PHYSICS 152B/232 Spring 2017 Homework Assignment #1 Solutions

[1] Consider a one-dimensional chain of *s*-orbitals

$$\begin{split} H &= \sum_{n} \left(\varepsilon_{\mathsf{A}} \, | \, \mathsf{A}_{n} \, \rangle \langle \, \mathsf{A}_{n} \, | + \varepsilon_{\mathsf{B}} \, | \, \mathsf{B}_{n} \, \rangle \langle \, \mathsf{B}_{n} \, | \\ &- t \sum_{n} \left(| \, \mathsf{A}_{n} \, \rangle \langle \, \mathsf{B}_{n} \, | + | \, \mathsf{B}_{n} \, \rangle \langle \, \mathsf{A}_{n+1} \, | + | \, \mathsf{B}_{n} \, \rangle \langle \, \mathsf{A}_{n} \, | + | \, \mathsf{A}_{n+1} \, \rangle \langle \, \mathsf{B}_{n} \, | \right) \end{split}$$

- (a) How many atoms are there per unit cell? What is the length of the Wigner-Seitz cell?
- (b) Find the dispersions $E_a(k)$ of the energy bands.
- (c) Sketch the band structure over the one-dimensional Brillouin zone.
- (d) Show that for $\varepsilon_{A} = \varepsilon_{B}$ that you recover the correct energy band for the uniform one-dimensional nearest-neighbor chain.

Solution :

(a) There are two atoms per unit cell (one A and one B). The length of the Wigner-Seitz cell is $a = 2a_0$, where a_0 is the separation between neighboring A and B sites.

(b) From the Hamiltonian above, we read off the hopping matrix

$$H_{aa'}(n-n') = \begin{pmatrix} -\varepsilon_{\mathsf{A}} \,\delta_{n-n',0} & t\left(\delta_{n-n',0} + \delta_{n-n',1}\right) \\ t\left(\delta_{n-n',0} + \delta_{n-n',-1}\right) & -\varepsilon_{\mathsf{B}} \,\delta_{n-n',0} \end{pmatrix}$$

Thus,

$$\hat{H}_{aa'}(k) = \sum_{j} t_{aa'}(j) e^{-ikja} = \begin{pmatrix} \varepsilon_{\mathsf{A}} & -t\left(1 + e^{-ika}\right) \\ -t\left(1 + e^{ika}\right) & \varepsilon_{\mathsf{B}} \end{pmatrix}$$

The energy eigenvalues are then

$$E_{\pm}(k) = \frac{1}{2} \left(\varepsilon_{\mathsf{A}} + \varepsilon_{\mathsf{B}} \right) \pm \sqrt{\frac{1}{4} \left(\varepsilon_{\mathsf{A}} - \varepsilon_{\mathsf{B}} \right)^2 + 4t^2 \cos^2\left(\frac{1}{2}ka\right)} \quad ,$$

where we've used $|1 + e^{-ika}|^2 = 2 + 2\cos(ka) = 4\cos^2(\frac{1}{2}ka).$

(c) See the plots in Fig. 1.

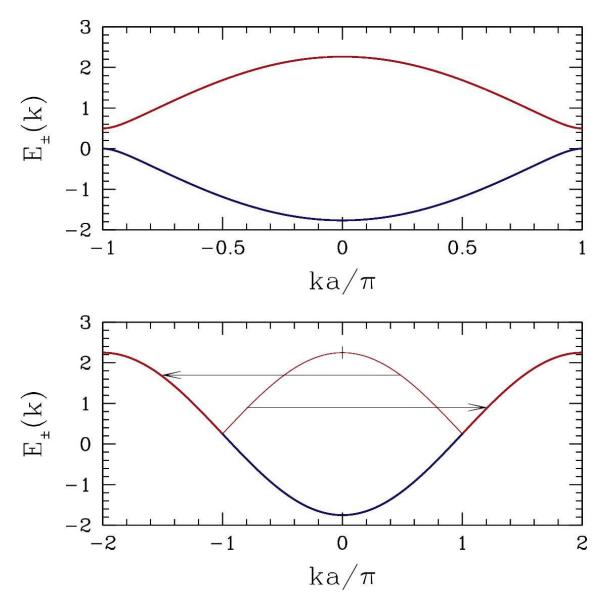


Figure 1: Energy bands $E_{\pm}(k)$ for problem 1. Top: $\varepsilon_{\mathsf{A}} = 0.5$, $\varepsilon_{\mathsf{B}} = 0.0$, t = 1.0. Bottom: $\varepsilon_{\mathsf{A}} = \varepsilon_{\mathsf{B}} = 0.5$, t = 1. The extended zone plot of the dispersion is shown for the latter case, in which the one-dimensional dispersion $E(k) = \varepsilon_0 - 2t \cos(ka')$ is recovered, with $a' = \frac{1}{2}a$ and $k \in \left[-\frac{\pi}{a'}, \frac{\pi}{a'}\right]$.

(d) Let $\varepsilon_{\mathsf{A}} = \varepsilon_{\mathsf{B}} = \varepsilon_0$. Then $E_{\pm}(k) = \varepsilon_0 \pm 2t \cos(\frac{1}{2}ka)$. If we translate the section of the + band on the interval $k \in \left[-\frac{\pi}{a}, 0\right]$ by $\frac{2\pi}{a}$, and the section on the interval $k \in \left[0, \frac{\pi}{a}\right]$ by $-\frac{2\pi}{a}$, we obtain the dispersion $E(k) = \varepsilon_0 - 2t \cos(ka')$ on the interval $k \in \left[-\frac{\pi}{a'}, \frac{\pi}{a'}\right]$, with $a' = \frac{1}{2}a$.

[2] Hexagonal boron nitride, BN, has a honeycomb lattice structure, with boron atoms at A sites and nitrogen atoms at B sites. The tight binding Hamiltonian is

$$\begin{split} H &= \sum_{R} \left(\varepsilon_{\mathsf{A}} \, | \, \mathsf{A}_{R} \, \rangle \langle \, \mathsf{A}_{R} \, | + \varepsilon_{\mathsf{B}} \, | \, \mathsf{B}_{R} \, \rangle \langle \, \mathsf{B}_{R} \, | \right) \\ &- t \sum_{R} \left(| \, \mathsf{A}_{R} \, \rangle \langle \, \mathsf{B}_{R} \, | + | \, \mathsf{A}_{R} \, \rangle \langle \, \mathsf{B}_{R+a_{1}} \, | + | \, \mathsf{A}_{R} \, \rangle \langle \, \mathsf{B}_{R-a_{2}} \, | + \mathrm{H.c.} \right) \quad . \end{split}$$

- (a) Find the 2 × 2 Hamiltonian matrix $\hat{H}(\mathbf{k})$. You may find it convenient to write $\mathbf{k} = \frac{\theta_1}{2\pi} \mathbf{b}_1 + \frac{\theta_2}{2\pi} \mathbf{b}_2$ and express your answer in terms of $\theta_{1,2}$.
- (b) Find expressions for the band energies at high symmetry points Γ , K, and M.
- (c) Find an expression for the band gap Δ . Is the gap direct or indirect?

Solution :

(a) The Hamiltonian matrix is

$$\hat{H}(\mathbf{k}) = \begin{pmatrix} \varepsilon_{\mathsf{A}} & -t\,\gamma(\mathbf{k}) \\ -t\,\gamma^*(\mathbf{k}) & \varepsilon_{\mathsf{B}} \end{pmatrix} \quad ,$$

where

$$\gamma(\mathbf{k}) = 1 + e^{i\mathbf{k}\cdot \mathbf{a}_1} + e^{-i\mathbf{k}\cdot \mathbf{a}_2} = 1 + e^{i\theta_1} + e^{-i\theta_2} \quad .$$

There are two bands:

$$E_{\pm}(\mathbf{k}) = \frac{1}{2} \left(\varepsilon_{\mathsf{A}} + \varepsilon_{\mathsf{B}} \right) \pm \sqrt{\frac{1}{4} \left(\varepsilon_{\mathsf{A}} - \varepsilon_{\mathsf{B}} \right)^2 + t^2 |\gamma(\mathbf{k})|^2} \quad .$$

(b) Recall $\boldsymbol{k}_{\Gamma} = 0$, $\boldsymbol{k}_{K} = \frac{1}{3}\boldsymbol{B}_{1} + \frac{1}{3}\boldsymbol{B}_{2}$, and $\boldsymbol{k}_{M} = \frac{1}{2}\boldsymbol{b}_{1}$. Thus,

$$\gamma(\Gamma) = 3$$
 , $\gamma(K) = 0$, $\gamma(M) = 1$

and

$$\begin{split} E_{\pm}(\Gamma) &= \frac{1}{2} \left(\varepsilon_{\mathsf{A}} + \varepsilon_{\mathsf{B}} \right) \pm \sqrt{\frac{1}{4} \left(\varepsilon_{\mathsf{A}} - \varepsilon_{\mathsf{B}} \right)^{2} + 9t^{2}} \\ E_{\pm}(\mathbf{K}) &= \varepsilon_{\mathsf{A}} \ , \ \varepsilon_{\mathsf{B}} \\ E_{\pm}(\mathbf{M}) &= \frac{1}{2} \left(\varepsilon_{\mathsf{A}} + \varepsilon_{\mathsf{B}} \right) \pm \sqrt{\frac{1}{4} \left(\varepsilon_{\mathsf{A}} - \varepsilon_{\mathsf{B}} \right)^{2} + t^{2}} \quad . \end{split}$$

(c) Since nitrogen has a greater nuclear charge, we expect $\varepsilon_{\mathsf{B}} < \varepsilon_{\mathsf{A}}$. The maximum valence (-) band energy is then ε_{B} , at K. The minimum conduction band energy is ε_{A} , also at K. Thus, the gap is direct and equal to $\Delta = \varepsilon_{\mathsf{A}} - \varepsilon_{\mathsf{B}}$. The direct gap at wavevector \mathbf{k} is

$$\Delta(\mathbf{k}) \equiv E_{+}(\mathbf{k}) - E_{-}(\mathbf{k}) = \sqrt{\left(\varepsilon_{\mathsf{A}} - \varepsilon_{\mathsf{B}}\right)^{2} + 4t^{2} \left|\gamma(\mathbf{k})\right|^{2}}$$

[3] Consider a tight binding model of (p_x, p_y) orbitals on a triangular lattice. The hopping is restricted to nearest neighbor links. Recall that the hopping matrix elements are given by

$$t_{\mu\nu}(\hat{\boldsymbol{\eta}}) = t_{\rm w}\,\delta_{\mu\nu} - (t_{\rm s} + t_{\rm w})\,\hat{\eta}_{\mu}\,\hat{\eta}_{\nu}$$

,

where the link direction is $\hat{\eta}$.

- (a) Find the matrix $\hat{t}_{\mu\nu}(\mathbf{k})$. You may find it convenient to write $\mathbf{k} = \frac{\theta_1}{2\pi} \mathbf{b}_1 + \frac{\theta_2}{2\pi} \mathbf{b}_2$ and express your answer in terms of $\theta_{1,2}$.
- (b) Find expressions for the band energies at the high symmetry points Γ , K, and M.
- (c) For $t_{\rm s} = 1$ and $t_{\rm w} = \frac{1}{2}$, plot the dispersions $E_{\pm}(\mathbf{k})$ along the path $\Gamma \text{MK}\Gamma$.

Solution :

$\hat{oldsymbol{\eta}}$	$\hat{\eta}^x_j\hat{\eta}^x_j$	$\hat{\eta}^x_j \hat{\eta}^y_j$	$\hat{\eta}_{j}^{y}\hat{\eta}_{j}^{y}$
$\pm \hat{\pmb{a}}_1$	$\frac{1}{4}$	$-\frac{\sqrt{3}}{4}$	$\frac{3}{4}$
$\pm \hat{oldsymbol{a}}_2$	$\frac{1}{4}$	$\frac{\sqrt{3}}{4}$	$\frac{3}{4}$
$\pm \hat{oldsymbol{a}}_3$	1	0	0

Table 1: Values of $\eta_i^{\mu}\eta_j^{\nu}$ for the six nearest neighbor vectors.

(a) On the triangular lattice, there are six nearest neighbors. Defining the primitive direct lattice vectors $\mathbf{a}_1 = a\left(\frac{1}{2}\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}\hat{\mathbf{y}}\right)$ and $\mathbf{a}_2 = a\left(\frac{1}{2}\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}\hat{\mathbf{y}}\right)$, the six nearest neighbor vectors are $\pm \mathbf{a}_1$, $\pm \mathbf{a}_2$, and $\pm \mathbf{a}_3$, where $\mathbf{a}_3 \equiv -\mathbf{a}_1 - \mathbf{a}_2 = -a\hat{\mathbf{x}}$. From the entries in Tab. 1, we have

$$\begin{split} \hat{t}_{xx}(\mathbf{k}) &= 2t_{\rm w}(c_1 + c_2 + c_3) - (t_{\rm s} + t_{\rm w})(\frac{1}{2}c_1 + \frac{1}{2}c_2 + 2c_3) \\ \hat{t}_{yy}(\mathbf{k}) &= 2t_{\rm w}(c_1 + c_2 + c_3) - (t_{\rm s} + t_{\rm w})(\frac{3}{2}c_1 + \frac{3}{2}c_2) \\ \hat{t}_{xy}(\mathbf{k}) &= \hat{t}_{yx}(\mathbf{k}) = \frac{\sqrt{3}}{2}(t_{\rm s} + t_{\rm w})(c_1 - c_2) \quad , \end{split}$$

k	θ_1	θ_2	θ_3	c_1	c_2	c_3	$E_+({m k})$	$E_{-}(oldsymbol{k})$
Г	0	0	0	1	1	1	$3(t_{\rm s}-t_{\rm w})$	$3(t_{\rm s}-t_{\rm w})$
Κ	$\frac{2\pi}{3}$	$\frac{2\pi}{3}$	$-\frac{4\pi}{3}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\tfrac{3}{2}(t_{\rm s}-t_{\rm w})$	$-\tfrac{3}{2}(t_{\rm s}-t_{\rm w})$
Μ	π	0	$-\pi$	-1	1	-1	$\begin{aligned} &3(t_{\rm s}-t_{\rm w})\\ &-\frac{3}{2}(t_{\rm s}-t_{\rm w})\\ &3t_{\rm s}+t_{\rm w} \end{aligned}$	$-t_{\rm w}-3t_{\rm s}$

Table 2: Dispersion at high symmetry points.

where $\theta_3 \equiv -(\theta_1 + \theta_2) \,$ and where $c_j = \cos \theta_j.$ Thus,

$$\begin{split} \hat{t}_{\nu\nu}(\mathbf{k}) &= \begin{pmatrix} \frac{1}{2}(3t_{\rm w} - t_{\rm s})(c_1 + c_2) - 2t_{\rm s}c_3 & \frac{\sqrt{3}}{2}(t_{\rm s} + t_{\rm w})(c_1 - c_2) \\ \frac{\sqrt{3}}{2}(t_{\rm s} + t_{\rm w})(c_1 - c_2) & \frac{1}{2}(t_{\rm w} - 3t_{\rm s})(c_1 + c_2) + 2t_{\rm w}c_3 \end{pmatrix} \\ &= (t_{\rm w} - t_{\rm s})(c_1 + c_2 + c_3) + \frac{1}{2}(t_{\rm w} + t_{\rm s})(c_1 + c_2 - 2c_3)\,\sigma^z + \frac{\sqrt{3}}{2}(t_{\rm s} + t_{\rm w})(c_1 - c_2)\,\sigma^z \end{split}$$

The eigenvalues of $\hat{H}_{\mu\nu}(\mathbf{k}) = -\hat{t}_{\mu\nu}(\mathbf{k})$ are then

$$E_{\pm}(\mathbf{k}) = (t_{\rm s} - t_{\rm w})(c_1 + c_2 + c_3) \pm (t_{\rm s} + t_{\rm w})\sqrt{c_1^2 + c_2^2 + c_3^2 - c_1c_2 - c_2c_3 - c_1c_3}$$

Note that under a 60° rotation, $a_1 \rightarrow -a_3$, $a_2 \rightarrow -a_1$, and $a_3 \rightarrow -a_2$, so $(\theta_1, \theta_2, \theta_3) \rightarrow (-\theta_3, -\theta_1, -\theta_2)$. This symmetry is manifestly preserved by the above dispersions.

(b) See the results in Tab. 2. Note that the bands are degenerate at both Γ and K.

(c) See the plot in Fig. 2.

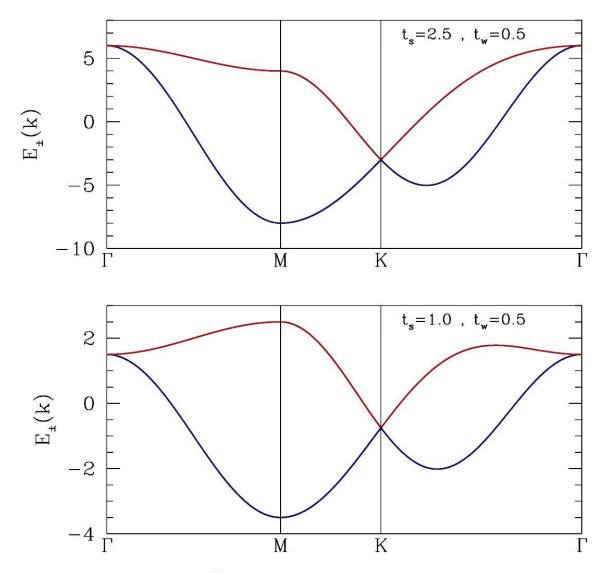


Figure 2: Energy bands $E_{\pm}(\mathbf{k})$ along high symmetry directions for problem 3. Top: $t_{\rm s} = 2.5$ and $t_{\rm w} = 0.5$. Bottom: $t_{\rm s} = 1.0$ and $t_{\rm w} = 0.5$.