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Homework Assignment #1 Solutions

[1] Consider a one-dimensional chain of s-orbitals

H =
∑

n

(

ε
A
|An 〉〈An |+ ε

B
|Bn 〉〈Bn |

− t
∑

n

(

|An 〉〈Bn |+ |Bn 〉〈An+1 |+ |Bn 〉〈An |+ |An+1 〉〈Bn |
)

.

(a) How many atoms are there per unit cell? What is the length of the Wigner-Seitz
cell?

(b) Find the dispersions Ea(k) of the energy bands.

(c) Sketch the band structure over the one-dimensional Brillouin zone.

(d) Show that for ε
A
= ε

B
that you recover the correct energy band for the uniform

one-dimensional nearest-neighbor chain.

Solution :

(a) There are two atoms per unit cell (one A and one B). The length of the Wigner-
Seitz cell is a = 2a0, where a0 is the separation between neighboring A and B sites.

(b) From the Hamiltonian above, we read off the hopping matrix

Haa′(n− n′) =

(

−ε
A
δn−n′,0 t

(

δn−n′,0 + δn−n′,1

)

t
(

δn−n′,0 + δn−n′,−1

)

−ε
B
δn−n′,0

)

Thus,

Ĥaa′(k) =
∑

j

taa′(j) e
−ikja =

(

ε
A

−t
(

1 + e−ika
)

−t
(

1 + eika
)

ε
B

)

The energy eigenvalues are then

E±(k) =
1

2

(

ε
A
+ ε

B

)

±

√

1

4

(

ε
A
− ε

B

)2
+ 4t2 cos2

(

1

2
ka
)

,

where we’ve used |1 + e−ika |2 = 2 + 2 cos(ka) = 4 cos2
(

1

2
ka
)

.

(c) See the plots in Fig. 1.
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Figure 1: Energy bands E±(k) for problem 1. Top: εA = 0.5, εB = 0.0, t = 1.0.
Bottom: εA = εB = 0.5, t = 1. The extended zone plot of the dispersion is shown
for the latter case, in which the one-dimensional dispersion E(k) = ε0 − 2t cos(ka′) is
recovered, with a′ = 1

2
a and k ∈

[

− π
a′
, π
a′

]

.

(d) Let ε
A
= ε

B
= ε0. Then E±(k) = ε0 ± 2t cos

(

1

2
ka
)

. If we translate the section
of the + band on the interval k ∈

[

− π
a
, 0
]

by 2π
a
, and the section on the interval

k ∈
[

0 , π
a

]

by −2π
a
, we obtain the dispersion E(k) = ε0 − 2t cos(ka′) on the interval

k ∈
[

− π
a′
, π

a′

]

, with a′ = 1

2
a.
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[2] Hexagonal boron nitride, BN, has a honeycomb lattice structure, with boron atoms
at A sites and nitrogen atoms at B sites. The tight binding Hamiltonian is

H =
∑

R

(

ε
A
|AR 〉〈AR |+ ε

B
|BR 〉〈BR |

)

− t
∑

R

(

|AR 〉〈BR |+ |AR 〉〈BR+a
1

|+ |AR 〉〈BR−a
2

|+H.c.
)

.

(a) Find the 2 × 2 Hamiltonian matrix Ĥ(k). You may find it convenient to write

k =
θ
1

2π
b1 +

θ
2

2π
b2 and express your answer in terms of θ1,2.

(b) Find expressions for the band energies at high symmetry points Γ, K, and M.

(c) Find an expression for the band gap ∆. Is the gap direct or indirect?

Solution :

(a) The Hamiltonian matrix is

Ĥ(k) =

(

ε
A

−t γ(k)
−t γ∗(k) ε

B

)

,

where
γ(k) = 1 + eik·a1 + e−ik·a

2 = 1 + eiθ1 + e−iθ
2 .

There are two bands:

E±(k) =
1

2

(

ε
A
+ ε

B

)

±

√

1

4

(

ε
A
− ε

B

)2
+ t2

∣

∣γ(k)
∣

∣

2
.

(b) Recall kΓ = 0, kK = 1

3
B1 +

1

3
B2, and kM = 1

2
b1. Thus,

γ(Γ) = 3 , γ(K) = 0 , γ(M) = 1

and

E±(Γ) =
1

2

(

ε
A
+ ε

B

)

±

√

1

4

(

ε
A
− ε

B

)2
+ 9t2

E±(K) = ε
A
, ε

B

E±(M) = 1

2

(

ε
A
+ ε

B

)

±

√

1

4

(

ε
A
− ε

B

)2
+ t2 .
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(c) Since nitrogen has a greater nuclear charge, we expect ε
B
< ε

A
. The maximum

valence (−) band energy is then ε
B
, at K. The minimum conduction band energy is

ε
A
, also at K. Thus, the gap is direct and equal to ∆ = ε

A
− ε

B
. The direct gap at

wavevector k is

∆(k) ≡ E+(k)−E−(k) =

√

(

ε
A
− ε

B

)2
+ 4t2

∣

∣γ(k)
∣

∣

2
.

[3] Consider a tight binding model of (px, py) orbitals on a triangular lattice. The hop-
ping is restricted to nearest neighbor links. Recall that the hopping matrix elements
are given by

tµν(η̂) = tw δµν − (ts + tw) η̂µ η̂ν ,

where the link direction is η̂.

(a) Find the matrix t̂µν(k). You may find it convenient to write k =
θ
1

2π
b1 +

θ
2

2π
b2

and express your answer in terms of θ1,2.

(b) Find expressions for the band energies at the high symmetry points Γ, K, and
M.

(c) For ts = 1 and tw = 1

2
, plot the dispersions E±(k) along the path ΓMKΓ.

Solution :

η̂ η̂xj η̂
x
j η̂xj η̂

y
j η̂

y
j η̂

y
j

±â1
1

4
−

√
3

4

3

4

±â2
1

4

√
3

4

3

4

±â3 1 0 0

Table 1: Values of ηµj η
ν
j for the six nearest neighbor vectors.

(a) On the triangular lattice, there are six nearest neighbors. Defining the primitive

direct lattice vectors a1 = a (1
2
x̂ −

√
3

2
ŷ) and a2 = a (1

2
x̂ +

√
3

2
ŷ), the six nearest

neighbor vectors are ±a1, ±a2, and ±a3, where a3 ≡ −a1 − a2 = −a x̂. From the
entries in Tab. 1, we have

t̂xx(k) = 2tw(c1 + c2 + c3)− (ts + tw)(
1

2
c1 +

1

2
c2 + 2c3)

t̂yy(k) = 2tw(c1 + c2 + c3)− (ts + tw)(
3

2
c1 +

3

2
c2)

t̂xy(k) = t̂yx(k) =
√
3

2
(ts + tw)(c1 − c2) ,
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k θ1 θ2 θ3 c1 c2 c3 E+(k) E−(k)

Γ 0 0 0 1 1 1 3(ts − tw) 3(ts − tw)

K 2π
3

2π
3

−4π
3

−1

2
−1

2
−1

2
−3

2
(ts − tw) −3

2
(ts − tw)

M π 0 −π −1 1 −1 3ts + tw −tw − 3ts

Table 2: Dispersion at high symmetry points.

where θ3 ≡ −(θ1 + θ2) and where cj = cos θj . Thus,

t̂νν(k) =

(

1

2
(3tw − ts)(c1 + c2)− 2tsc3

√
3

2
(ts + tw)(c1 − c2)√

3

2
(ts + tw)(c1 − c2)

1

2
(tw − 3ts)(c1 + c2) + 2twc3

)

= (tw − ts)(c1 + c2 + c3) +
1

2
(tw + ts)(c1 + c2 − 2c3) σ

z +
√
3

2
(ts + tw)(c1 − c2) σ

x

The eigenvalues of Ĥµν(k) = −t̂µν(k) are then

E±(k) = (ts − tw)(c1 + c2 + c3)± (ts + tw)
√

c21 + c22 + c23 − c1c2 − c2c3 − c1c3 .

Note that under a 60◦ rotation, a1 → −a3, a2 → −a1, and a3 → −a2, so (θ1, θ2, θ3) →
(−θ3,−θ1,−θ2). This symmetry is manifestly preserved by the above dispersions.

(b) See the results in Tab. 2. Note that the bands are degenerate at both Γ and K.

(c) See the plot in Fig. 2.
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Figure 2: Energy bands E±(k) along high symmetry directions for problem 3. Top:
ts = 2.5 and tw = 0.5. Bottom: ts = 1.0 and tw = 0.5.
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