
PHYSICS 152B/232
Spring 2017

Homework Assignment #4 Solutions

[1] Atomic physics – Consider an ion with a partially filled shell of angular momentum J ,
and Z additional electrons in filled shells. Show that the ratio of the Curie paramagnetic
susceptibility to the Larmor diamagnetic susceptibility is

χpara

χdia
= −

g2
L
J(J + 1)

2Zk
B
T

~
2

m〈r2〉
.

where gL is the Landé g-factor. Estimate this ratio at room temperature.

Solution :

We have derived the expressions

χdia = −
Zne2

6mc2
〈r2〉

and

χpara = 1
3
n (g

L
µ

B
)2

J(J + 1)

kBT
,

where

gL = 3
2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
,

and where µ
B
= e~/2mc is the Bohr magneton. The ratio is thus

χpara

χdia
= −

g2L J(J + 1)

2ZkBT

~
2

m〈r2〉
.

If we assume 〈r2〉 = a2
B
, so that ~

2/m〈r2〉 ≃ 27.2 eV, then with T = 300K (and k
B
T ≈

1
40

eV), g
L
= 2, J = 2, and Z ≈ 30, the ratio is χpara/χdia ≈ −450.

[2] Adiabatic demagnetization – In an ideal paramagnet, the spins are noninteracting and
the Hamiltonian is

H =

Np
∑

i=1

γi Ji ·H

where γi = giµi/~ and Ji are the gyromagnetic factor and spin operator for the ith param-
agnetic ion, and H is the external magnetic field.

(a) Show that the free energy F (H,T ) can be written as

F (H,T ) = T Φ(H/T ) .

If an ideal paramagnet is held at temperature Ti and field Hi ẑ, and the field Hi is adia-

batically lowered to a value Hf , compute the final temperature. This is called “adiabatic
demagnetization”.
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(b) Show that, in an ideal paramagnet, the specific heat at constant field is related to the
susceptibility by the equation

cH = T

(

∂s

∂T

)

H

=
H2 χ

T
.

Further assuming all the paramagnetic ions to have spin J , and assuming Curie’s law to be
valid, this gives

cH = 1
3
npkB

J(J + 1)

(

gµBH

kBT

)2

,

where np is the density of paramagnetic ions. You are invited to compute the temperature
T ∗ below which the specific heat due to lattice vibrations is smaller than the paramagnetic
contribution. Recall the Debye result

cV = 12
5
π4 nk

B

(

T

ΘD

)3

,

where n = 1/Ω is the inverse of the unit cell volume (i.e. the density of unit cells) and ΘD

is the Debye temperature. Compile a table of a few of your favorite insulating solids, and
tabulate ΘD and T ∗ when 1% paramagnetic impurities are present, assuming J = 5

2
.

Solution :

(a) The partition function s a product of single-particle partition functions, and is explicitly
a function of the ratio H/T :

Z =
∏

i

Ji
∑

m=−Ji

e−mγiH/kBT = Z(H/T ) .

Thus,
F = −kBT lnZ = T Φ(H/T ) ,

where

Φ(x) = −kB

Np
∑

i=1

ln

[

sinh
(

(Ji +
1
2
)γi x/kB

)

sinh
(

γi x/2kB

)

]

.

The entropy is

S = −
∂F

∂T
= −Φ(H/T ) +

H

T
Φ′(H/T ) ,

which is itself a function of H/T . Thus, constant S means constant H/T , and

Hf

Hi

=
Tf

Ti

⇒ Tf =
Hf

Hi

Ti .

(b) The heat capacity is

CH = T

(

∂S

∂T

)

H

= −x
∂S

∂x
= −x2Φ′′(x) ,

2



with x = H/T . The (isothermal) magnetic susceptibility is

χ = −

(

∂2F

∂H2

)

T

= −
1

T
Φ′′(x) .

Thus,

CH =
H2

T
χ .

Next, write

CH = 1
3
np kB

J(J + 1)

(

gLµBH

kBT

)2

CV = 12
5
π4 n k

B

(

T

ΘD

)3

and we set CH = CV to find T ∗. Defining ΘH ≡ g
L
µ

B
H/k

B
, we obtain

T ∗ =
1

π

[

5π
36

J(J + 1)
np

n
Θ2

H Θ3
D

]1/5

.

Set J ≈ 1, gL ≈ 2, np = 0.01n and ΘD ≈ 500K. If H = 1kG, then ΘH = 0.134K. For
general H, find

T ∗ ≃ 3K ·
(

H [kG]
)2/5

.

[3] Ferrimagnetism – A ferrimagnet is a magnetic structure in which there are different
types of spins present. Consider a sodium chloride structure in which the A sublattice spins
have magnitude SA and the B sublattice spins have magnitude SB with SB < SA (e.g. S = 1
for the A sublattice but S = 1

2
for the B sublattice). The Hamiltonian is

H = J
∑

〈ij〉

Si · Sj + g
A
µ◦H

∑

i∈A

Sz
i + g

B
µ◦H

∑

j∈B

Sz
j

where J > 0, so the interactions are antiferromagnetic.

Work out the mean field theory for this model. Assume that the spins on the A and B
sublattices fluctuate about the mean values

〈SA〉 = mA ẑ , 〈SB〉 = mB ẑ

and derive a set of coupled mean field equations of the form

m
A
= F

A
(βg

A
µ◦H + βJzm

B
)

m
B
= F

B
(βg

B
µ◦H + βJzm

A
)
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where z is the lattice coordination number (z = 6 for NaCl) and F
A
(x) and F

B
(x) are related

to Brillouin functions. Show graphically that a solution exists, and fund the criterion for
broken symmetry solutions to exist when H = 0, i.e. find Tc. Then linearize, expanding for
small m

A
, m

B
, and H, and solve for m

A
(T ) and m

B
(T ) and the susceptibility

χ(T ) = −
1

2

∂

∂H
(gAµ◦mA + gBµ◦mB)

in the region T > Tc. Does your Tc depend on the sign of J? Why or why not?

Solution :

We apply the mean field Ansatz 〈Si〉 = m
A,B

and obtain the mean field Hamiltonian

HMF = −1
2
NJzm

A
·m

B
+
∑

i∈A

(

g
A
µ◦H + zJm

B

)

· Si +
∑

j∈B

(

g
B
µ◦H + zJm

A

)

· Sj .

Assuming the sublattice magnetizations are collinear, this leads to two coupled mean field
equations:

mA(x) = FS
A

(

βgAµ◦H + βJzmB

)

mB(x) = FS
B

(

βgBµ◦H + βJzmA

)

,

where
FS(x) = −S BS(Sx) ,

and BS(x) is the Brillouin function,

BS(x) =
(

1 + 1
2S ) ctnh

(

1 + 1
2S

)

x− 1
2S ctnh x

2S .

The mean field equations may be solved graphically, as depicted in fig. 1.

Expanding FS(x) = −1
3
S(S + 1)x + O(x3) for small x, and defining the temperatures

k
B
T

A,B
≡ 1

3
S

A,B
(S

A,B
+ 1) zJ , we obtain the linear equations,

mA −
TA

T
mB = −

g
A
µ◦

zJ
H

mB −
TB

T
mA = −

gBµ◦

zJ
H ,

with solution

m
A
= −

gATAT − gBTATB

T 2 − TATB

µ◦H

zJ

m
B
= −

gBTBT − gATATB

T 2 − TATB

µ◦H

zJ
.
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Figure 1: Graphical solution of of mean field equations with SA = 1, SB = 2, gA = gB = 1,
zJ = 1, and H = 0. Top: T > Tc; bottom: T < Tc.

The susceptibility is

χ =
1

N

∂M

∂H
= −

1

2

∂

∂H
(gAµ◦mA + gBµ◦mB)

=
(g2A TA + g2B TB)T − 2gAgB TATB

T 2 − TATB

µ2
0

2zJ
,

which diverges at

Tc =
√

TATB =
√

SASB(SA + 1)(SB + 1)
z|J |

3kB

.

Note that Tc does not depend on the sign of J . Note also that the signs of mA and mB may
vary. For example, let gA = gB ≡ g and suppose SA > SB. Then TB <

√

TATB < TA and
while mA < 0 for all T > Tc, the B sublattice moment changes sign from negative to positive
at a temperature T

B
> Tc. Finally, note that at high temperatures the susceptibility follows

a Curie χ ∝ T−1 behavior.

[4] Let’s all do the spin flop – In real solids crystal field effects often lead to anisotropic
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spin-spin interactions. Consider the anisotropic Heisenberg antiferromagnet in a uniform
magnetic field,

H = J
∑

〈ij〉

(Sx
i S

x
j + Sy

i S
y
j +∆Sz

i S
z
j ) + h

∑

i

Sz
i

where the field is parallel to the direction of anisotropy. Assume δ ≥ 0 and a bipartite
lattice.

Consider the case of classical spins In a small external field, show that if the anisotropy ∆
is not too large that the lowest energy configuration has the spins on the two sublattices
lying predominantly in the (x, y) plane and antiparallel, with a small parallel component
along the direction of the field. This is called a canted, or ‘spin-flop’ structure. What is the
angle θc by which the spins cant out of the (x, y) plane? What do I mean by not too large?
(You may assume that the lowest energy configuration is a two sublattice structure, rather
than something nasty like a four sublattice structure or an incommensurate one.)

Solution :

We start by assuming a two-sublattice structure in which the spins lie in the x − z plane.
(Any two-sublattice structure is necessarily coplanar.) Let the A sublattice spins point in the
direction (θ = θ

A
, φ = 0) and let the B sublattice spins point in the direction (θ = θ

B
, φ = π).

The classical energy per bond is then

ε(θ
A
, θ

B
) = −JS2 sin θ

A
sin θ

B
+ JS2∆ cos θ

A
cos θ

B
−

hS

z

(

cos θ
A
+ cos θ

B

)

.

Note that in computing the energy per bond, we must account for the fact that for each
site there are 1

2
z bonds, where z is the coordination number. The total number of bonds is

thus Nbonds =
1
2
Nz, where N is the number of sites. Note also the competition between ∆

and h. Large ∆ makes the spins antialign along ẑ, while large h prefers alignment along ẑ.

Let us first assume θA = θB = θc and determine θc. Let e(θA, θB) ≡ ε(θA, θB)/JS
2:

e(θc) ≡ e(θA = θc, θB = θc)

= − sin2θc +∆cos2θc −
2h

zSJ
cos θc

∂e

∂θc
= sin θc ·

{

2(1 + ∆) cos θc −
2h

zSJ

}

.

Thus, the extrema of e(θc) occur at sin θc = 0 and at

cos θc =
h

zSJ(1 + ∆)
.

The latter solution is present only when ∆ >
∣

∣h/zSJ
∣

∣− 1. The energy of this state is

e = −

{

1 +
1

1 +∆

(

h

zSJ

)2
}
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per bond.

To assess stability, we’ll need the second derivatives,

∂2e

∂θ2A

∣

∣

∣

∣ θ
A
=θc

θ
B
=θc

=
∂2e

∂θ2B

∣

∣

∣

∣ θ
A
=θc

θ
B
=θc

= sin2θc −∆cos2θc +
h

zSJ
cos θc

∂2e

∂θ
A
∂θ

B

∣

∣

∣

∣ θ
A
=θc

θ
B
=θc

= − cos2θc +∆sin2θc ,

from which we obtain the eigenvalues of the Hessian matrix,

λ+ = (1 + ∆)(1− 2 cos2θc) +
h

zSJ
cos θc

= (1 + ∆)

{

1−

(

h

zSJ(1 + ∆)

)2
}

λ− = (1−∆) +
h

zSJ
cos θc

=
1

1 +∆

{

1−∆2 +

(

h

zSJ

)2
}

.

Assuming ∆ > 0, we have that λ+ > 0 requires

∆ >
|h|

zSJ
− 1 ,

which is equivalent to cos2θc < 1, and λ− > 0 requires

∆ <

√

1 +

(

h

zSJ

)2

.

This is the meaning of “not too large.”

The other extrema occur when sin θc = 0, i.e. θc = 0 and θc = π. The eigenvalues of the
Hessian at these points are:

θc = 0 : λ+ = −(1 + ∆) +
h

zSJ

λ− = 1−∆+
h

zSJ

θc = π λ+ = −(1 + ∆)−
h

zSJ

λ− = 1−∆−
h

zSJ
.

Without loss of generality we may assume h ≥ 0, in which case the θc = π solution is
always unstable. This is obvious, since the spins are anti-aligned with the field. For θc = 0,
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the solution is stable provided ∆ < (h/zJS) − 1. For general h, the stability condition is
∆ < |h|/zJS − 1.

The other possibility is that ∆ is so large that neither of these solutions is stable, in which
case we suspect θ

A
= 0 and θ

B
= π or vice versa.

Thus, for h < zJS(1 + ∆), the solution with θc = cos−1
(

h/zJS(1 + ∆)
)

is stable. The
Hessian matrix in this case is







∂2e
∂θ2

A

∂2e
∂θ

A
∂θ

B

∂2e
∂θ

B
∂θ

A

∂2e
∂θ2

B







θ
A
=0

θ
B
=π

=





∆+ h
zSJ 1

1 ∆− h
zSJ





whose eigenvalues are

λ± = ∆±

√

√

√

√1 +

(

h

zSJ

)2

.

Thus, this configuration is stable only if

∆ >

√

1 +

(

h

zSJ

)2

.
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