PHYSICS 152B/232 Spring 2017 Homework Assignment #4 Solutions

[1] Atomic physics – Consider an ion with a partially filled shell of angular momentum J , and Z additional electrons in filled shells. Show that the ratio of the Curie paramagnetic susceptibility to the Larmor diamagnetic susceptibility is

$$
\frac{\chi^{\text{para}}}{\chi^{\text{dia}}} = -\frac{g_{\text{\tiny L}}^2\,J(J+1)}{2Z k_{\text{\tiny B}} T}\frac{\hbar^2}{m \langle r^2 \rangle} \ .
$$

where g_L is the Landé g-factor. Estimate this ratio at room temperature.

Solution :

We have derived the expressions

$$
\chi^{\text{dia}}=-\frac{Zne^2}{6mc^2}\left
$$

and

$$
\chi^{\text{para}} = \frac{1}{3} n (g_{\text{L}} \mu_{\text{B}})^2 \, \frac{J(J+1)}{k_{\text{B}} T} \;,
$$

where

$$
g_{\rm L} = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)} ,
$$

and where $\mu_B = e\hbar/2mc$ is the Bohr magneton. The ratio is thus

$$
\frac{\chi^{\text{para}}}{\chi^{\text{dia}}} = -\frac{g_{\text{\tiny L}}^2\,J(J+1)}{2Zk_{\text{\tiny B}}T}\,\frac{\hbar^2}{m\langle r^2\rangle}~.
$$

If we assume $\langle r^2 \rangle = a_B^2$, so that $\hbar^2/m\langle r^2 \rangle \simeq 27.2 \text{ eV}$, then with $T = 300 \text{ K}$ (and $k_B T \approx \frac{1}{40} \text{ eV}$), $g_L = 2$, $J = 2$, and $Z \approx 30$, the ratio is $\chi^{\text{para}} / \chi^{\text{dia}} \approx -450$.

[2] Adiabatic demagnetization – In an ideal paramagnet, the spins are noninteracting and the Hamiltonian is

$$
\mathcal{H} = \sum_{i=1}^{N_{\rm p}} \gamma_i \, \boldsymbol{J}_i \cdot \boldsymbol{H}
$$

where $\gamma_i = g_i \mu_i / \hbar$ and J_i are the gyromagnetic factor and spin operator for the *i*th paramagnetic ion, and H is the external magnetic field.

(a) Show that the free energy $F(H, T)$ can be written as

$$
F(H,T) = T \Phi(H/T) .
$$

If an ideal paramagnet is held at temperature T_i and field $H_i \hat{z}$, and the field H_i is adiabatically lowered to a value H_f , compute the final temperature. This is called "adiabatic demagnetization".

(b) Show that, in an ideal paramagnet, the specific heat at constant field is related to the susceptibility by the equation

$$
c_H = T \left(\frac{\partial s}{\partial T}\right)_H = \frac{H^2 \chi}{T} .
$$

Further assuming all the paramagnetic ions to have spin J , and assuming Curie's law to be valid, this gives

$$
c_H = \frac{1}{3} n_{\rm p} k_{\rm B} J(J+1) \left(\frac{g \mu_{\rm B} H}{k_{\rm B} T} \right)^2 ,
$$

where $n_{\rm p}$ is the density of paramagnetic ions. You are invited to compute the temperature T^* below which the specific heat due to lattice vibrations is smaller than the paramagnetic contribution. Recall the Debye result

$$
c_V = \tfrac{12}{5} \pi^4 \, n k_{\rm B} \left(\frac{T}{\Theta_{\rm D}} \right)^{\! 3} \; ,
$$

where $n = 1/\Omega$ is the inverse of the unit cell volume (*i.e.* the density of unit cells) and Θ_{D} is the Debye temperature. Compile a table of a few of your favorite insulating solids, and tabulate Θ_D and T^* when 1% paramagnetic impurities are present, assuming $J = \frac{5}{2}$ $\frac{5}{2}$.

Solution :

(a) The partition function s a product of single-particle partition functions, and is explicitly a function of the ratio H/T :

$$
Z = \prod_{i} \sum_{m=-J_i}^{J_i} e^{-m\gamma_i H/k_{\rm B}T} = Z(H/T) .
$$

Thus,

$$
F = -k_{\rm B}T \ln Z = T \Phi(H/T) ,
$$

where

$$
\Phi(x) = -k_{\rm B} \sum_{i=1}^{N_{\rm p}} \ln \left[\frac{\sinh\left((J_i + \frac{1}{2})\gamma_i x/k_{\rm B}\right)}{\sinh\left(\gamma_i x/2k_{\rm B}\right)} \right].
$$

The entropy is

$$
S = -\frac{\partial F}{\partial T} = -\Phi(H/T) + \frac{H}{T}\Phi'(H/T) ,
$$

which is itself a function of H/T . Thus, constant S means constant H/T , and

$$
\frac{H_{\rm f}}{H_{\rm i}} = \frac{T_{\rm f}}{T_{\rm i}} \qquad \Rightarrow \qquad T_{\rm f} = \frac{H_{\rm f}}{H_{\rm i}} T_{\rm i} \ .
$$

(b) The heat capacity is

$$
C_H = T \left(\frac{\partial S}{\partial T} \right)_H = -x \frac{\partial S}{\partial x} = -x^2 \Phi''(x) ,
$$

with $x = H/T$. The (isothermal) magnetic susceptibility is

$$
\chi = -\left(\frac{\partial^2 F}{\partial H^2}\right)_T = -\frac{1}{T} \Phi''(x) .
$$

Thus,

$$
C_H = \frac{H^2}{T} \chi .
$$

Next, write

$$
C_H = \frac{1}{3} n_{\rm p} k_{\rm B} J(J+1) \left(\frac{g_{\rm L} \mu_{\rm B} H}{k_{\rm B} T} \right)^2
$$

$$
C_V = \frac{12}{5} \pi^4 n k_{\rm B} \left(\frac{T}{\Theta_{\rm D}} \right)^3
$$

and we set $C_H = C_V$ to find T^* . Defining $\Theta_H \equiv g_L \mu_B H / k_B$, we obtain

$$
T^* = \frac{1}{\pi} \left[\frac{5\pi}{36} J(J+1) \frac{n_{\rm p}}{n} \Theta_H^2 \Theta_D^3 \right]^{1/5}.
$$

Set $J \approx 1$, $g_{\text{L}} \approx 2$, $n_{\text{p}} = 0.01 n$ and $\Theta_{\text{D}} \approx 500 \text{ K}$. If $H = 1 \text{ kG}$, then $\Theta_H = 0.134 \text{ K}$. For general H , find

$$
T^* \simeq 3\,\mathrm{K}\cdot \left(H\,[\mathrm{kG}]\right)^{2/5} \,.
$$

[3] Ferrimagnetism – A ferrimagnet is a magnetic structure in which there are different types of spins present. Consider a sodium chloride structure in which the A sublattice spins have magnitude S_A and the B sublattice spins have magnitude S_B with $S_B < S_A$ (e.g. $S = 1$) for the A sublattice but $S=\frac{1}{2}$ $\frac{1}{2}$ for the B sublattice). The Hamiltonian is

$$
\mathcal{H} = J\sum_{\langle ij \rangle}\boldsymbol{S}_i\cdot\boldsymbol{S}_j + g_{\scriptscriptstyle{\text{A}}}\mu_{\scriptscriptstyle{\text{O}}}H\sum_{i\in{\text{A}}}S_i^z + g_{\scriptscriptstyle{\text{B}}}\mu_{\scriptscriptstyle{\text{O}}}H\sum_{j\in{\text{B}}}S_j^z
$$

where $J > 0$, so the interactions are antiferromagnetic.

Work out the mean field theory for this model. Assume that the spins on the A and B sublattices fluctuate about the mean values

$$
\langle \pmb{S}_{\rm A} \rangle = m_{\rm A} \, \hat{\pmb{z}} \qquad , \qquad \langle \pmb{S}_{\rm B} \rangle = m_{\rm B} \, \hat{\pmb{z}}
$$

and derive a set of coupled mean field equations of the form

$$
\begin{split} m_\mathrm{A} &= F_\mathrm{A}(\beta g_\mathrm{A} \mu_\mathrm{o} H + \beta J z m_\mathrm{B}) \\ m_\mathrm{B} &= F_\mathrm{B}(\beta g_\mathrm{B} \mu_\mathrm{o} H + \beta J z m_\mathrm{A}) \end{split}
$$

where z is the lattice coordination number ($z = 6$ for NaCl) and $F_A(x)$ and $F_B(x)$ are related to Brillouin functions. Show graphically that a solution exists, and fund the criterion for broken symmetry solutions to exist when $H = 0$, *i.e.* find T_c . Then linearize, expanding for small m_A , m_B , and H , and solve for $m_A(T)$ and $m_B(T)$ and the susceptibility

$$
\chi(T) = -\frac{1}{2} \frac{\partial}{\partial H} (g_{\rm A} \mu_{\rm o} m_{\rm A} + g_{\rm B} \mu_{\rm o} m_{\rm B})
$$

in the region $T > T_c$. Does your T_c depend on the sign of J? Why or why not?

Solution :

We apply the mean field $Ansatz \langle S_i \rangle = m_{A,B}$ and obtain the mean field Hamiltonian

$$
\mathcal{H}^{\text{MF}} = -\frac{1}{2}NJz\boldsymbol{m}_{\text{A}}\cdot\boldsymbol{m}_{\text{B}} + \sum_{i\in \text{A}}\left(g_{\text{A}}\mu_{\text{o}}\boldsymbol{H} + zJ\boldsymbol{m}_{\text{B}}\right)\cdot\boldsymbol{S}_i + \sum_{j\in \text{B}}\left(g_{\text{B}}\mu_{\text{o}}\boldsymbol{H} + zJ\boldsymbol{m}_{\text{A}}\right)\cdot\boldsymbol{S}_j~.
$$

Assuming the sublattice magnetizations are collinear, this leads to two coupled mean field equations:

$$
\begin{split} m_\mathrm{A}(x) &= F_{S_\mathrm{A}} \left(\beta g_\mathrm{A} \mu_\mathrm{o} H + \beta J z m_\mathrm{B} \right) \\ m_\mathrm{B}(x) &= F_{S_\mathrm{B}} \left(\beta g_\mathrm{B} \mu_\mathrm{o} H + \beta J z m_\mathrm{A} \right) \,, \end{split}
$$

where

$$
F_S(x) = -S\,B_S(Sx) ,
$$

and $B_S(x)$ is the Brillouin function,

$$
B_S(x) = \left(1 + \frac{1}{2S}\right) \operatorname{ctnh}\left(1 + \frac{1}{2S}\right)x - \frac{1}{2S} \operatorname{ctnh}\frac{x}{2S}.
$$

The mean field equations may be solved graphically, as depicted in fig. 1.

Expanding $F_S(x) = -\frac{1}{3}S(S+1)x + \mathcal{O}(x^3)$ for small x, and defining the temperatures $k_{\rm B}T_{\rm A,B} \equiv \frac{1}{3}$ $\frac{1}{3}S_{A,B}(S_{A,B}+1) zJ$, we obtain the linear equations,

$$
m_{\text{A}} - \frac{T_A}{T} m_{\text{B}} = -\frac{g_{\text{A}}\mu_{\text{o}}}{zJ} H
$$

$$
m_{\text{B}} - \frac{T_B}{T} m_{\text{A}} = -\frac{g_{\text{B}}\mu_{\text{o}}}{zJ} H ,
$$

with solution

$$
\begin{split} m_\mathrm{A} &= -\frac{g_\mathrm{A}T_\mathrm{A}T-g_\mathrm{B}T_\mathrm{A}T_\mathrm{B}}{T^2-T_\mathrm{A}T_\mathrm{B}}\,\frac{\mu_\mathrm{o}H}{zJ} \\ m_\mathrm{B} &= -\frac{g_\mathrm{B}T_\mathrm{B}T-g_\mathrm{A}T_\mathrm{A}T_\mathrm{B}}{T^2-T_\mathrm{A}T_\mathrm{B}}\,\frac{\mu_\mathrm{o}H}{zJ} \ . \end{split}
$$

Figure 1: Graphical solution of of mean field equations with $S_A = 1$, $S_B = 2$, $g_A = g_B = 1$, $zJ = 1$, and $H = 0$. Top: $T > T_c$; bottom: $T < T_c$.

The susceptibility is

$$
\begin{split} \chi &= \frac{1}{N} \frac{\partial M}{\partial H} = -\frac{1}{2} \, \frac{\partial}{\partial H} (g_{\text{\tiny A}} \mu_{\text{\tiny O}} m_{\text{\tiny A}} + g_{\text{\tiny B}} \mu_{\text{\tiny O}} m_{\text{\tiny B}}) \\ &= \frac{(g_{\text{\tiny A}}^2 \, T_{\text{\tiny A}} + g_{\text{\tiny B}}^2 \, T_{\text{\tiny B}}) T - 2 g_{\text{\tiny A}} g_{\text{\tiny B}} \, T_{\text{\tiny A}} T_{\text{\tiny B}} }{T^2 - T_{\text{\tiny A}} T_{\text{\tiny B}}} \, \frac{\mu_0^2}{2zJ} \end{split}
$$

,

which diverges at

$$
T_{\rm c} = \sqrt{T_{\rm A}T_{\rm B}} = \sqrt{S_{\rm A}S_{\rm B}(S_{\rm A}+1)(S_{\rm B}+1)}\frac{z|J|}{3k_{\rm B}}.
$$

Note that T_c does not depend on the sign of J. Note also that the signs of m_A and m_B may vary. For example, let $g_A = g_B \equiv g$ and suppose $S_A > S_B$. Then $T_B < \sqrt{T_A T_B} < T_A$ and while $m_A < 0$ for all $T > T_c$, the B sublattice moment changes sign from negative to positive at a temperature $T_B > T_c$. Finally, note that at high temperatures the susceptibility follows a Curie $\chi \propto T^{-1}$ behavior.

[4] Let's all do the spin flop – In real solids crystal field effects often lead to anisotropic

spin-spin interactions. Consider the anisotropic Heisenberg antiferromagnet in a uniform magnetic field,

$$
\mathcal{H} = J \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z) + h \sum_i S_i^z
$$

where the field is parallel to the direction of anisotropy. Assume $\delta \geq 0$ and a bipartite lattice.

Consider the case of classical spins In a small external field, show that if the anisotropy Δ is not too large that the lowest energy configuration has the spins on the two sublattices lying predominantly in the (x, y) plane and antiparallel, with a small parallel component along the direction of the field. This is called a canted, or 'spin-flop' structure. What is the angle θ_c by which the spins cant out of the (x, y) plane? What do I mean by not too large? (You may assume that the lowest energy configuration is a two sublattice structure, rather than something nasty like a four sublattice structure or an incommensurate one.)

Solution :

We start by assuming a two-sublattice structure in which the spins lie in the $x - z$ plane. (Any two-sublattice structure is necessarily coplanar.) Let the A sublattice spins point in the direction $(\theta = \theta_A, \phi = 0)$ and let the B sublattice spins point in the direction $(\theta = \theta_B, \phi = \pi)$. The classical energy per bond is then

$$
\varepsilon(\theta_{\text{\tiny A}},\theta_{\text{\tiny B}}) = -JS^2\,\sin\theta_{\text{\tiny A}}\sin\theta_{\text{\tiny B}} + JS^2\Delta\,\cos\theta_{\text{\tiny A}}\cos\theta_{\text{\tiny B}} - \frac{hS}{z}\big(\cos\theta_{\text{\tiny A}} + \cos\theta_{\text{\tiny B}}\big)\ .
$$

Note that in computing the energy per bond, we must account for the fact that for each site there are $\frac{1}{2}z$ bonds, where z is the coordination number. The total number of bonds is thus $N_{\text{bonds}} = \frac{1}{2}Nz$, where N is the number of sites. Note also the competition between Δ and h. Large Δ makes the spins antialign along \hat{z} , while large h prefers alignment along \hat{z} .

Let us first assume $\theta_A = \theta_B = \theta_c$ and determine θ_c . Let $e(\theta_A, \theta_B) \equiv \varepsilon(\theta_A, \theta_B)/JS^2$:

$$
e(\theta_{\rm c}) \equiv e(\theta_{\rm A} = \theta_{\rm c}, \theta_{\rm B} = \theta_{\rm c})
$$

= $-\sin^2 \theta_{\rm c} + \Delta \cos^2 \theta_{\rm c} - \frac{2h}{zSJ} \cos \theta_{\rm c}$
 $\frac{\partial e}{\partial \theta_{\rm c}} = \sin \theta_{\rm c} \cdot \left\{ 2(1 + \Delta) \cos \theta_{\rm c} - \frac{2h}{zSJ} \right\}.$

Thus, the extrema of $e(\theta_c)$ occur at $\sin \theta_c = 0$ and at

$$
\cos \theta_{\rm c} = \frac{h}{zSJ(1+\Delta)}.
$$

The latter solution is present only when $\Delta > |h/zSJ| - 1$. The energy of this state is

$$
e = -\left\{1 + \frac{1}{1 + \Delta} \left(\frac{h}{zSJ}\right)^2\right\}
$$

per bond.

To assess stability, we'll need the second derivatives,

$$
\frac{\partial^2 e}{\partial \theta_{\rm A}^2} \bigg|_{\substack{\theta_{\rm A} = \theta_{\rm c} \\ \theta_{\rm B} = \theta_{\rm c}}} = \frac{\partial^2 e}{\partial \theta_{\rm B}^2} \bigg|_{\substack{\theta_{\rm A} = \theta_{\rm c} \\ \theta_{\rm B} = \theta_{\rm c}}} = \sin^2 \theta_{\rm c} - \Delta \cos^2 \theta_{\rm c} + \frac{h}{z S J} \cos \theta_{\rm c}
$$

$$
\frac{\partial^2 e}{\partial \theta_{\rm A} \partial \theta_{\rm B}} \bigg|_{\substack{\theta_{\rm A} = \theta_{\rm c} \\ \theta_{\rm B} = \theta_{\rm c}}} = -\cos^2 \theta_{\rm c} + \Delta \sin^2 \theta_{\rm c} ,
$$

from which we obtain the eigenvalues of the Hessian matrix,

$$
\lambda_{+} = (1 + \Delta)(1 - 2\cos^{2}\theta_{c}) + \frac{h}{zSJ}\cos\theta_{c}
$$

$$
= (1 + \Delta)\left\{1 - \left(\frac{h}{zSJ(1 + \Delta)}\right)^{2}\right\}
$$

$$
\lambda_{-} = (1 - \Delta) + \frac{h}{zSJ}\cos\theta_{c}
$$

$$
= \frac{1}{1 + \Delta}\left\{1 - \Delta^{2} + \left(\frac{h}{zSJ}\right)^{2}\right\}.
$$

Assuming $\Delta>0,$ we have that $\lambda_+>0$ requires

$$
\Delta > \frac{|h|}{zSJ} - 1 \;,
$$

which is equivalent to $\cos^2 \theta_c < 1$, and $\lambda_{-} > 0$ requires

$$
\Delta < \sqrt{1 + \left(\frac{h}{zSJ}\right)^2} \; .
$$

This is the meaning of "not too large."

The other extrema occur when $\sin \theta_c = 0$, *i.e.* $\theta_c = 0$ and $\theta_c = \pi$. The eigenvalues of the Hessian at these points are:

$$
\theta_{\rm c} = 0:
$$
\n
$$
\lambda_{+} = -(1 + \Delta) + \frac{h}{zSJ}
$$
\n
$$
\lambda_{-} = 1 - \Delta + \frac{h}{zSJ}
$$
\n
$$
\theta_{\rm c} = \pi
$$
\n
$$
\lambda_{+} = -(1 + \Delta) - \frac{h}{zSJ}
$$
\n
$$
\lambda_{-} = 1 - \Delta - \frac{h}{zSJ}.
$$

Without loss of generality we may assume $h \geq 0$, in which case the $\theta_c = \pi$ solution is always unstable. This is obvious, since the spins are anti-aligned with the field. For $\theta_c = 0$, the solution is stable provided $\Delta < (h/zJS) - 1$. For general h, the stability condition is $\Delta < |h|/zJS - 1.$

The other possibility is that Δ is so large that neither of these solutions is stable, in which case we suspect $\theta_{\!A} = 0$ and $\theta_{\!B} = \pi$ or $vice$ $versa.$

Thus, for $h < zJS(1+\Delta)$, the solution with $\theta_c = \cos^{-1}(h/zJS(1+\Delta))$ is stable. The Hessian matrix in this case is

$$
\begin{pmatrix}\n\frac{\partial^2 e}{\partial \theta_{\rm A}^2} & \frac{\partial^2 e}{\partial \theta_{\rm A} \partial \theta_{\rm B}} \\
\frac{\partial^2 e}{\partial \theta_{\rm B} \partial \theta_{\rm A}} & \frac{\partial^2 e}{\partial \theta_{\rm B}^2}\n\end{pmatrix}_{\theta_{\rm A}=0} = \begin{pmatrix}\n\Delta + \frac{h}{z S J} & 1 \\
1 & \Delta - \frac{h}{z S J}\n\end{pmatrix}
$$

whose eigenvalues are

$$
\lambda_{\pm} = \Delta \pm \sqrt{1 + \left(\frac{h}{zSJ}\right)^2}.
$$

Thus, this configuration is stable only if

$$
\Delta > \sqrt{1 + \left(\frac{h}{zSJ}\right)^2} \; .
$$