

resulting in the effective field

Heff (q, ω) = H(q, ω) + γ−2Ĵ⊥(q⊥)M(q, ω) , (4.212)

where M(q, ω) = γ〈S(q, ω)〉. Thus,

χ̂(q, ω) =
χ̂‖

(q‖, ω)

1− γ−2Ĵ⊥(q⊥) χ̂
‖
(q‖, ω)

, (4.213)

where χ̂
‖
(q‖, ω) is assumed known.

4.8.2 Quasi-1D chains

Consider a ferromagnet on a cubic lattice where the exchange interaction along the ẑ-direction (‖) is
much larger than that in the (x, y) plane (⊥). Treating the in-plane interactions via mean field theory,
we have

χ̂(q⊥, qz) =
χ̂1D(qz)

1− γ−2Ĵ⊥(q⊥) χ̂1D(qz)
, (4.214)

with

Ĵ⊥(q⊥) = 2J⊥

{
cos(qxa) + cos(qya)

}
. (4.215)

For the Ising model we can compute χ̂1D(qz) exactly using the high temperature expansion:

〈σn σn′〉 =
Tr

{
σn σn′

∏
j

(
1 + tanh(J‖/kBT )σj σj+1

)}

Tr
∏

j

(
1 + tanh(J‖/kBT )σj σj+1

)

= tanh|n−n′|(J‖/kBT ) .

(4.216)
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Thus,

χ̂1D(qz) =
γ2

kBT

∞∑

n=−∞
tanh|n|(J‖/kBT ) e

inqzc

=
γ2

kBT

1

cosh(2J‖/kBT )− sinh(2J‖/kBT ) cos(qzc)

≈ 2πγ2

ckBT
· 1
π

ξ−1

ξ−2 + q2z
,

(4.217)

where c is the lattice spacing along the chains, and where the last approximation is valid for q → 0 and
ξ → ∞. The correlation length in this limit is given by

ξ(T ) ≃ c

2
exp(2J‖/kBT ) . (4.218)

Note that ξ(T ) diverges only at T = 0. This is consistent with the well-known fact that the lower critical
dimension for systems with discrete global symmetries and short-ranged interactions is d = 1. That is to say
that there is no spontaneous breaking of any discrete symmetry in one-dimension (with the proviso of
sufficiently short-ranged interactions). For continuous symmetries the lower critical dimension is d = 2,
which is the content of the Hohenberg-Mermin-Wagner (HMW) theorem.

Accounting for the residual interchain interactions via mean field theory, we obtain the anisotropic (in
space) susceptibility

χ̂(q⊥, qz) =
χ̂1D(qz)

1− γ−2 · 2J⊥
{
cos(qxa) + cos(qya)

}
· χ̂1D(qz)

. (4.219)

Three-dimensional ordering at Q = 0 sets in at T = Tc, which occurs when χ̂(Q) has a pole. The
equation for this pole is

4γ−2J⊥ χ1D = 1 ⇒ 4J⊥
kBTc

= exp(−2J‖/kBTc) . (4.220)

This transcendental equation is equivalent to

x ex =
1

ǫ
(4.221)

where x = 2J‖/kBTc and ǫ = 2J⊥/J‖. The solution, for small ǫ, is

kBTc =
2J‖

ln
(
J‖/2J⊥

) + . . . . (4.222)

Thus, Tc > 0 for all finite J⊥, with Tc going to zero rather slowly as J⊥ → 0.

Similar physics is present in the antiferromagnetic insulator phase of the cuprate superconductors.
The antiferromagnetic (staggered) susceptibility of the two-dimensional Heisenberg model diverges as
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T → 0 as χstag
2D ∼ J−1 exp(ρJ/kBT ), where ρ is a dimensionless measure of quantum fluctuations. As in

the d = 1 Ising case, there is no phase transition at any finite temperature, in this case owing to the HMW
theorem. However, when the quasi-2D layers are weakly coupled with antiferromagnetic coupling J ′

(the base structure is a cubic perovskite), three-dimensional Néel ordering sets in at the antiferromag-

netic wavevector Q = (π/a, π/a, π/c) at a critical temperature TN ≈ J/kB ln(J/J
′).

4.9 Spin Wave Theory

Recall the SU(2) algebra of quantum spin: [Sα, Sβ] = iǫαβγS
γ (set ~ = 1 for convenience). Defining

S± = Sx ± iSy , we have, equivalently,

[Sz, S±] = ±S± , [S+, S−] = 2Sz . (4.223)

The Holstein-Primakoff transformation (1940) maps the spin algebra onto that of a single bosonic oscil-
lator:

S+ = a† (2S − a†a)1/2

S− = (2S − a†a)1/2 a

Sz = a†a− S .

(4.224)

The state |Sz = −S 〉 is the vacuum | 0 〉 in the boson picture. The highest weight state, |Sz = +S 〉
corresponds to the state | 2S 〉 in the boson picture, i.e. an occupancy of n = 2S bosons.

EXERCISE: Verify that the bosonic representation of the spin operators in (4.224) satisfies the SU(2)
commutation relations of quantum spin.

What does it mean to take the square root of an operator like 2S−a†a? Simple! Just evaluate it in a basis
diagonal in a†a, i.e. the number basis:

a†a |n 〉 = n |n 〉 ⇒ (2S − a†a)1/2 |n 〉 = (2S − n)1/2 |n 〉 . (4.225)

Note that physical boson states are restricted to n ∈ {0, 1, . . . , 2S}. What about states with n > 2S? The
nice thing here is that we needn’t worry about them at all, because S+, S−, and Sz do not connect states
with 0 ≤ n ≤ 2S to states with n > 2S. For example, when applying the spin raising operator S+ to the
highest weight state |Sz = +S 〉, in boson language we have

S+
∣∣Sz = +S

〉
= a† (2S − a†a)1/2

∣∣n = 2S
〉
= 0 , (4.226)

as required.

While the HP transformation is exact, it really doesn’t buy us anything unless we start making some
approximations and derive a systematic expansion in ‘spin wave’ interactions.
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4.9.1 Ferromagnetic Spin Waves

Consider the classical ground state |F 〉 = |↓↓ · · · ↓ 〉 in which all spins are pointing ‘down’, with Sz =
−S. In the boson language, the occupancy at each site is zero. This is in fact an eigenstate of the
Heisenberg Hamiltonian

H = −
∑

i<j

Jij Si · Sj (4.227)

with eigenvalue E0 = −S2
∑

i<j Jij . If all the interactions are ferromagnetic, i.e. Jij > 0 ∀ (i, j), then this
state clearly is the ground state. We now express the Heisenberg interaction Si ·Sj in terms of the boson
creation and annihilation operators. To this end, we perform a Taylor expansion of the radical,

(2S − a†a)1/2 =
√
2S

{
1− 1

2

(
a†a
2S

)
− 1

8

(
a†a
2S

)2

+ . . .

}
, (4.228)

so that

Si · Sj =
1
2 S

+
i S

−
j + 1

2 S
−
i S

+
j + Sz

i S
z
j (4.229)

= S a†i

(
1− a†iai

4S
+ . . .

)(
1−

a†jaj
4S

+ . . .

)
aj

+ S

(
1− a†iai

4S
+ . . .

)
ai a

†
j

(
1−

a†jaj
4S

+ . . .

)
+ (a†iai − S) (a†jaj − S)

= S2 + S
(
a†iaj + a†jai − a†iai − a†jaj

)
+
{
a†iaia

†
jaj − 1

4 a
†
ia

†
iaiaj (4.230)

− 1
4a

†
ia

†
jajaj − 1

4 a
†
ja

†
iaiai − 1

4a
†
ja

†
jajai

}
+O(1/S) .

Note that a systematic expansion in powers of 1/S can be performed. The Heisenberg Hamiltonian now
becomes

H =

classical ground

state energy O(S2)︷ ︸︸ ︷
−S2

∑

i<j

Jij +

spin-wave Hamiltonian Hsw︷ ︸︸ ︷
S
∑

i<j

Jij
(
a†iai + a†jaj − a†iaj − a†jai

)
+

spin-wave
interactions︷ ︸︸ ︷
O(S0) . (4.231)

We assume our sites are elements of a Bravais lattice, and we Fourier transform:

ai =
1√
N

∑

q

e+iq·Ri aq a†i =
1√
N

∑

q

e−iq·Ri a†q (4.232)

aq =
1√
N

∑

i

e−iq·Ri ai a†q =
1√
N

∑

i

e+iq·Ri a†i . (4.233)

Note that the canonical commutation relations are preserved by this transformation:

[ai, a
†
j ] = δij ⇐⇒ [aq, a

†
q′ ] = δqq′ . (4.234)

Using the result
1

N

∑

i

ei(q−q′)·Ri = δqq′ , (4.235)
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we obtain the spin-wave Hamiltonian

Hsw = S
∑

q

[
Ĵ(0)− Ĵ(q)

]
a†qaq , (4.236)

from which we read off the spin-wave dispersion

~ωq = S
[
Ĵ(0)− Ĵ(q)

]

= 1
6S
[∑

R

J(R)R2
]
q2 +O(q4) .

(4.237)

The above sum on R converges if J(R→ ∞) ∼ R−(d+2+ǫ) with ǫ > 0.

4.9.2 Static Correlations in the Ferromagnet

The transverse spin-spin correlation function is

〈S+
i S

−
j 〉 =

〈
a†i
(
2S − a†iai

)1/2 (
2S − a†jaj

)1/2
aj
〉

= 2S 〈a†iaj〉+O(S0)

= 2SΩ

∫

Ω̂

ddk

(2π)d
eik·(Rj−Ri)

e~ωk
/kBT − 1

.

(4.238)

The longitudinal spin-spin correlation function is

〈Sz
i S

z
j 〉 − 〈Sz

i 〉 〈Sz
j 〉 = 〈a†iaia

†
jaj〉 − 〈a†iai〉 〈a

†
jaj〉 = O(S0) . (4.239)

Note that the average spin polarization per site is

〈Sz
i 〉 = −S + 〈a†iai〉

= −S +Ω

∫

Ω̂

ddk

(2π)d
1

e~ωk
/kBT − 1

. (4.240)

Now as k → 0 the denominator above vanishes as k2, hence the average spin polarization per site
diverges when d ≤ 2. This establishes a “poor man’s version” of the HMW theorem: as infinite spin
polarization is clearly absurd, there must have been something wrong with our implicit assumption
that long-ranged order persists to finite T . In d = 3 dimensions, one finds 〈Sz

i 〉 = −S +O(T 3/2).

4.9.3 Antiferromagnetic Spin Waves

The case of the ferromagnet is special because the classical ground state |F 〉 is in fact a quantum eigen-
state – indeed the ground state – of the ferromagnetic Heisenberg Hamiltonian.11 In the case of the

11Of course, |F〉 is also an eigenstate – the highest lying excited state – of the antiferromagnetic Heisenberg Hamiltonian.
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Heisenberg antiferromagnet, this is no longer the case. The ground state itself is a linear combination
of classical states. What is the classical ground state? For an antiferromagnet on a bipartite lattice,12

the classical ground state has each sublattice maximally polarized, with the magnetization on the two
sublattices oppositely oriented. Choosing the axis of polarization as ẑ, this means Sz

i = −S is i ∈ A and
Sz
i = +S if i ∈ B. We’ll call this state |N 〉, since it is a classical Néel state.

Let is assume that the lattice is a Bravais lattice with a two-element basis described by basis vectors 0
and δ. Thus, if R is any direct lattice vector, an A sublattice site lies at R and a B site at R + δ. The
Heisenberg Hamiltonian is written

H = −
∑

R,R′

{
1
2 JAA(R −R′)SA(R) · SA(R

′) + 1
2 JBB(R−R′)SB(R) · SB(R

′)

+ JAB(R−R′ − δ)SA(R) · SB(R
′)

}
.

(4.241)

Here SA(R) represents the spin on the A sublattice located at position R, while SB(R) represents the
B sublattice spin located at R + δ. The factor of 1

2 multiplying the JAA and JBB terms avoids double-
counting the AA and BB interactions. The Néel state will be the classical ground state if JAA > 0 and
JBB > 0 and JAB < 0. It may remain the ground state even if some of the interactions are frustrating, i.e.
JAA < 0, JBB < 0, and/or JAB > 0 between certain sites.

We’d like the Néel state |N 〉 = |↑↓↑↓↑ . . . 〉 to be the vacuum for the Holstein-Primakoff bosons. To
accomplish this, we rotate the spin operators on the B sublattice by π about the ŷ-axis in the internal
SU(2) space, sending Sx → −Sx, Sy → Sy, and Sz → −Sz . In the language of HP bosons, we have the
following:

A Sublattice B Sublattice

S+ = a†(2S − a†a)1/2 S+ = −(2S − b†b)1/2b

S− = (2S − a†a)1/2a S− = −b†(2S − b†b)1/2 (4.242)

Sz = a†a− S Sz = S − b†b

We may now write the Heisenberg interaction as an expansion in powers of 1/S:

SA(R) · SA(R
′) = S2 + S

(
a†R aR′ + a†R′ aR − a†R aR − a†R′ aR′

)
+O(S0)

SB(R) · SB(R
′) = S2 + S

(
b†R bR′ + b†R′ bR − b†R bR − b†R′ bR′

)
+O(S0)

SA(R) · SB(R
′) = −S2 + S

(
a†R aR + b†R bR − a†R b

†
R′ − aR bR′

)
+O(S0) .

(4.243)

Thus, the classical ground state energy is the O(S2) term,

Ecl = S2
∑

R,R′

{
− 1

2 JAA(R −R′)− 1
2 JBB(R−R′) + JAB(R−R′ − δ)

}
. (4.244)

12A bipartite lattice is one which may be decomposed into two sublattices A and B, such that all the neighbors of any site
in A lie in B, and all the neighbors of any site in B lie in A. Examples of bipartite lattices: square, honeycomb, simple cubic,
body-centered cubic, hexagonal. Examples of lattices which are not bipartite: triangular, Kagomé, face-centered cubic.
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The spin-wave Hamiltonian is the O(S1) piece,

Hsw = −S
∑

R,R′

{
JAA(R−R′)

(
a†R aR′ − a†R aR

)
+ JBB(R−R′)

(
b†R bR′ − b†R bR

)

+ JAB(R−R′ − δ)
(
a†R aR + b†R bR − a†R b

†
R′ − aR bR′

)}
.

(4.245)

We now Fourier transform:

aR =
1√
N

∑

k

e+ik·R ak a†R =
1√
N

∑

k

e−ik·R a†k (4.246)

bR =
1√
N

∑

k

e+ik·(R+δ) bk b†R =
1√
N

∑

k

e−ik·(R+δ) b†k , (4.247)

which leads to
∑

R,R′

JAA(R−R′) a†R aR′ =
1

N

∑

k,k′

∑

R,R′

JAA(R−R′)ei(k
′·R′−k·R) a†kak′

=
∑

k

ĴAA(k) a
†
k ak (4.248)

∑

R,R′

JAB(R−R′ − δ) a†R b
†
R′ =

1

N

∑

k,k′

∑

R,R′

JAB(R−R′ − δ)ei
(
k′·(R′+δ)−k·R

)
a†kb

†
−k′

=
∑

k

ĴAB(k) a
†
k b

†
−k , (4.249)

where, assuming JAA, JBB and JAB are functions only of the magnitude of their arguments,

ĴAA(k) ≡
∑

R

JAA

(
|R|
)
eik·R

ĴBB(k) ≡
∑

R

JBB

(
|R|
)
eik·R

ĴAB(k) ≡
∑

R

JAB

(
|R+ δ|

)
eik·(R+δ) .

(4.250)

Note that ĴAA(k) = ĴAA(−k) =
[
ĴAA(k)

]∗
(similarly for JBB), and ĴAB(k) =

[
ĴAB(−k)

]∗
.

The spin-wave Hamiltonian may now be written as

Hsw = S
∑

k

{(
ĴAA(0)− ĴAA(k)− ĴAB(0)

)
a†k ak +

(
ĴBB(0)− ĴBB(k)− ĴAB(0)

)
b†k bk

+ ĴAB(k) a
†
k b

†
−k + J∗

AB(k) ak b−k

}
. (4.251)

In other words,

Hsw =
∑

k

{
ΩAA
k a†k ak +ΩBB

k b†k bk +∆k a
†
k b

†
−k +∆∗

k ak b−k

}
(4.252)
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with

ΩAA
k = S

(
ĴAA(0)− ĴAA(k)− ĴAB(0)

)

ΩBB
k = S

(
ĴBB(0) − ĴBB(k)− ĴAB(0)

) (4.253)

and
∆k = S ĴAB(k) . (4.254)

Henceforth we shall assume JAA(R) = JBB(R), so ΩAA
k = ΩBB

k ≡ Ωk.

Note that the vacuum
∣∣ 0
〉

for the a and b bosons is not an eigenstate of Hsw, owing to the spin-wave

pair creation term ∆∗
k ak b−k. This can be traced back to the effect on the Néel state of the Heisenberg

interaction,
Si · Sj =

1
2 S

+
i S

−
j + 1

2 S
−
i S

+
j + Sz

i S
z
j . (4.255)

If i ∈ A and j ∈ B, then the term S+
i S

−
j acts on the configuration | − S , +S 〉 and converts it to

2S | − S + 1 , S − 1 〉. Nevertheless, we can diagonalize Hsw by means of a canonical (but not unitary!)
transformation, known as the Bogoliubov transformation. Note that for each k ∈ Ω̂, the spin-wave Hamil-

tonian couples only four operators: a†k, ak, b†−k, and b−k. We write the Bogoliubov transformation as

ak = uk αk − v∗k β
†
−k b−k = uk β−k − v∗k α

†
k (4.256)

a†k = u∗k α
†
k − vk β−k b†−k = u∗k β

†
−k − vk αk (4.257)

One can readily verify that this transformation preserves the canonical bosonic commutation relations,

[
ak, a

†
k′

]
=
[
bk, b

†
k′

]
=
[
αk, α

†
k′

]
=
[
βk, β

†
k′

]
= δkk′ (4.258)

provided that

u∗k uk − v∗k vk = 1 . (4.259)

The inverse transformation is

αk = u∗k ak + v∗k b
†
−k β−k = u∗k b−k + v∗k a

†
k (4.260)

α†
k = uk a

†
k + vk b−k β†−k = uk b

†
−k + vk ak . (4.261)

We’ll write
uk = exp(iηk) cosh(θk) , vk = exp(−iηk) sinh(θk) . (4.262)

We may then write

ak = exp(iηk) cosh(θk)αk − exp(iηk) sinh(θk)β
†
−k

b−k = exp(iηk) cosh(θk)β−k − exp(iηk) sinh(θk)α
†
k

(4.263)

as well as the inverse

αk = exp(−iηk) cosh(θk) ak + exp(iηk) sinh(θk)β
†
−k

β−k = exp(−iηk) cosh(θk)β−k + exp(iηk) sinh(θk) a
†
k .

(4.264)
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Substituting into the expressions from Hsw, we find

Ωk

(
a†k ak + b†k bk

)
= Ωk cosh(2θk)

(
α†
k αk + β†−k β−k + 1

)
− Ωk

− Ωk sinh(2θk)
(
α†
k β

†
−k + αk β−k

) (4.265)

and

∆k a
†
k a

†
−k +∆∗

k ak b−k = −
∣∣∆k

∣∣ sinh(2θk)
(
α†
k αk + β†−k β−k + 1

)

+
∣∣∆k

∣∣ cosh(2θk)
(
α†
k β

†
−k + αk β−k

)
,

(4.266)

where we have taken ηk = 1
2 arg(∆k). Up until now, θk has been arbitrary. We now use this freedom to

specify θk such that the
(
α†
k β

†
−k + αk β−k

)
terms vanish from Hsw. This requires

∣∣∆k

∣∣ cosh(2θk)− Ωk sinh(2θk) = 0 =⇒ tanh(2θk) =

∣∣∆k

∣∣
Ωk

, (4.267)

which means

cosh(2θk) =
Ωk

Ek
, sinh(2θk) =

∣∣∆k

∣∣
Ek

(4.268)

along with the dispersion relation

Ek =

√
Ω2
k −

∣∣∆k

∣∣2 . (4.269)

Finally, we may write the diagonalized spin-wave Hamiltonian as

Hsw =
∑

k

Ek

(
α†
k αk + β†k βk

)
+
∑

k

(
Ek − Ωk

)
. (4.270)

Note that Ek = E−k since ĴAB(k) = Ĵ∗
AB(−k). The two terms above represent, respectively, the spin-

wave excitation Hamiltonian, and the O(S1) quantum correction to the ground state energy. Since Ek <
Ωk, this correction is always negative.

As k → 0, we have, assuming cubic or higher symmetry,

Ωk = −S
∑

R

JAB

(
|R + δ|

)
+ 1

6 S k2
∑

R

JAA

(
|R|
)
R2 + . . .

≡ SW + SXk2 + . . .

(4.271)

and

∆k = +S
∑

R

JAB

(
|R+ δ|

)
− 1

6 S k2
∑

R

JAB

(
|R+ δ|

) ∣∣R+ δ
∣∣2 + . . .

≡ −SW + SY k2 + . . . .

(4.272)

The energy dispersion is linear: Ek = ~c|k|, where c = S
√

2W (X + Y ). Antiferromagnetic spin waves
are Goldstone bosons corresponding to the broken continuous symmetry of global spin rotation. The
dispersion vanishes linearly as k → 0, in contrast to the case of ferromagnetic spin waves, where Ek

vanishes quadratically.
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Reduction in Sublattice Magnetization

Let’s compute the average of Sz for a spin on the A sublattice:

〈Sz(R)〉 = −S + 〈a†R aR〉

= −S +
1

N

∑

k

〈a†k ak〉

= −S +
1

N

∑

k

〈
(u∗k α

†
k − vk β−k) (uk αk − v∗k β

†
−k)
〉

= −S + v0

∫

BZ

ddk

(2π)d

{
Ωk

Ek

1

exp(Ek/kBT )− 1
+

1

2

(
Ωk

Ek

− 1

)}
,

(4.273)

where v0 is the Wigner-Seitz cell volume, and the integral is over the first Brillouin zone. The deviation
δSz = 〈a† a〉 from the classical value 〈Sz〉 = −S is due to thermal and quantum fluctuations. Note that
even at T = 0, when the thermal fluctuations vanish, there is still a reduction in sublattice magnetization
due to quantum fluctuations. The Néel state satisfies the Sz

i S
z
j part of the Heisenberg interaction, but the

full interaction prefers neighboring spins to be arranged in singlets, which involves fluctuations about
local Néel order.

We’ve seen that Ωk ≃ SW and Ek ≃ ~c |k| as k → 0. Thus, the integrand behaves as T/k2 for the first
term and as 1/|k| for the second term. The integral therefore diverges in d ≤ 2 at finite T and in d = 1
even at T = 0. Thermal and quantum fluctuations melt the classical ordered state.

4.9.4 Specific Heat due to Spin Waves

The long wavelength dispersion ωq = Aq2 has thermodynamic consequences. Consider a general case

of a bosonic dispersion ωq = A|q|σ . The internal energy for a system in d space dimensions is then

E(T ) = V

∫
ddk

(2π)d
Akσ

eβAqσ − 1

=
AV Ωd

(2π)d

(kBT

A

)1+ d
σ

∞∫

0

du
ud/σ

eu − 1

(4.274)

where Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in d dimensions. Thus, E(T ) ∝ T 1+ d
σ , leading to

a low-temperature heat capacity of

CV = Γ(2 + 1
2d) ζ(1 +

1
2d)

kBV Ωd

(2π)d

(
kBT

A

)d/σ

. (4.275)

At high T , one must impose a cutoff at the edge of the Brillouin zone, where k ∼ π/a, in order not to
overcount the modes. One finds

E(T ) = kBT V

∫

Ω̂

ddk

(2π)d
= NkBT , (4.276)
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where N is the number of unit cells. This simply is the Dulong-Petit result of kBT per mode.

For ferromagnetic spin waves, we found σ = 2, hence CV ∝ T d/2 at low temperatures. As we shall see,

for antiferromagnetic spin waves, one has σ = 1, as in the case of acoustic phonons, hence CV ∝ T d.

Suppose we write the long-wavelength ferromagnetic spin-wave dispersion as ~ωq = CJ(qa)2, where
a is the lattice spacing, J is the nearest neighbor exchange, and C is a dimensionless constant. The
ferromagnetic low-temperature specific heat is then

CF
V = Γ(2 + 1

2d) ζ(1 +
1
2d)

kBV Ωd

(2πa)d

(
kBT

CJ

)d/2

, (4.277)

hence CF
V ∝ (T/ΘJ )

d/2, with ΘJ ≡ CJ/kB. Acoustic phonons with a ωk = ~c|k| dispersion lead to a
Debye heat capacity

CD
V = Γ(2 + d) ζ(1 + d)

kBV Ωd

(2πa)d

(
kBT

~c/a

)d

, (4.278)

hence CD ∝ (T/ΘD)
d, with ΘD ≡ ~c/akB. Thus, at the lowest temperatures, the specific heat due to spin

waves dominates, but at intermediate temperatures it is the phonon specific heat which dominates. The
temperature scale T ∗ at which the two contributions are roughly equal is given by

(T ∗/ΘJ)
d/2 ≃ (T ∗/ΘD)

d =⇒ T ∗ ≃ Θ2
D

/
ΘJ . (4.279)

4.10 Appendix : Generalized Spin Wave Theory for SU(2) Heisenberg Hamil-

tonians

4.10.1 General form of Heisenberg Hamiltonian

Consider a Heisenberg Hamiltonian,

H =
∑

i<j

JijSi · Sj , (4.280)

defined on an arbitrary lattice structure. On each site i, we may rotate the spin operators, writing

Sµ = e
α
µ S

α , (4.281)

where the unit vectors
{
ê
1, ê2, ê3

}
satisfy

ê
α × ê

β = ǫαβγ êγ . (4.282)

I.e. they form an orthonormal triad. The Heisenberg interaction between spins on sites i and j may then
be written

Si · Sj = ê
α
i · êβj Sαi S

β
j . (4.283)

We now represent the spin operators Sα in terms of Holstein-Primakoff bosons:

S
+ = ψ† (2S − ψ†ψ

)1/2
, S

− =
(
2S − ψ†ψ

)1/2
ψ , S

z = ψ†ψ − S . (4.284)
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We now expand the Heisenberg interaction in powers of S. Including terms of orders S2, S3/2, and S,
and neglecting terms of O(S1/2), we have

S
α
i S

β
j =




1
2S
(
ψi + ψ†

i

)(
ψj + ψ†

j

)
i
2S
(
ψi + ψ†

i

)(
ψj − ψ†

j

)
− 1√

2
S3/2

(
ψi + ψ†

i

)

i
2S
(
ψi − ψ†

i

)(
ψj + ψ†

j

)
−1

2S
(
ψi − ψ†

i

)(
ψj − ψ†

j

)
− i√

2
S3/2

(
ψi − ψ†

i

)

− 1√
2
S3/2

(
ψj + ψ†

j

)
− i√

2
S3/2

(
ψj − ψ†

j

)
S2 − S

(
ψ†
iψi + ψ†

jψj

)




= S2 δα3 δβ3 + S3/2 Cαβ
ij + S Qαβ

ij +O
(
S1/2

)
, (4.285)

where

Cαβ
ij =




0 0 − 1√
2

(
ψi + ψ†

i

)

0 0 − i√
2

(
ψi − ψ†

i

)

− 1√
2

(
ψj + ψ†

j

)
− i√

2

(
ψj − ψ†

j

)
0


 (4.286)

and

Qαβ
ij =




1
2

(
ψi + ψ†

i

)(
ψj + ψ†

j

)
i
2

(
ψi + ψ†

i

)(
ψj − ψ†

j

)
0

i
2

(
ψi − ψ†

i

)(
ψj + ψ†

j

)
−1

2

(
ψi − ψ†

i

)(
ψj − ψ†

j

)
0

0 0 −ψ†
iψi − ψ†

jψj


 . (4.287)

The classical energy is

ECL
0 = S2

∑

i<j

Jij ê
3
i · ê3j . (4.288)

The O
(
S3/2

)
term is

H1 ≡ S3/2
∑

i<j

Jij ê
α
i · êβj C

αβ
ij (4.289)

= − 1√
2
S3/2

∑

i

(
ê
+
i ·
∑

j

Jij ê
3
j

)
ψi − 1√

2
S3/2

∑

i

(
ê
−
i ·
∑

j

Jij ê
3
j

)
ψ†
i (4.290)

where
ê
±
i ≡ ê

1
i ± i ê2i . (4.291)

Therefore, if for each i we have

∑

j

Jij ê
3
j ∝ ê

3
i or

∑

j

Jij ê
3
j = 0 , (4.292)

then
ê
±
i ·
∑

j

Jij ê
3
j = 0 , (4.293)

and H1 vanishes. This is the condition that the classical ground state configuration lie at a local ex-
tremum of the energy. If the condition in eqn. (4.292) did not hold, then there would be a finite mean
field from the neighbors of site i whose direction was not completely aligned with the moment on that
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site. The spin on site i would then be able to lower its energy by canting to antialign with this mean
field.

The O(S) piece of the Hamiltonian is the spin-wave contribution:

HSW = S
∑

i<j

Jij

{
1
2 ê

−
i · ê+j ψ

†
i ψj +

1
2 ê

+
i · ê−j ψi ψ

†
j (4.294)

+ 1
2 ê

−
i · ê−j ψ

†
i ψ

†
j +

1
2 ê

+
i · ê+j ψi ψj − ê

3
i · ê3j

(
ψ†
iψi + ψ†

jψj

)}
.

Note that rotation of the basis on site i by an angle θi about ê
3
i entails ê

±
i → e±iθi ê

±
i , which is then

cancelled by the unitary transformation ψi → eiθi ψi and ψ†
i → e−iθi ψ†

i .

4.10.2 Planar spiral phases

As a general parameterization of the classical state, take

ê
1
i = cos θi cosφi x̂+ cos θi sinφi ŷ − sin θi ẑ (4.295)

ê
2
i = − sinφi x̂+ cosφi ŷ (4.296)

ê
3
i = sin θi cosφi x̂+ sin θi sinφi ŷ + cos θi ẑ . (4.297)

Now consider a planar spiral on a Bravais lattice, where

θi = Q ·Ri , φi = 0 . (4.298)

We then have

ê
−
i · ê+j = 1 + cos(θi − θj) = 1 + cos(Q ·Rij) (4.299)

ê
+
i · ê−j = −1 + cos(θi − θj) = −1 + cos(Q ·Rij) (4.300)

ê
3
i · ê3j = cos(θi − θj) = cos(Q ·Rij) , (4.301)

where Rij = Ri −Rj . Fourier transforming, we arrive at the spin wave Hamiltonian

H = 1
2

∑

k

{
ωk

(
ψ†
kψk + ψ−kψ

†
−k

)
+∆k

(
ψ†
kψ

†
−k + ψkψ−k

)}
+ 1

2NSĴ(Q) . (4.302)

where

ωk = 1
2S
[
Ĵ(k)− 2Ĵ(Q) + 1

2 Ĵ(k +Q) + 1
2 Ĵ(k −Q)

]
(4.303)

∆k = 1
2S
[
− Ĵ(k) + 1

2 Ĵ(k +Q) + 1
2 Ĵ(k −Q)

]
, (4.304)

where
Ĵ(k) =

∑

R

J(R) eik·R . (4.305)



54 CHAPTER 4. MAGNETISM

The Bogoliubov dispersion is then

Ek =
√
ω2
k −∆2

k (4.306)

= S

√[
Ĵ(k)− Ĵ(Q)

][
1
2 Ĵ(k +Q) + 1

2 Ĵ(k −Q)− Ĵ(Q)
]
. (4.307)

This result agrees with that of P. Locher, Phys. Rev. B 41, 2537 (1990). There are then two possible
conditions for zero modes at wavevector k = κ:

Ĵ(κ) = Ĵ(Q) or Ĵ(κ+Q) + Ĵ(κ−Q) = 2Ĵ(Q) . (4.308)

If one condition is met, then the spin wave dispersion vanishes linearly in k − κ. If both conditions are
met, the spin wave dispersion has a quadratic minimum.

4.10.3 Sublattices

We presume that there is an underlying Bravais lattice, and that the classical ground state is periodic,
with a q sublattice structure. The site index i can then be partitioned into a Bravais lattice site R plus a
sublattice index a ∈ {1, . . . , q}. We assume that

Jij −→ JRa,R′b = Jab(R−R′) = Jba(R
′ −R) (4.309)

depends only on the difference R−R′, for each (ab) pair. The lattice Fourier transforms are defined as

ψa(R) =
1√
N

∑

k

eik·R ψa,k , ψ†
a(R) =

1√
N

∑

k

e−ik·R ψ†
a,k (4.310)

and
Ĵab(k) =

∑

R

e−ik·R Jab(R) . (4.311)

Note that
Ĵab(k) = Ĵ∗

ab(−k) = Ĵba(−k) . (4.312)

The spin wave Hamiltonian is then given by

HSW = 1
4S
∑

k

q∑

a,b=1

{
Ĵab(k)

[
ê
−
a · ê+b ψ

†
a,k ψb,k + ê

+
a · ê−b ψa,−k ψ

†
b,−k (4.313)

+ ê
−
a · ê−b ψ

†
a,k ψ

†
b,−k + ê

+
a · ê+b ψa,−k ψb,k

]

− 2 ê3a · ê3b Ĵab(0)
[
ψ†
a,k ψa,k + ψb,−k ψ

†
b,−k − 1

]}

= 1
4S
∑

k,a,b

(
ψ†
a,k ψa,−k

)
H(k)︷ ︸︸ ︷(

Ωab(k) ∆ab(k)

∆∗
ab(−k) Ωba(−k)

) (
ψb,k

ψ†
b,−k

)
(4.314)

+ 1
2S

∑

k,a,b

Ĵab(0) ê
3
a · ê3b .
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Here, the matrices Ω(k) and ∆(k) are given by

Ωab(k) = ê
−
a · ê+b Ĵab(k)− 2 δab

∑

c

Ĵac(0) ê
3
a · ê3c (4.315)

∆ab(k) = ê
−
a · ê−b Ĵab(k) . (4.316)

Note that

Ωba(−k) = ê
+
a · ê−b Ĵab(k)− 2 δab

∑

c

Ĵac(0) ê
3
a · ê3c (4.317)

∆∗
ab(−k) = ê

+
a · ê+b Ĵab(k) . (4.318)

We will find it notationally convenient to define separately the dimensionless matrices

Mab ≡ ê
−
a · ê+b , Nab ≡ ê

−
a · ê−b (4.319)

and the vector
Λa ≡ −2

∑

c

Ĵac(0) ê
3
a · ê3c , (4.320)

which has dimensions of energy. Then

H(k) =



Mab Ĵab(k) + Λa δab Nab Ĵab(k)

N∗
ab Ĵab(k) M∗

ab Ĵab(k) + Λa δab


 . (4.321)

4.10.4 Diagonalization

We diagonalize via a generalized Bogoliubov transformation, writing

ψa,k =
∑

l

[
Ua,l(k)βl,k + Ṽ ∗

a,l(k)β
†
l,−k

]
(4.322)

ψ†
a,−k =

∑

l

[
Va,l(k)βl,k + Ũ∗

a,l(k)β
†
l,−k

]
(4.323)

Thus, we may write
Ψ(k)︷ ︸︸ ︷(
ψa,k

ψ†
a,−k

)
=

S(k)︷ ︸︸ ︷(
U Ṽ ∗

V Ũ∗

)
B(k)︷ ︸︸ ︷(
βl,k
β†l,−k

)
. (4.324)

The Hamiltonian is

H = 1
2S
∑

k

′
Ψ †
i (k)Hij(k)Ψj(k)− 1

4NS

q∑

a=1

Λa , (4.325)

where the prime on the sum indicates that only one of (k,−k) is included, i.e. the sum is over precisely
one half of the Brillouin zone.
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In order to preserve the commutation relations, we must have

Σij =
[
Ψi , Ψ

†
k

]
= Sik

[
Bk , B

†
l

]
S†
lj =

(
S Σ S†)

ij
, (4.326)

where

Σ =

(
1q×q 0

0 −1q×q

)
, (4.327)

and where we have suppressed the k labels. Thus,

S† = Σ S−1Σ . (4.328)

This pseudounitarity condition on S requires

U †U − V †V = 1 UU † − Ṽ ∗Ṽ t = 1 (4.329)

Ũ tŨ∗ − Ṽ tṼ ∗ = 1 Ũ∗Ũ t − V V † = 1 (4.330)

and

U †Ṽ ∗ − V †Ũ∗ = 0 UV † − Ṽ ∗Ũ t = 0 (4.331)

Ṽ tU − Ũ tV = 0 V U † − Ũ∗Ṽ t = 0 . (4.332)

The matrix S is chosen so as to diagonalize H :

S†
kHk Sk = Σ S−1

k ΣHk Sk =

(
E(k) 0

0 Ẽ(k)

)
, (4.333)

where both E and Ẽ are diagonal q × q matrices. Suppressing the k label, we then have the eigenvalue
equations

q∑

b=1

[
Mab Ĵab Ubl +Nab Ĵab Vbl

]
+ Λa Ual = +UalEl (4.334)

q∑

b=1

[
N∗

ab Ĵab Ubl +M∗
ab Ĵab Vbl

]
+ Λa Val = −ValEl (4.335)

q∑

b=1

[
Mab Ĵab Ṽ

∗
bl +Nab Ĵab Ũ

∗
bl

]
+ Λa Ṽ

∗
al = −Ṽ ∗

al Ẽl (4.336)

q∑

b=1

[
N∗

ab Ĵab Ṽ
∗
bl +M∗

ab Ĵab Ũ
∗
bl

]
+ Λa Ũ

∗
al = +Ũ∗

al Ẽl (4.337)

We next multiply eqn. (4.334) by U∗
al′ and eqn. (4.335) by V ∗

al′ and sum over a. Then take the complex
conjugate of this equation and exchange the indices l and l′. The result is

(
El − E∗

l′
) (
U †U − V †V

)
l′l

= 0 . (4.338)
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Corresponding manipulations with eqns. (4.336) and (4.337) yield

(
Ẽl − Ẽ∗

l′
) (
Ũ tŨ∗ − Ṽ tṼ ∗)

l′l
= 0 . (4.339)

Thus, provided the norm
(
U †U − V †V

)
ll

is finite, the corresponding eigenvalue El is real (and similarly

for Ẽl). Also, eigenvectors corresponding to different eigenvalues are orthogonal.

Multiplying eqn. (4.334) by Ṽal′ , eqn. (4.335) by Ũal′ , eqn. (4.336) by U∗
al′ , and eqn. (4.337) by V ∗

al′ ,
conjugating, and exchanging l and l′ where necessary, we obtain

(
El + Ẽ∗

l′
) (
Ṽ tU − Ũ tV

)
l′l

= 0 , (4.340)

which is consistent with eqn. (4.331).

Finally, sending k → −k in eqns. (4.336) and (4.337), followed by conjugation, establishes

Ũbl(k) = Ubl(−k) , Ṽbl(k) = Vbl(−k) , Ẽl(k) = El(−k) . (4.341)

The spin wave Hamiltonian is then

HSW = 1
2S
∑

k

q∑

l=1

[
El(k)

(
β†l,k βl,k +

1
2

)
− 1

2Λl

]
. (4.342)

The ground state energy is then

E0
SW = 1

4S
∑

k

q∑

l=1

[
El(k)− Λl

]
. (4.343)

4.11 Appendix: The Foldy-Wouthuysen Transformation

Let us write

Ĥ = mc2 γ0 + cγ0 γ · π + V , (4.344)

where

π = p+ e
cA (4.345)

is the dynamical momentum and where the γµ are the Dirac matrices,

γ0 =

(
12×2 02×2

02×2 −12×2

)
, γ =

(
02×2 σ2×2

−σ2×2 02×2

)
. (4.346)

Here σ is the vector of Pauli matrices.

The idea behind the FW transformation is to unitarily transform to a different Hilbert space basis such
that the coupling in Ĥ between the upper and lower components of the Dirac spinor vanishes. This may
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be done systematically as an expansion in inverse powers of the electron mass m. We begin by defining
K ≡ cγ0γ · π + V so that Ĥ = mc2 γ0 +K . Note that K is of order m0. We then write

˜̂
H = eiS Ĥ e−iS

= Ĥ + i
[
S, Ĥ

]
+

(i)2

2!

[
S, [S, Ĥ ]

]
+ . . . ,

(4.347)

where S itself is written as a power series in (mc2)−1:

S =
S0
mc2

+
S1

(mc2)2
+ . . . . (4.348)

The job now is to write
˜̂
H as a power series in m−1. The first few terms are easy to find:

˜̂
H = mc2 γ0 +K + i

[
S0, γ

0
]
+

1

mc2

(
i
[
S0,K

]
+ i
[
S1, γ

0
]
− 1

2

[
S0, [S0, γ

0]
])

+ . . . (4.349)

We choose the operators Sn so as to cancel, at each order in m−1, the off-diagonal terms in
˜̂
H that couple

the upper two components of Ψ to the lower two components of Ψ. To order m0, we then demand

cγ0γ · π + i
[
S0, γ

0
]
= 0 . (4.350)

Note that we do not demand that i
[
S0, γ

0
]

completely cancel K – indeed it is impossible to find such an
S0, and one way to see this is to take the trace. The trace of any commutator must vanish, but TrK = 4V ,
which is in general nonzero. But this is of no concern to us, since we only need cancel the (traceless)
off-diagonal part of K , which is to say cγ0γ · π.

To solve for S0, one can write it in terms of its four 2 × 2 subblocks, compute the commutator with γ0,
and then impose eqn. 4.350. One then finds S0 = − i

2cγ · π.

STUDENT EXERCISE: Derive the result S0 = − i
2cγ · π.

At the next level, we have to deal with the term in the round brackets in eqn. 4.349. Since we know S0,
we can compute the first and the third terms therein. In general, this will leave us with an off-diagonal
term coupling upper and lower components of Ψ. We then choose S1 so as to cancel this term. This
calculation already is tedious, and we haven’t even gotten to the spin-orbit interaction term yet, since it
is of order m−2 – yecch!

4.11.1 Derivation of the spin-orbit interaction

Here’s a simpler way to proceed to order m−2. Let a, b be block indices and i, j be indices within each
block. Thus, the component Ψai is the ith component of the ath block; Ψa=1,i=2 is the lower component
of the upper block, i.e. the second component of the four-vector Ψ.

Write the Hamiltonian as

Ĥ = mc2 τ z + cσ · π τx + V (r) , (4.351)
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where τµ are Pauli matrices with indices a, b and σν are Pauli matrices with indices i, j. The σ and τ
matrices commute because they act on different indices.

A very important result regarding Pauli matrices:

eiθ n̂·τ/2 τα e−iθ n̂·τ/2 = nαnβ τβ + cos θ (δαβ − nαnβ) τβ + sin θ ǫαβγ nβ τγ . (4.352)

STUDENT EXERCISE: Verify and interpret the above result.

Using this result, we can write

Aτ z +B τx =
√
A2 +B2 · e−i tan−1(B/A) τy/2 τ z ei tan

−1(B/A) τy/2 , (4.353)

and, for our specific purposes,

mc2 τ z + cσ · π τx =
√

(mc2)2 + (cσ · π)2 · U τ z U † , (4.354)

where
U = e−i tan−1(σ·π

mc
) τy/2 . (4.355)

The fact that σ ·π is an operator is no obstacle here, since it commutes with the τµ matrices. We can give
meaning to expressions like tan−1(σ · π/mc) in terms of their Taylor series expansions.

We therefore have the result,

U † Ĥ U =
√

(mc2)2 + (cσ · π)2 · τ z + U † V (r)U . (4.356)

The first term is diagonal in the block indices. Expanding the square root, we have

mc2
√

1 +
(σ · π
mc

)2
= mc2 +

(σ · π)2
2m

+O(m−3)

= mc2 +
π2

2m
+

e~

2mc
B · σ +O(m−3) ,

(4.357)

since

(σ · π)2 = σµσν πµπν

= (δµν + iǫµνλσλ)πµπν

= π2 + i
2ǫ

µνλ
[
pµ + e

cA
µ, pν + e

cA
ν
]

= π2 +
e~

c
B · σ .

(4.358)

We next need to compute U † V (r)U to order m−2. To do this, first note that

U = 1− i

2

σ · π
mc

τy − 1

8

(σ · π
mc

)2
+ . . . , (4.359)

Thus,

U † V U = V +
i

2mc

[
σ · π, V

]
τy − 1

8m2c2
[
σ · π, [σ · π, V ]

]
+ . . . . (4.360)
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Upon reflection, one realizes that, to this order, it suffices to take the first term in the Taylor expansion of
tan−1(σ · π/mc) in eqn. 4.355, in which case one can then invoke eqn. 4.347 to obtain the above result.
The second term on the RHS of eqn. 4.360 is simply ~

2mcσ ·∇ V τy. The third term is

i~

8m2c2
[
σµπµ, σν∂νV

]
=

i~

8m2c2

{
σµ
[
πµ, σν∂νV

]
+
[
σµ, σν∂νV

]
πµ
}

=
i~

8m2c2

{
~

i
∂µ∂νV σµσν + 2iǫµνλσλ∂νV πµ

}

=
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇ V × π .

(4.361)

Therefore,

U † Ĥ U =

(
mc2 +

π2

2m
+

e~

2mc
B · σ

)
τ z + V +

~

2mc
σ ·∇V τy

+
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π +O(m−3) .

(4.362)

This is not block-diagonal, owing to the last term on the RHS of the top line. We can eliminate this term
by effecting yet another unitary transformation. However, this will result in a contribution to the energy
of order m−3, so we can neglect it. To substantiate this last claim, drop all the block-diagonal terms
except for the leading order one, mc2 τ z , and consider the Hamiltonian

K = mc2 τ z +
~

2mc
σ ·∇V τy . (4.363)

We now know how to bring this to block-diagonal form. The result is

K̃ = mc2

√

1 +

(
~σ ·∇V

2m2c3

)2
τ z

=

(
mc2 +

~
2(∇V )2

8m3c4
+ . . .

)
τ z ,

(4.364)

and the correction is of order m−3, as promised.

We now assume all the negative energy (τ z = −1) states are filled. The Hamiltonian for the electrons,
valid to O(m−3), is then

˜̂
H = mc2 + V +

π2

2m
+

e~

2mc
B · σ +

~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π . (4.365)


